 STYLEREF ZDID * MERGEFORMAT
Page 2 V(19)

	[image: image1.jpg]

	Client-Server Sequence Diagrams for OMA of MEGA_NET WG

	Draft Version - 8 Oct 2007

	

	

	

	

	
	

Contents

41.
Scope (Informative)

52.
Terminology and Conventions

52.1
Conventions

52.2
Definitions

63.
Introduction (Informative)

63.1
Overview

63.1.1
Diagram

73.1.2
Sequnce Diagram

183.1.3
Client and Server Functions

21Appendix A.
Change History (Informative)

21A.1
Approved Version History

21A.2
Draft/Candidate Version 1.0 History

Figures

6Figure 1: Logical Diagram

7Figure 2: Object Diagram

9Figure 3: Create a Room

12Figure 4: Join a Room

15Figure 5: In Room

17Figure 6: Quick Match

1. Scope
(Informative)

The MEGA-Net Client-Server APIs is a result of continuous work to define a generic realtime matchmaking client/server interface for developing game applications that operate over communication networks.

2. Terminology

Terminology
	API
	API, or Application Programming Interface, is the interface by which an application program accesses operating system, platforms or other system services. An API provides a level of abstraction between the requesting application and the provider of the service, ensuring portability of the code. API main task is the translation of parameter lists from the calling format to the service provider format, while supporting the interpretation of call-by-value and call-by-reference arguments in one or both directions.

	Channel
	Channel means the unit of game separated by its difficulty or different game type. There is a room and a user list in each channel.

	Room
	A room is an instance of a Channel and is a space for joining user in game room. To play the game it could be limited by user level, room size.

	RoomInfo
	There are many RoomInfo instances in each Channel. The properties for making room are listed below. If password is setted, it is a privated room, if level is setted, it limit user to join. Size meanes maximum number of a user.
Variables
Describtion
RoomID
Unique Key of a room
RoomName
Room name
RoomPassword
Room password
RoomSize
Maximum user count of a room
RoomLevel
Minimum user level of a room

	Ranking
	It could be updated a game score after game is over.

Definitions

Server
	Authentication Server
	Authentication Server provides billing and user authentication.

	Login Server
	As difference with Authentication Server confirms whether user could play a game.

	Gaming Server
	There are MatchLogic and GameLogic in Gaming Server. MatchLogic provides Channel is a space separating a game and a room is a space joining a user in a game room. GameLogic provides the real gamelogic for a game.

3. Introduction
(Informative)

MEGA-Net API is basically based on TCP/IP via wireless network. This document describes a gaming flow from first connection and all of process is keeping connection until disconnection.
Overview
Diagram
Logical Diagram
Gaming Server, Channel, Game Logic diagram shown as below:
[image: image2.png]
Figure 1: Logical Diagram
Clients connect to each game delployed in Gaming Server.
Object Diagram
[image: image3.png]
Figure 2: Object Diagram
Sequnce Diagram
Create a Room
[image: image4.png]
[image: image5.png]
Figure 3: Create a Room
1. Run application.
2. connectAuthenticationServer(Host, Port)
Connect to Auth Server by using Host, Post.
3. requestAuthentication(GameID, UserID, DeviceInfo)
Confirm whether it could play the game by user identification. If succeed, receive Host and Port in result.
4. connectLoginServer(Host, Port, GameID, UserID)
Connect to Login Server using Host and Port from Auth Server. If succeed, receive Host and Port in result.
5. connectGamingServer(Host, Port, GameID, UserID)
Connect to Gaming Server using Host and Port from Login Server. If succeed, receive the success message in result.
6. requestChannelList()
Request a channel list of the current game. The count is 1~n.
7. Select Channel
Specified channel could be selected by a user.
8. requestJoinChannel(ChannelID)
Request joining a channel by ChannelID among a channel list
9. reqeustRoomList(RoomInfo)
Request a room list of the current channel. The count is 0~n
10. Create Room
Make a roominfo consisted of a room properties by a user
11. reqeustCreateRoom(RoomInfo)
Request to create room by RoomInfo.
12. Request User List
A user requests a user list by self.
13. reqeustUserList(RoomID)
Request a user list in a room automatically or directly. The count is over 1.
14. Kick User Out
User who creates room could kick specified user out from current room.
15. reqeustKickOut(UserID)
Request a selected user to kick out.
16. 16’ Chat Message
All of user in a room could send a message to all of user except a sending user. A message is broadcasted to the other users in a room.
17. Input Chat Message
Put the message what a user want to send.
18. sendChatMessage(Message)
Request to send message to all of user in a room.
19. 19’All Ready Game
If all users send a message when ready to play a game, Gaming Server broadcast All Ready Game message to user who created a room.
20. Start Game
As get the 17’, a user could send to start a game message.
21. reqeustStartGame()
Request to start to play the game.
22. Send Match Information
After 18’ in a room, a game could be started by joining all users to GameLogic from match information.
Join a Room
[image: image6.png]
[image: image7.png]
Figure 4: Join a Room
1. Run application.
2. connectAuthenticationServer(Host, Port)
Connect to Auth Server by using Host, Post.
3. requestAuthentication(GameID, UserID, DeviceInfo)
Confirm whether it could play the game by user identification. If succeed, receive Host and Port in result.
4. connectLoginServer(Host, Port, GameID, UserID)
Connect to Login Server using Host and Port from Auth Server. If succeed, receive Host and Port in result.
5. connectGamingServer(Host, Port, GameID, UserID)
Connect to Gaming Server using Host and Port from Login Server. If succeed, receive the success message in result.
6. requestChannelList()
Request a channel list of the current game. The count is 1~n.
7. Select Channel
Specified channel could be selected by a user.
8. requestJoinChannel(ChannelID)
Request joining a channel by ChannelID among a channel list
9. reqeustRoomList(RoomInfo)
Request a room list of the current channel. The count is 0~n
10. Select Room
Select room among a room list at 9’.
11. reqeustJoinRoom(RoomInfo)
Request to join a room by RoomID among a room list.
12. reqeustUserList(RoomID)
Request a user list in a room. The count is over 1.
13. 13’ Kick Out
A user who creates room could kick specified user out from current room.
14. 14’ Chat Message
Get a message from the other user via gamelogic.
15. Input Chat Message
Put the message what a user want to send.
16. sendChatMessage(Message)
Request to send message to all users in a room.
17. Select Ready Game
A user could send a message what ready to play a game.
18. requestReadyGame()

