Doc# OMA-CD-GotAPI-2014-00[image: image8.png]Binary data
from external device

Application GotAPI Server Plug-In or other enabler

GotAPI-1 on HTTP GotAPI-4 on Intent

1. Sends a request to the plug-h for taking a picture

{

Sends a request fothe external device fortaking
picture, then gefs the binary data ofthe picture

2. Creates anon-predicable random URI
for the file, then associates the URI to the
3 targeted data

(e.x.hittp/localhost:9999/abc def-123)

3. Receives a JSON response ffom the plug-in

{
1 20",
"http://127.0.0.1:9999/abc-def-123",
id": 123 URI
¥
HTTP GET

4. Send a HTTP request to the URI for the targeted data
http://127.0.0.1:9999 /abc-def-123

5. Sends the datato the app

7 Discards the URI afier the transuction ~ [# — - - - - ® ————— >

Uses the same IP address but a T
different port number/ different
application

6. Recieves the data via HTTP

010101010101 . .

Plug-In works as a web server

26
Change Request

Doc# OMA-CD-GotAPI-2014-00[image: image9.png]________ —_———————— User Device
:. Application 1
[| GotAPI
lGotAPI-1 l GotAPI-2
GotAPI GotAPI)
cerver AuthSever [€ Policy Management
GotAPI-4 GotAPI-3
T
1
e B
1,y Extension {1 Other Enablers |
L -
y _ e N TR
[| 1
1
| PO 1
| Other |

26
Change Request

Change Request

	Title:
	Merged Plug-In CRs (0015R01, 0020, 0021, 0022)
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	Content Delivery (GotAPI) WG

	Doc to Change:
	OMA-ER-GotAPI-V1_0-20140812-D

	Submission Date:
	22 August 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Max Hata, NTT DOCOMO, masato.hata.uf@s1.nttdocomo.com

Takafumi Yamazoe, NTT DOCOMO, yamazoet@nttdocomo.com

	Replaces:
	OMA-CD-GotAPI-2014-0015R01, 0020, 0021, 0022

1 Reason for Change

1) Merged Plug-In CRs (0015R01, 0020, 0021, 0022) for readability
2) Inserted minor editorial revisions (with change history).
e.g., MUST -> SHALL
2 Impact on Backward Compatibility

No impact.
3 Impact on Other Specifications

No impact.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

CD is requested to review and approve the CR with changes as needed.
6 Detailed Change Proposal

Change 1: Changing Figure 1 in "4 Introduction"
Changes:

· Add Extension Plug-Ins between GotAPI Server and Other Devices.
· Indicate the line between GotAPI Server and Extension Plug-Ins as being OS specific (double lines)

· Connect OMA Enabler Clients to Extension Plug-Ins as well as the GotAPI Server directly.

[image: image1]
Figure 1 Conceptual Implementation (Informative)
Change 2: Adding a requirement in "6.1 High-Level Functional Requirements"
Adding the requirement as below:
	Label
	Description
	Release

	GotAPI-HLF-16
	GotAPI Servers SHALL expose an interface to communicate with external devices and internal enablers, so that different manufacturers are able to develop Extension Plug-Ins for the GotAPI Server, and application developers are able to develop applications that can communicate with such other external devices and internal enablers through GotAPI Server.
Note: The APIs for each device or enabler are out of the scope of this specification.
	1.0

Change 3: Changing Figure 2 in "7.2 Architectural Diagram"
Changes:

· Add a new interface GotAPI-4
· Add Extension Plug-Ins box which is out of the scope of this specification.

[image: image2]
Figure 2: GotAPI Architecture Diagram

Add the informative diagram as below:

[image: image3]
Figure-3: GotAPI Architecture Diagram (Informative).
Change 4: Adding a section "7.3.2.4 GotAPI-4" in "7.3.2 Interfaces"
Mergeded Plug-In CRs (0015R01, 0020, 0021, 0022).
Adding a section as below:

7.3.2.4 GotAPI-4

The GotAPI-4 interface enables Extension Plug-Ins for external devices and internal enablers through which they communicate with the GotAPI Server. Note that internal enablers may also be connected to the GotAPI servers directly in implementation specific ways without using the GotAPI-4 interface and Extension Plug-Ins.
The Extension Plug-Ins are independent applications. They are the mediators between the GotAPI Server, and external devices and internal enablers/applications. Typically, there are multiple Extension Plug-In applications installed on a device by the user or preinstalled on the device. An Extension Plug-In application may be developed;

· For a group of devices, e.g., a series of devices from a company, or a single device or an enabler,
· By a developer that is different from the provider of GotAPI or applications that use the devices or enablers through the Extension Plug-In.

