OMA-ER-GotAPI-V1_0-20140202-D
Page 14 V(28)

	[image: image7.png]
	

	Generic Open Terminal API Framework (GotAPI)

	Draft Version 1.0 – 04 Feb 2014

	Open Mobile Alliance

	OMA-ER-GotAPI-V1_0-20140202-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents
51.
Scope

62.
References

62.1
Normative References

62.2
Informative References

73.
Terminology and Conventions

73.1
Conventions

73.2
Definitions

73.3
Abbreviations

94.
Introduction

104.1
Version 1.0

125.
GotAPI Enabler release description (Informative)

136.
Requirements (Normative)

136.1
High-Level Functional Requirements

136.1.1
Security and Privacy

157.
Architectural Model

157.1
Dependencies

167.2
Architectural Diagram

187.3
Functional Components and Interfaces/reference points definition

197.4
Security Considerations

208.
Technical Specifications

219.
Sections As Needed

219.1
Example Level 2

219.1.1
Example Level 3

2210.
Release Information

2210.1
Supporting File Document Listing

2210.2
OMNA Considerations

2310.3
Additional Items

24Appendix A.
Change History (Informative)

24A.1
Approved Version History

24A.2
Draft/Candidate Version 1.0 History

25Appendix B.
Call Flows (Informative)

26Appendix C.
Static Conformance Requirements (Normative)

26C.1
ERDEF for GotAPI 1.0 - Client Requirements

26C.2
ERDEF for GotAPI 1.0 - Server Requirements

26C.3
SCR for GotAPI Client

26C.4
SCR for GotAPI Server

27Appendix D.
<Additional Information>

27D.1
App Headers

27D.1.1
More Headers

28Appendix E.
GotAPI Enabler Deployment Considerations

Figures
10Figure 1 Conceptual Implementation (Informative)

17Figure 2: Example of the Architectural Diagram using interfaces

17Figure 3: Example of the Architectural Diagram using reference points

21Figure 4: Example Figure

1. Scope

This Enabler Release (ER) document is a combined document that includes requirements, architecture and technical specification of the Generic Open Terminal API Framework (GotAPI) Enabler..

The scope of this enabler will include:

· Architecture and specifications for an API framework enabling web-based APIs to be exposed to apps running in web browsers and as native apps (including but not limited to hybrid native/web apps)
· Supporting assets for the localhost API server framework, e.g. JavaScript libraries enabling abstractions of common API functions (e.g. discovery, access, and session management)

· A registry of well-known API resources for OMA enablers, to be maintained as part of the OMNA
· Specification of API exposure patterns that are in general globally applicable to native device platforms
2. References
2.1 Normative References

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[EventSource]
	“Server-Sent Events”, Worldwide Web Consortium (W3C), URL: http://dev.w3.org/html5/eventsource/ (latest working draft)

	[HTTP/1.1]
	“Hypertext Transfer Protocol -- HTTP/1.1”, Internet Engineering Task Force (IETF), URL: http://tools.ietf.org/search/rfc2616

	[HTTP/2.0]
	“Hypertext Transfer Protocol version 2.0”, Internet Engineering Task Force (IETF), URL: http://tools.ietf.org/search/draft-ietf-httpbis-http2-09 (latest working draft)

	[JSON-RPC]
	“JSON-RPC 2.0 Specification”, JSON-RPC Working Group, URL: http://www.jsonrpc.org/specification

	[OAuth2.0]
	“The OAuth 2.0 Authorization Framework”, Internet Engineering Task Force (IETF), URL: http://tools.ietf.org/html/rfc6749

	[WebRTC]
	“WebRTC 1.0: Real-time Communication Between Browsers”, Worldwide Web Consortium (W3C), URL:http://dev.w3.org/2011/webrtc/editor/webrtc.html (latest working draft)

	[WebSocket]
	“The WebSocket API, Worldwide Web Consortium (W3C), URL: http://dev.w3.org/html5/websockets/ (latest working draft)