Request to ready to play the game.
19. 19’ Start Game
If all users sendes a message what ready to play a game, Gaming Server broadcast Start Game Message.
20. Send Match Information
After 18’ in a room, a game could be started by joining all users to GameLogic from match information.
21. 21’ Play Game
Get a message from gamelogic.
In Game
[image: image8.png]
Figure 5: In Room
1. Input Event
User plays the game.
2. Send Game Data
3. 3’ Game Over
4. OK
Confirm game end user interface in game.
5. Update Score
When game is over, a user could update a game score to a current game.
6. insertScore(GameID, UserID, ScoreObject)
Request to update a game score.
7. insertExtraInfo(GameID, UserID, ResultObject)
Request to update a game result except score.
8. 8’ End Game
After update a score, get a message game end.
9. Restart
A user could select wheather continue a game or end a game.
10. requestEndGame(Restart)
Request to end the game. After request, get back to a channel.
11. requestJoinPreviousRoom()
Request to restart to play the game.
12. requestEndGame(Restart)
Request to end the game. After request, get back to a channel.
Quick Match
[image: image9.png]
[image: image10.png]
Figure 6: Quick Match
1. Run application.
2. connectAuthenticationServer(Host, Port)
Connect to Auth Server by using Host, Post.
3. requestAuthentication(GameID, UserID, DeviceInfo)
Confirm whether it could play the game by user identification. If succeed, receive Host and Port in result.
4. connectLoginServer(Host, Port, GameID, UserID)
Connect to Login Server using Host and Port from Auth Server. If succeed, receive Host and Port in result.
5. connectGamingServer(Host, Port, GameID, UserID)
Connect to Gaming Server using Host and Port from Login Server. If succeed, receive the success message in result.
6. requestChannelList()
Request a channel list of the current game. The count is 1~n.
7. Select Channel
Specified channel could be selected by a user.
8. requestJoinChannel(ChannelID)
Request joining a channel by ChannelID among a channel list
9. requestQuickMatch(RoomInfo)
It could request QuickMatch before getting a list in Channel. In result if value is equal to 0, it requests requestCreateRoom(RoomInfo) automatically, if value is larger than 1, it requests requestJoinRoom(RoomInfor) automatically.
10. requestCreateRoom(RoomInfo)
Request to create room by RoomInfo.
11. reqeustJoinRoom(RoomInfo)
Request to join a room by RoomID among a room list.
12. 12’ All Ready Game
If all users sendes a message what ready to play a game, Gaming Server broadcast All Ready Game message to user who creates a room.
13. reqeustUserList(RoomID)
Request a user list in a room. The count is over 1.
14. Start Game
As get the 17’, a user could send to start a game message.
15. reqeustStartGame()
Request to start to play the game.
16. Send Match Information
After 18’ in a room, a game could be started by joining all users to GameLogic from match information.
responseEventListener

The request of MEGA-Net provides an asynchronous system. The reason is the process of client is running in a waiting time.

According to the process responseEventListner call a callback function about requesting Channel and Room. Each request makes each callback.

As overriding a callback function the class could be used in client.

	1. Request a room list in a Channel
requestRoomList()

2. Reture a message to client
call requestRoomList() of responseEventListener
3.Processing a client logic
reRoomList()

{

// to do :: client logic

}

Callback function list
1. reAuthServer()
Connection success or fail

2. reAuth()
Authentication success or fail

3. reLoginServer()
Connection success or fail

4. reGamingServer()
Connection success or fail

5. reChannelList()
Get a channel list or fail

6. reJoinChannel()

Join a channel or fail

7. reRoomList()

Get a room list or fail

8. reCreateRoom()

Create a room or fail

9. reJoinRoom()

Join room or fail

10. reUserList()

Get a user list or fail

11. reKickOut()

Kicked out or fail

12. reSendChatMsg()

Get a message

13. reStartGame()

Start game success of fail

14. reReadyGame()

Ready success or fail

15. reEndGame()

Get back a channel or fail

16. reInsertScore()

Update success or fail

17. reInsertExtraInfo()

Update success or fail
Appendix A. Change History
(Informative)

Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version

Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions:
Client-Server APIs
	8 Oct 2007
	All
	Draft

(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ArchDoc-20040205]
(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.