The GotAPI-4 provides the following functions with respect to Extension Plug-Ins;

(1) Plug-In Discovery
(2) Approval

(3) Data Forwarding
(1) GotAPI-4 Plug-In Discovery enables the GotAPI Server to discover the targeted Extension Plug-In which an application wants to access and communicate with. It also discovers the devices or enablers that are connected to the Extension Plug-In.
(2) GotAPI-4 Approval is the function to ensure security, especially to protect users’ data and privacy from unwanted exploits, so that the users can safely use the application with external devices and enablers that are connected via Extension Plug-Ins.

(3) GotAPI-4 Data Forwarding is the function that enables an application to communicate with the targeted Extension Plug-In through the GotAPI Server. Data Forwarding takes place after Plug-In Discovery (optional) and Approval processes have been successfully completed. GotAPI-4 Data Forwarding uses the “pass-through” mechanism, so that the application can access and communicate with the APIs that (i) are implemented in the Extension Plug-In and (ii) expose the features of the external devices or internal enablers.
Note that the APIs to be implemented in Extension Plug-Ins that expose features of external devices and internal enablers are out of the scope of this specification.
7.3.2.4.1 Plug-In Discovery
After an application is authenticated by the GotAPI Authentication Server, the application sends a Plug-In Discovery request to the GotAPI Server over the GotAPI-1 interface in order to discover the available Plug-Ins. Then the GotAPI Server discovers all the installed Plug-Ins and returns the results to the originating application.

Plug-In Discovery enables applications to find and use Plug-Ins and devices or enablers that are connected to Plug-Ins. Some applications, however, may be pre-programmed with specific Plug-Ins and devices and want to talk only to them. Others may want to find what are available and determine which ones to talk to, based on the discovered results.

Therefore,

(1) The use of Plug-In Discovery is OPTIONAL for applications wishing to use Plug-Ins.

(2) GotAPI SHALL support Plug-In Discovery if GotAPI-4 is supported.

(3) GotAPI-1 SHALL specify Requests and Responses for Plug-In Discovery. This is to ensure consistent interface for application developers.

(4) GotAPI-1 SHALL support the Requests and Responses for Plug-In Discovery if GotAPI-4 is supported.

(5) GotAPI-4 SHALL specify the protocol (the data container format) between the GotAPI Server and the Extension Plug-Ins. This is to ensure consistent interface for Plug-In developers.

Example of Plug-In Discovery

Editor’s Note: This example may remain in this section or moved to an Annex later. Alternatively, the description may be described in a more generalized form to remain in this section as a part of the normative specification, not as an example.
The following example is based on an implementation on Android.
[image: image4.png]GOtAPI-1 (HTTPIREST)

GotAPI-4 (Intent)

(2) Pass through the resuts
as one response.

e are mulile pligins

(1) Send an impiicitIntent

Plug-in sends an expic nent o
pre-defined app package for the
plugin discovery request.

s mechanism prevents
Spoofing of GotAPI Server by
maiicious apps

i there o mufipl plug ns, each
plugin send an oxplet ntert
Bsynchronously

Figure XXXX: The procedure of Plug-In Discovery.
Terminology:

· An Intent is a way for native applications to communicate each other. It is supported by the underlying Android OS. There are two primary forms of Intents, Explicit Intents and Implicit Intents.

· Explicit Intents are Intents with a specific application identifier, enabling the sending application to specify the exact receiving applications to be run.
· Implicit Intents are Intents without any application identifiers but enough information to enable the OS to determine which applications to be run. It is like broadcasting.

Description of operation:

General operation: When the GotAPI Server has received a Plug-In Discovery request from an application over the GotAPI-1 interface, the GotAPI Server sends Plug-In Discovery Commands using the protocol (the data container format) of GotAPI-4 over an Implicit Intent. The Implicit Intent is broadcasted to all the applications and those who have captured the Plug-In Discovery Commands return responses to the GotAPI Server with information of the Plug-Ins such as device names, available method names, etc.
Multiple plug-ins and asynchronous responses: Since there can be multiple Plug-Ins installed on the device, each response is sent to the GotAPI Server asynchronously.

White List: When a Plug-In sends a response, it uses an Explicit Intent to the pre-defined GotAPI Server that is listed in the White List. The White List is provided in each Plug-In by the provider of the Plug-In. The White List enables Plug-Ins to send responses only to the GotAPI Server applications that are listed in the list and prevents Plug-Ins from sending responses to unknown GotAPI Servers. This is to disable spoofed GotAPI Servers to use Plug-Ins.
Consolidated response from GotAPI Server: After consolidating the responses that are sent from multiple Plug-Ins asynchronously, the GotAPI Server sends a response to the originating application with the information that are received from the Plug-Ins.