	[XHR]
	“XMLHttpRequest”, Worldwide Web Consortium (W3C), URL: https://dvcs.w3.org/hg/xhr/raw-file/tip/Overview.html (latest working draft)

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2.8, URL:http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(. URL:
http://www.openmobilealliance.org/tech/omna.aspx

	[CSEA]
	“Client Side Enabler API (CSEA)”, Version 1.0, Open Mobile Alliance™, OMA-RRP-CSEA-V1_0, URL:http://www.openmobilealliance.org/

	[WRAPI]
	“Web Runtime API (WRAPI”, Version 1.0, Open Mobile Alliance™, OMA-ERP-WRAPI-V1_0, URL:http://www.openmobilealliance.org/

	[MCAPI]
	“Mobile Codes API (MCAPI)”, Version 1.0, Open Mobile Alliance™, OMA-ER-MCAPI-V1_0, URL:http://www.openmobilealliance.org/

	[CMAPI]
	“Open Connection Management Web API”, Version 1.1, OMA-TS-OpenCMAPI_Web-V1_1, URL:http://www.openmobilealliance.org/

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	API Patterns
	Design guidelines and requirements for definition of APIs

	Browser Context
	Web applications executing under a Web browser as Web runtime environment.

	Datagram
	An API providing access to UDP protocol based networking.

	ECMAScript
	Use definition from [OMADICT].

	Hybrid Native/Web App
	An application designed to execute under the native OS / middleware environment of a device, and that use native APIs for the execution of web content in addition to native code.

	JavaScript
	Use definition from [OMADICT].

	Native App
	An application designed to execute under the native OS / middleware environment of a device.

	Socket
	An API providing access to TCP protocol based networking.

	User Agent
	Use definition from [OMADICT].

	Web
	The World Wide Web, a content and application framework based upon hypertext and related technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

	Web Application
	An application designed using Web technologies (e.g. HTML, CSS, and Javascript).

	Web IDL
	An IDL language for Web application APIs

	Web Runtime Environment
	Client software that supports the execution of Web applications (e.g. browsers or widget engines).

	Web Runtime Application
	A client-side Web application that is executed in Web runtime environments.

	WebSocket
	An API providing networking services per the WebSocket standard [WebSocket].

	Widget Context
	Web applications installed and executing under a W3C Widget [W3C-Widgets] engine as Web runtime environment.

	Widget Engine
	Software which supports the execution of Web applications running outside a browser context, e.g. with the same functional capabilities as browsers but without the user interface functions provided by a browser, including window frames, menus, toolbars and scroll bars.

	Uniform Resource Identifier
	Use definition from [OMADICT].

3.3
Abbreviations

	API
	Application Programming Interface

	DM
	Data Matrix

	EventSource
	The EventSource API

	HTTP
	HyperText Transfer Protocol

	IDL
	Interface Definition Language

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	QR
	Quick Response

	REST
	REpresentational State Transfer

	RPC
	Remote Procedure Call

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	UA
	User Agent

	UE
	User Equipment

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	W3C
	World Wide Web Consortium

	WRAPI
	The OMA Web Runtime API enabler

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The concept of a common OMA device API framework, through which OMA enablers can be exposed to applications executing in various execution environments, has been a discussion thread in OMA for several years. For the web, the discussion started with Client Side Enabler API [CSEA] work item, and followed by the Web Runtime API [WRAPI] work item which established an initial pattern for OMA API exposure to web applications, focused on the requirements of the OMA Push enabler. The need for more broadly applicable API patterns was recognized during development of APIs for the Mobile Codes 2.0 [MCAPI] enabler and the Open Connection Management 1.1 API [CMAPI] enabler. Interest in incorporating the WRAPI local API server concept has further been expressed for the RCS-enabling enablers of COM, and the Device Management enablers, among others.
This specification defines a variety of API exposure patterns for use in development of OMA enablers, and the functions required by API servers that support those exposure patterns. APIs designed per these patterns are intended to be “web-based” (i.e. accessed via the use of web technologies) and exposed to apps running in the following contexts:

· Web Browser apps, i.e. web apps running in a window of a web browser
· Web Runtime apps, i.e. web apps running outside a browser, e.g. under a Widget Engine or other “chromeless” runtime for execution of web content as standalone apps
· Hybrid Native/Web apps, i.e. apps that run web content through native APIs for that purpose
· Native Apps that directly use native platform APIs (e.g. HTTP, Socket, and Datagram) enabling use of the web-related protocols described in this document. Though not leveraging a full web execution environment, such apps can use the same network-based APIs as web apps.
For simplicity, the web API client environment provided by each of these contexts is referred to here as the User Agent (UA). The OMA enabler clients that expose APIs via the GotAPI patterns are referred to here as the GotAPI Server. GotAPI Servers may also act as OAuth servers for other GotAPI Servers, and in that role are referred to here as GotAPI OAuth Servers.
The web-based methods defined by GotAPI are intended to offer a flexible set of options for OMA enablers to expose their services to apps via web-based APIs. Such APIs are primarily intended to be exposed to apps running in the device hosting the OMA enabler client, but in principle could also be exposed to apps in other devices that are networked with the OMA enabler client host device.
The exposure of OMA enabler-based services via such web-based APIs is intended to broaden the reach of OMA enabler deployments, by making it possible for web apps to access them, without explicit UA support of APIs specifically designed per the requirements of OMA enablers.
The figure below illustrates the relationships and conceptual interfaces between web apps, the UA, GotAPI-specified functions (shaded), and other OMA-specified functions.

Figure 1 Conceptual Implementation (Informative)

[image: image2]
In the figure above:
· The GotAPI functions include the GotAPI Server (including optionally acting as a distinct OAuth server) and a database of API access permissions.

· The device OS provides intra-device and inter-device communication via network protocols such as HTTP, Socket (TCP),and Datagram (UDP), via which the web-based APIs can be exposed.

· The access permissions database is logically specified per its supporting operations and policy structure, but interfaces to it are unspecified by GotAPI.

· Interfaces to other OMA enabler clients are also unspecified.
· GotAPI Servers may expose APIs for multiple OMA enablers, and either directly implement the related OMA enabler functions or as above use unspecified interfaces exposed by the specific OMA enabler clients.
· User interface functions can include a variety of means for assessing user consent for API access by apps, including basic means such as device display and keyboard, or more advanced means such as Trusted User Interfaces (TUI) or biometrics.

4.1 Version 1.0

GotAPI version 1.0 includes the functionality:
· Architecture and specifications for GotAPI Servers and GotAPI OAuth Servers in an API framework enabling web-based APIs to be exposed apps running in web browsers and as native apps (including but not limited to hybrid native/web apps)

· Supporting assets for the localhost API server framework, e.g. JavaScript libraries enabling abstractions of common API functions (e.g. discovery, access, and session management)

· A registry of well-known API resources for OMA enablers, to be maintained as part of the OMNA
· Specification of API exposure patterns that are in general globally applicable to native device platforms
5. GotAPI Enabler release description
(Informative)

This release focuses on the functions of GotAPI Servers and GotAPI OAuth Servers, through which OMA enabler based services can be exposed and access to the APIs managed.
6. Requirements
(Normative)

6.1 High-Level Functional Requirements

The following requirements outline the high-level set of options that GotAPI Servers may implement. The GotAPI technical specifications will address the necessary functions for support of these options.
	Label
	Description
	Release

	GotAPI-HLF-01
	GotAPI Servers SHALL support APIs exposed via HTTP/1.1 [HTTP/1.1].
	1.0

	GotAPI-HLF-02
	GotAPI Servers SHOULD support APIs exposed via the WebSocket API [WebSocket].
	1.0

