OMA-CD-GotAPI-2014-0028-CR_New_architecture_for_the_Plug_In_Discovery[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Change Request

OMA-CD-GotAPI-2014-0028-CR_New_architecture_for_the_Plug_In_Discovery
Change Request

Change Request

	Title:
	New architecture for the Plug-In Discovery
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	Content Delivery (GotAPI) WG

	Doc to Change:
	OMA-ER-GotAPI-V1_0-20140825-D

	Submission Date:
	25 October 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Max Hata, NTT DOCOMO, masato.hata.uf@s1.nttdocomo.com

Takafumi Yamazoe, NTT DOCOMO, yamazoet@nttdocomo.com

	Replaces:
	

1 Reason for Change

This change request proposes two new concepts:

1) New architecture of the Plug-In Discovery

This change request proposes full replacement of the section "7.3.2.4.1 Plug-In Discovery". Currently, the section prescribes the way to discover all the Plug-Ins installed in the local device. The section describes that an Implicit Intent is used to discover all the installed Plug-Ins for Android.
However, if the GotAPI Server sends an Implicit Intent, Android shows a dialog to the user for selection. Each Plug-In can't receive the Implicit Intent silently. That is, the Plug-In Discovery prescribed in the section doesn't work at least for Android.

This CR proposes two steps to discover all the Plug-Ins and devices/enablers installed in the local device;

· Plug-In Discovery, and

· Service Discovery.

2) New concept of services associated with Plug-Ins
In many cases, one Plug-In is associated with one external device. But in some cases, one Plug-In is associated with multiple external devices. In this case, an application has to specify an external device rather than a Plug-In. Furthermore, in some cases, a Plug-In is not associated with any external devices, but it is associated with an internal enabler or it is an internal enabler by itself providing certain functionalities to applications.
To cover all these cases, this change request proposes the concept of a "service" associated with a Plug-In. A service represents an external device or a function provided by an internal enabler associated with a Plug-In. A Plug-In may be associated with multiple services.
If a service represents an external device, the device may not be necessarily active or online. Applications need to know what external devices (services) are available at the time.

This CR proposes the Service Discovery as the section "7.3.2.4.2", so that applications can find what services are available at the time.
2 Impact on Backward Compatibility

<statement describing the scope and nature of impacts of the change on the compatibility with previous versions of the document>

3 Impact on Other Specifications

<statement describing impacts on other specifications, this may relate to dependencies (either way), or on related requirements or technology material covered in other documents

if changes are required in other documents describe the plan to handle these (e.g. companion CRs being submitted for those docs, liaisons with owning groups are proposed, etc.)>

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommend that the changes be incorporated in the GotAPI specification.
6 Detailed Change Proposal

Change 1: Add "Service Discovery" in the list of the GotAPI-4 functions in the section "7.3.2.4 GotAPI-4"

Before

The GotAPI-4 interface provides the following functions with respect to Extension Plug-Ins:
1. Plug-In Discovery: GotAPI-4 Plug-In Discovery enables the GotAPI Server to discover the targeted Extension Plug-In which an application wants to access and communicate with. It also discovers the devices or enablers that are connected to the Extension Plug-In.

2. Approval: GotAPI-4 Approval is the function to ensure security, especially to protect users’ data and privacy from unwanted exploits, so that the users can safely use the application with external devices and enablers that are connected via Extension Plug-Ins.

3. Data Forwarding: GotAPI-4 Data Forwarding is the function that enables an application to communicate with the targeted Extension Plug-In through the GotAPI Server. Data Forwarding takes place after Plug-In Discovery (optional) and Approval processes have been successfully completed. GotAPI-4 Data Forwarding uses the “pass-through” mechanism, so that the application can access and communicate with the APIs that (i) are implemented in the Extension Plug-In and (ii) expose the features of the external devices or internal enablers.
Note that the APIs to be implemented in Extension Plug-Ins that expose features of external devices and internal enablers are out of the scope of this specification.