Stateless: The GotAPI Server itself does not keep the status of the Plug-Ins that is discovered by the Plug-In Discovery Command, keeping GotAPI Server stateless in terms of Plug-Ins. It is the sole responsibility of the applications that have received the plug-in status information how to keep or use it.

[Editor’s Note]

How the GotAPI Server discovers the targeted plug-in is TBD.
7.3.2.4.2 Approval
After an application is registered by the GotAPI Authentication Server through user permission, the application is eligible for accessing Plug-Ins. To ensure protecting user’s data and privacy, however, before the user is able to access the Plug-Ins using the application, the user shall be able to authorize the application to access the Plug-In and the device. To enable this requirement;

(1) The application SHOULD be authorized to access the Plug-In and the device by the user.

(2) The GotAPI-1 SHALL specify the Requests and Responses for authorization to access an application to a Plug-In via user authorization. This is to ensure consistent interface for application developers.
(3) The GotAPI-1 SHALL support the Requests and Responses for authorization to access an application to a Plug-In via user authorization if GotAPI-4 is supported

Editor’s Note: Whether we should specify the authorization mechanism for GotAPI-4 and Plug-Ins is TBD.

Example of the authorization mechanism for GotAPI-4 and Plug-Ins
Editor’s Note: This example may remain in this section or moved to an Annex later. Alternatively, the description may be described in a more generalized form to remain in this section as a part of the normative specification, not as an example.
The following example is based on an implementation on Android.
Plug-In API Access Request: Typically after the application performing Plug-In Discovery to get the information of the installed Plug-Ins, the application requests a Plug-In API Access Request to the GotAPI Server over the GotAPI-1 interface.

Application Registration to Plug-Ins: If the request is made for the first time, the GotAPI Server requests Application Registration to the targeted Plug-In over the GotAPI-4 with the Application Identifier such as the package name. Then the Plug-In registers the application and creates a client_id which is an identifier of the application managed by the Plug-In.
Client_id and White List: The Plug-In returns the client_id to the GotAPI Server over the GotAPI-4 interface, using an Explicit Intent. The Explicit Intent with the White List in the Plug-In disables providing a client_id to a spoofed GotAPI Server (the same mechanism as in the Plug-In Discovery).
Access Token and User Authorization: The GotAPI Server requests an access token with the client_id. Upon receiving the access token request, the Plug-In pops up a dialog box to the user, which prompts the user to select the permission. If the user permits the access request, the Plug-In creates an access token and returns it to the GotAPI Server. Note that an access token is used only between the GotAPI Server and Plug-Ins over the GotAPI-4 interface.
Accessing API using access token: When the GotAPI Server receives the access token from the Plug-In, the GotAPI Server passes the API Access Request from the application to the Plug-In over GotAPI-4 with the access token. When the GotAPI Server receives the response form the Plug-In, the GotAPI Server passes the response from the Plug-In to the application over the GotAPI-1 interface.
Reusable access token and life time: Once the GotAPI Server receives an access token for an application, the GotAPI Server doesn't need to request another Application Registration or an access token. The GotAPI Server can continue using the same access token for a while as long as the Plug-In accepts the access token. Access tokens are given a life time, so that the same access token can be used before the life time is expires. After the life time is expired, the GotAPI must request another access token using the same procedure.
[image: image5.png]GotAPI-1 (HTTP/REST) GotAPI-4 (Intent)

| profile
. attribute
(3) Request an API access to a plug-in T

k
(3) Request app registration [PEISERS

Register the app
Create an clinet_id

(4) Retuen the client_id client_id

(5) Request an access token client_id

(6) Return the access token access_token

This procedure is needed
for the first request

Create an access token

profile
attribute

(7) Pass through the request for the API access
access_token

(4) Pass through the result

for the API access (8) Return the result for the API access Check the access token

Request for Permission

GotAPI Server requests to access
to APIs:

* Notification

* File

eaneer ok

interface Access token used only between
dConnectManager and Plug-Ins.

Figure XXXX: The example of Plug-In Approval
[Editor’s Note]

We have to discuss what approves what. There can be several models possible. For example, (1) the GotAPI Server approves the plug-in, (2) the plug-in approves the GotAPI Server, (3) the plug-in approves an application. The detailed ways are TBD.
Other factors to consider may include (i) level of required security, (ii) deployment and operational overhead, (iii) impact on the ecosystem and developers, and (iv) scope and extent of standardization by OMA.
7.3.2.4.3 Data Forwarding
Once a connection between the GotAPI Server and the targeted Extension Plug-In is established (i.e., GotAPI-4 Plug-In Discovery (optional) and GotAPI-4 Approval have been successfully completed), the application can communicate with the targeted Extension Plug-In. The data transferred between the application and the Extension Plug-In pass-through the GotAPI Server.
The GotAPI-4 Data Forwarding defines the protocol (the data container format) between the GotAPI Server and the Extension Plug-Ins that are connected with external devices or internal enablers.