	GotAPI-HLF-03
	GotAPI Servers SHOULD support APIs exposed via the EventSource API [EventSource].
	1.0

	GotAPI-HLF-04
	GotAPI Servers MAY support APIs exposed via the WebRTC API [WebRTC].
	1.0

	GotAPI-HLF-05
	GotAPI Servers MAY support APIs exposed via HTTP/2.0 [HTTP/2.0].
	1.0

	GotAPI-HLF-06
	GotAPI Servers SHALL support APIs exposed using the REST design pattern.
	1.0

	GotAPI-HLF-07
	GotAPI Servers SHALL support APIs exposed using the RPC design pattern, including APIs exposed using JSON-RPC 2.0 [JSON-RPC] as payload protocol.
	1.0

	GotAPI-HLF-08
	GotAPI Servers MAY support APIs that include transfer of any discrete media type.
	1.0

	GotAPI-HLF-09
	GotAPI Servers MAY support APIs that include transfer of any streamed media type.
	1.0

	GotAPI-HLF-10
	GotAPI Servers SHALL expose APIs to UAs in the GotAPI Server host device.
	1.0

	GotAPI-HLF-11
	GotAPI Servers MAY expose APIs to UAs in devices other than the GotAPI Server host device.
	1.0

Table 1: High-Level Functional Requirements

6.1.1 Security and Privacy
The following requirements address the generic security and privacy enabling features of GotAPI Servers.
	Label
	Description
	Release

	GotAPI-SEC-01
	For clients in the host device, GotAPI Servers MAY support APIs exposed over secure connections.
	1.0

	GotAPI-SEC-01
	For clients in other devices, GotAPI Servers SHALL support APIs exposed over secure connections.
	1.0

Table 2: High-Level Functional Requirements – Security and Privacy Items
6.1.1.1 Authentication and Authorization
The following requirements address the ability of GotAPI Servers to identify API client apps and manage access to APIs.
	Label
	Description
	Release

	GotAPI-AUTH-01
	GotAPI Servers SHALL support Cross-Origin Resource Sharing.
	1.0

	GotAPI-AUTH-01
	GotAPI Servers SHALL support management of API access permissions.
	1.0

	GotAPI-AUTH-01
	GotAPI Servers MAY support OAuth-based API access.
	1.0

	GotAPI-AUTH-01
	GotAPI Servers MAY act as an OAuth 2.0 [OAuth2.0] server for authorization of API access permissions.
	1.0

	GotAPI-AUTH-01
	GotAPI Servers MAY support user interfaces (UI) via which users authorize API access permissions.
	1.0

	GotAPI-AUTH-01
	GotAPI Servers MAY support pre-configured, fixed API access permissions.
	1.0

	GotAPI-AUTH-01
	GotAPI Servers MAY support dynamic, updatable API access permissions.
	1.0

	GotAPI-AUTH-01
	GotAPI Servers MAY support API access permissions managed through OMA Device Management.
	1.0

Table 4: High-Level Functional Requirements – Authentication and Authorization Items

6.1.1.2 Data Integrity

The following requirements address the ability of GotAPI Servers to protect the integrity of data transferred via APIs.
	Label
	Description
	Release

	GotAPI-DATI-01
	GotAPI Servers SHOULD support data integrity for all data exchanged with clients.
	1.0

	GotAPI-DATI-02
	GotAPI Servers SHOULD support data integrity verification via digitally signed API request/response payloads,
	1.0

Table 5: High-Level Functional Requirements – Data Integrity Items

6.1.1.3 Confidentiality

The following requirements address the ability of GotAPI Servers to protect the confidentiality of data transferred via APIs.
	Label
	Description
	Release

	GotAPI-CONF-01
	GotAPI Servers SHOULD support confidentiality for all data exchanged with clients.
	1.0

	GotAPI-CONF-02
	GotAPI Servers SHOULD support data confidentiality via encrypted API request/response payloads,
	1.0

Table 6: High-Level Functional Requirements – Confidentiality Items

7. Architectural Model

<< This section defines the enabler’s architectural model. The model identifies: a) all internal functional components of this enabler, and b) all of the communication relationships between the components of this enabler and with other enablers and applications (including those specifications not defined by OMA).

This section SHOULD contain a diagram of the architecture. Diagrams in this section should contain logical entities only and not conflate logical entities with physical entities. However, mobile terminals and networks may be shown because of their potential relevance in the design of the architecture. Figure 1, Figure 2 (or a combination of them, if considered appropriate), are illustrative examples of an architectural diagram and should be modified to reflect this architecture.

Working Groups SHOULD re-use functions specified by other enablers. Working Groups should consult other Architecture Documents and Specifications to identify any of this architecture’s functionality (e.g. its systems, subsystems, interfaces and/or reference points, etc) that is already specified.

This section MAY include an explanation and/or diagram to show how this architecture relates to the various views as defined in “Inventory of Architectures and Services”. This diagram and explanation, however, are optional.

DELETE THIS COMMENT >>

This section describes the architectural model and related aspects of the GotAPI Enabler.

The architecture definition and functionalities are based on the requirements defined in the Section 6.
7.1 Dependencies

<< This section MUST enumerate all of the dependencies this architecture has, in order to fulfil the approved enabler requirements (both mandatory and optional). Dependencies in this context are other OMA enablers and non-OMA specifications (e.g. RFC 2616) this enabler calls (i.e. re-uses). Each dependency MUST include a reference to the document(s) that specifies the dependency. All of these references MUST also be included in Section 2.1.

The enumeration would be along the lines of a list with entries such as

 - IMAP binary extension [RFC3516]
Where the reference (e.g. RFC3516 in this example) would link to the fully qualified reference in section 2.1 table.

A dependency is actually to an interface and the intrinsic functions (required and re-used by this enabler) performed by the component that exposes that interface.

Note: Dependencies should not be confused with deployment options.

If this architecture has no dependencies, then this section only needs to contain a statement as such.
If this architecture has dependencies on OMA Enablers, specific sub-sections shall describe those enablers and the interfaces used, as well as the purpose for re-use in the context of this enabler.

Example:

5.1.1 OMA X Enabler

This Enabler makes use of the following Interfaces from OMA X:

X-1 Interface is exposed by the X Enabler and SHALL be used by this enabler as detailed in [X_AD];

5.1.2 OMA Y Enabler

This Enabler makes use of the following Interfaces from OMA Y:

Y-1 Interface is exposed by the Y Enabler and SHALL be used by this Enabler as described in [Y_AD];
DELETE THIS COMMENT >>

7.2 Architectural Diagram

<< This section contains the architectural diagram for the enabler. . The examples in figures 1 and 2, along with the legend, describe the drawing conventions to be followed. In some cases (an example figure is not shown here) the resulting architecture diagram may contain combinations of interfaces and reference points.
DELETE THIS COMMENT >>
[image: image3.emf] Legend

Enabler A

Requestor

(Enabler/Application)

This Enabler B

Component 2

Component 3

Component 1

A-1

B-1

B-2

B-3.2

XYZ-n

Components specified by this Enabler

Components not specified by this Enabler

Indicates use of an interface exposed by an Enabler/Component. The Enabler/

Component offering or exposing the interface is indicated by the arrowhead.

Name of the interface offered or exposed by Enabler/Component XYZ

(following the interface naming convention)

B-3.1

Figure 2: Example of the Architectural Diagram using interfaces

[image: image4.emf] Legend

Enabler A

Requestor

(Enabler/Application)

This Enabler B

Component 2

Component 3

Component 1

A-1

B-1

B-2

B-3

XYZ-n

Components specified by this Enabler

Components not specified by this Enabler

Reference Points

Name of the Reference Point

Figure 3: Example of the Architectural Diagram using reference points

7.3 Functional Components and Interfaces/reference points definition

<< This section describes all of the architecture’s functional components and the specified interfaces and/or reference points.