Example:

The following description and Figure-4 show how the pass-through mechanism of the Data Forwarding works:

An application sends a request to the GotAPI Server using an HTTP connection with some parameters in accordance with the GotAPI-1. The GotAPI Server converts the request to the data format (protocol) in accordance with the GotAPI-4 Data Forwarding specification. Then the GotAPI Server conveys the converted data to the targeted Extension Plug-in using the OS adaptation, such as Intent for Android. Finally, the Extension Plug-In invokes the APIs with the received and re-converted data. The APIs are implemented in the Extension Plug-In. This mechanism allows requests and responses between applications and external or internal entities to be passed-through to the APIs.

[image: image6]
Figure XXXX: Pass-through mechanism of Data Forwarding.

[Editor’s Note]

The green texts in the diagram above are just sample code. What protocol/format is appropriate for the GotAPI-4 is TBD. The sample code will be updated when the final protocol/format is agreed.
Temporary Server Feed (TSF) mechanism for fetching binary data directly from Plug-Ins:

In order to get binary data from the Plug-Ins, the following Temporary Server Feed (TSF) mechanism may be used:

· An application sends a request to the GotAPI Server over the GotAPI-1 interface.

· The GotAPI Server passes the request to the Plug-In over the GotAPI-4 interface.
· When the Plug-In receives the request, the Plug-In creates a non-predictable random URI for the binary data that is requested, and associates the URI with the binary data.
· The Plug-In sends a response with the URI and additional information (if needed) to the GotAPI Server over the GotAPI-4 interface, and the GotAPI Server passes the response to the application over the GotAPI-1 interface.

· Receiving the URI, the application accesses the URI in order to get the requested binary data from the Plug-In directly. The Plug-In works as a Web server.

· The Plug-In discards the URI after the application gets the binary data or a preset life time expires for the purpose of security.
· The URI may use the same IP address as the GotAPI Server but with a different port number. This enables the Plug-In to be a separate application than the GotAPI Server application.

[image: image7]
Figure XXXX: The TSF mechanism for GotAPI-4
[Editor’s Note]

The JSON data and some URIs in the diagram above are just sample code. What protocol/format is appropriate for the GotAPI-4 is TBD. The sample code will be updated when the final protocol/format is agreed.
[Editor’s Note]

The specifics of Plug-Ins are out of the scope of GotAPI. Nonetheless, we may want to provide a guidance for Plug-In developers. For such purpose the following requirements are identified. This will help provide consistency for application developers to use this mechanism.
· A Plug-In MAY support the TSF mechanism.
· If a Plug-In supports the TSF mechanism, the Plug-In SHALL support the procedure above.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

[image: image10.png]User Device (Terminal)
User Agents

Native App

Native APIs:
HTTP,

Socket,
Datagram,
URI handler

Web
Apps

Web Runtime Environment

Webapp Webapp

Web APIs: XHR, WebSocket,
EventSource, WebRTC

Browser / Widget Engine /

Hybrid App

Web Layout Engine

OMA DM
Client

Extension :
Operating System / poooclbooog
Plug-Ins Middleware User Intferface:
. Functions |
Other web protocol

Devices

OS service
Unspecified

[image: image11.png]Devices / Enablers/ Resources

Extension
Plug-in

APIs

GotAPI-4
Protocol

“Pass-through”

: GotAPI Scope

Application

Send a request using HTTP

http://localhost/plugin/
2origin=jp.application
&package=jp.plugin
&class=jp.plugin.vibration
&method=vibrate&pattern=100,100

OS Adaptation
e.g., Intent

GotAPI Server

Convert the requestto
the GotAPI-4 protocol

"origin” : "jp.application”,

"class" - "Jp.plugin.vibration",

"method” : "vibrate”,
"pattern™: "100,100"

&class=

User Agent
e.g., browser

GET /plugin/?origin=jp.application
&package=jp.plugin

plugin.vibration
&method=vibrate&pattern=100,100 HTTP/1.1

[image: image12.png]GOtAPI-1 GOtAPI-2

GotAPI GotAPI GOtAPI-3 | Policy E
|—————— -
Server Auth Server | Management 1
GoOtAPI-4
| Extension !
i Plug-ins i
e i
Legend

|:| Components specified by this enabler

L _! Components not specified by this enabler

__» Indicates use of an interface exposed by an Enabler/Component. The
Enabler/Component exposing the interface is indicated by the arrowhead.

Xyz-n Name of the interface exposed by Enabler/Component xyz
(following the interface naming convention)

[image: image13.jpg]"sOMaQa

Open Mobile Alliance