As a general guidance, the Architecture Document SHOULD define interfaces, wherever possible.
Each of the components should be described in a separate subsection and MUST contain at least the following information:

· Name

· Description

· Responsibility (e.g. what does the component do/perform)

Each component SHOULD have at least one interface or at least one reference point that can be used by some other functional component, enabler, application, etc.

All of the interfaces and/or the reference points should be described in this section.

Interfaces and reference points MUST be described in a language-independent way.

Each interface description MUST include at least the following information:

· Name

· Description

· Entity that exposes the interface

Each reference point description MUST include at least the following information:

· Name

· Description of all the functions exposed between the two entities

· The two entities that are linked by this reference point

Each reference point description SHOULD include the following information:

· Name of each interface included in the reference point

Description of each interface included in the reference point

Interface/reference point naming convention:

The name of an interface/reference point consists of a minimal number of characters (e.g. no longer than the WID's registered name), followed by a dash, followed by a running number (starting at “1” and counting upwards in steps of 1 for each new interface/reference point). Each work group decides about the character(s) for their interfaces/reference point as long as there is no duplication with already existing names (work groups can consult ARC to confirm). Names should be chosen in an intuitive way to allow easy recognition of the interface/reference point. Some examples are:

 B-1
B stands for “Browsing”

 POC-5
POC stands for “Push to Talk over Cellular”

 MMS-7
MMS stands for “Multimedia Messaging”

Interface re-use convention: In case an interface from another enabler is re-used (e.g. exactly as is, as a profiled subset, or extended with additional Attribute Value Pairs), the interface name is that of the other enabler. That is, the interface name does not change, since the interface does not fundamentally change. The interface structure and placement of parameters and/or AVPs are already defined as part of the other enabler.
Reference points re-use convention:
 In case a reference point from another enabler is re-used (i.e. all of its interfaces, and the two entities, as originally defined, linked through the reference point) then, the reference point name is that of the other enabler. That is, the reference point name does not change, since the reference point does not fundamentally change. The reference point structure and placement of parameters and/or AVPs are already defined as part of the other enabler.

Detailed recommendations on how to re-use reference points may be found in the “Architecture Best Practices” document.

Graphical representation convention:

Reference points are depicted as a line and interfaces are depicted as an arrow.

DELETE THIS COMMENT >>

7.4 Security Considerations

<<Describe security functionalities based on security requirements defined in corresponding Requirement Document.

Security functionalities should address and consider at least the following features:

· Authentication

· Authorization

· Data integrity

· Confidentiality
· Non-repudiation
DELETE THIS COMMENT >>

8. Technical Specifications

9. Sections As Needed

9.1 Example Level 2

<text>

9.1.1 Example Level 3

<text>

9.1.1.1 Example Level 4

<text>

 SHAPE * MERGEFORMAT

Figure 4: Example Figure

	
	Column 1
	Column 2

	Row 1
	Grid 1,1 data
	Grid 1,2 data

	Row 2
	Grid 2,1 data
	Grid 2,2 data

Table 1: Example Table

10. Release Information

10.1 Supporting File Document Listing

<< List the documents besides this document that comprise this release. This is where supporting files for elements such as Schemas, Managed Objects or Data Descriptions would be itemized. Each such document is to be listed by fully qualified name as known in the permanent document area. Each document should also include the reference from section 2 to provide linkage with other uses in this document.

For supporting files that need to be made available separate from the permanent document area (e.g. DTD in a publicly reachable directory), provide information on the expected path as well as the external file name. These should be based on existing recommendations and not picked arbitrarily (see information on supporting files available in the REL support menu).

The following table includes example fields with dummy values to make it clear the type of information to be entered. The actual table should be filled in for the specific release.

DELETE THIS COMMENT >>
	Doc Ref
	Permanent Document Reference
	Description

	Supporting Files

	[FOO_DTD]
	OMA-SUP-DTD_FOO_Msgs-V1_2-20050222-D
	DTD for the messages and included elements of the FOO protocols.

Working file in DTD directory:
file:
foo_msgs-v1_2.dtd
path:
http://www.openmobilealliance.org/tech/dtd/

	[FOO_AC]
	OMA-SUP-AC_ap0123_FOO-v1_2-20050531-D
	Description of the Application Characteristic for FOO. This aligns with the Provisioning Spec.

Working file in Application Characteristics directory:
file:
ap0123_foo-v1_2.txt
path:
http://www.openmobilealliance.org/tech/omna/dm-ac

Table 2: Listing of Supporting Documents in FOO Release

10.2 OMNA Considerations

<< This section is to be used to describe any OMNA items included in the release. This would include, among others:

· Usage of OMA-based Uniform Resource Names (URNs) (including those used as namespace identifiers in Schemas)

· AppiDs for Application Characteristics (AC)

· Managed Object (MO) identifier information for the MO registry

· ISO Object IDs

· PUSH Application Ids

· WAP Wireless Session Protocol (WSP) Content Types

· Presence <service-description> assignments

· Uniform Resource Identifier (URI)-List Registered Usage Names (for XDM)

The format of this section will be left up to the release owners to account for the particular needs they may run into. It should be clear from the written material, though, as to the set of OMNA items needed.

If a new OMNA registry is needed to support the release – clearly this should have been worked with the REL Committee before submitting a Release Document. Failure to do so may result in delays as the required tables are worked up and made publicly available. Another risk is that the table desired is not supported by OMNA (is not a registry type table) and the group will need to re-think how they intend to resolve their needs.

Through the normal development process the OMNA entries or support registries should be accommodated. This should not be trigger to remove the linkage from this section. Thus, if an entry is added to OMNA after the initial Candidate version described the need – the material should stay in this section. It may be useful in subsequent releases to add some text to indicate that the needed items have been accommodated (e.g. add a comment regarding its availability or support as appropriate).

If the release has absolutely no OMNA items to be accommodated – then it should indicate that explicitly with a short description (e.g. this release does not have any OMNA items for handling). This determination probably can not be made until the end of the development phases and editors are encouraged to keep this advisory in place until the Consistency Review.

DELETE THIS COMMENT >>

10.3 Additional Items

<<If the release has any other elements needed to make it complete they should be noted in this section. For example, if there are any external registrations (e.g. IANA assigned values) or shared/dependent components they should be documented.

The format of the description in this section is left to the editor based on the information needed. If there are no such elements, the editor may remove this sub-section.

DELETE THIS COMMENT >>

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	
	

	
	
	

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-ER-GotAPI-V1_0
	25 Jan 2014
	All
	Initial baseline document.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Appendix B. Call Flows
 (Informative)

This is a placeholder to be populated, as required.
Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

C.1 ERDEF for GotAPI 1.0 - Client Requirements

This section is normative.
	Item
	Feature / Application
	Requirement

	OMA-ERDEF-GotAPI 1.0-C-001-<<M/O>>
	GotAPI 1.0 Client
	

	
	
	

Table 3: ERDEF for GotAPI 1.0 Client-side Requirements

C.2 ERDEF for GotAPI 1.0 - Server Requirements

This section is normative.

	Item
	Feature / Application
	Requirement

	OMA-ERDEF-GotAPI 1.0-S-001-<<M/O>>
	GotAPI 1.0 Server
	

	
	
	

Table 4: ERDEF for GotAPI 1.0 Server-side Requirements

C.3 SCR for GotAPI Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

C.4 SCR for GotAPI Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix D. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

D.1 App Headers

<More text>

D.1.1 More Headers

<More text>

D.1.1.1 Even More Headers

<More text>

Appendix E. GotAPI Enabler Deployment Considerations
This is a placeholder, to be populated as required.
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20140101-I]
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20140101-I]

[image: image1.jpg][image: image6.png]