After (The item colored in red is newly added.)
The GotAPI-4 interface provides the following functions with respect to Extension Plug-Ins:
1. Plug-In Discovery: GotAPI-4 Plug-In Discovery enables the GotAPI Server to discover the targeted Extension Plug-In which an application wants to access and communicate with. It also discovers the devices or enablers that are connected to the Extension Plug-In.
2. Service Discovery: GotAPI-4 Service Discovery enables the GotAPI Server to find all the services provided by an Extension Plug-In. In this context, the "service" means an external device or a function provided by an internal enabler through an Extension Plug-In. The Service Discovery provides not only the list of services but also the availability of each service at the time.
3. Approval: GotAPI-4 Approval is the function to ensure security, especially to protect users’ data and privacy from unwanted exploits, so that the users can safely use the application with external devices and enablers that are connected via Extension Plug-Ins.
4. Data Forwarding: GotAPI-4 Data Forwarding is the function that enables an application to communicate with the targeted Extension Plug-In through the GotAPI Server. Data Forwarding takes place after Plug-In Discovery (optional) and Approval processes have been successfully completed. GotAPI-4 Data Forwarding uses the “pass-through” mechanism, so that the application can access and communicate with the APIs that (i) are implemented in the Extension Plug-In and (ii) expose the features of the external devices or internal enablers.
Note that the APIs to be implemented in Extension Plug-Ins that expose features of external devices and internal enablers are out of the scope of this specification.

Change 2: Replace the section "7.3.2.4.1 Plug-In Discovery"
7.3.2.4.1. Plug-In Discovery
When applications use Extension Plug-Ins through the GotAPI Server, the GotAPI Server has to know what Extension Plug-Ins are installed. This section describes how the GotAPI Server discovers the installed Extension Plug-Ins in the local devices.
Therefore:

· The GotAPI SHALL support the Plug-In Discovery if GotAPI-4 is supported.

· The GotAPI Server SHALL support a mechanism to know what Plug-Ins are installed in the local device.
To discover the installed Extension Plug-Ins, the GotAPI Server has to use OS-specific mechanisms and functions. Regarding Android, see the section "Appendix F. Finding the installed Plug-Ins for Android".

Note:

· How the GorAPI Server discovers Extension Plug-Ins is out of the scope of this specification.

· How to ensure that Extension Plug-Ins on an OS from different vendors are able to be discovered by a GotAPI Server implementation is the responsibility of the provider of the GotAPI Server implementation.
Change 3: Add the section "7.3.2.4.2 Service Discovery"
Newly added
7.3.2.4.2. Service Discovery
In many cases, one Extension Plug-In is associated with one external device. Some Extension Plug-Ins are associated with multiple external devices. Some Extension Plug-Ins provide functions that work in the local device but is not associated with any external device (a.k.a. an internal enabler itself). Such external devices or functions are called "services".

When an application wants to use a service, it needs to specify the identifier of the service rather than the Extension Plug-In that is supporting the service. Applications basically don't care about what Extension Plug-In is associated with the service.

The Service Discovery enables applications to find services. Some applications, however, may be pre-programmed with specific services. Others may want to find what services are available.
Therefore:
· The use of the Service Discovery is OPTIONAL for applications wishing to use services.

· The GotAPI SHALL support the Service Discovery if the GotAPI-4 is supported.

· The GotAPI-1 SHALL support the Requests and Responses for the Service Discovery if GotAPI-4 is supported. This is to ensure consistent interface for application developers.
· GotAPI-4 SHALL support the protocol (the data container format) between the GotAPI Server and the Extension Plug-Ins. This is to ensure consistent interface for Extension Plug-In developers.
Example of Service Discovery

Editor’s Note: This example may remain in this section or moved to an Annex later. Alternatively, the description may be described in a more generalized form to remain in this section as a part of the normative specification, not as an example.

The following example is based on an implementation on Android.

[image: image1.png]GotAPI-1 (HTTP/REST) GotAPI-4 (Intent)

Request Service Discover!

(services)

Send explicit Intents to all the Plu:

The list of the services
* Service 1 (online),
* Service 2 (offline),
* Service 3 (online)

Pass through the results
as one response

The list of the services
* Service 1 (online),

* Service 2 (offline)
* Service 3 (online)

Send an explicit Intent

If there are multiple Plug-Ins, each
Plug-In sends an explicit Intent
asynchronously

Returns the result as one consolidated
response even if there are multiple Plug-Ins

The Plug-In finds the status of the
corresponding external devices

External
devices

Figure 5 The procedure of the Service Discovery
Terminology:

· Explicit Intents are Intents with a specific application identifier, enabling the sending application to specify the exact receiving application to be run.
Description of operation:
General operation:
(1) When the GotAPI Server has received a Service Discovery request from an application over the GotAPI-1 interface, the GotAPI Server sends a Service Discovery Command to each of the installed Extension Plug-Ins using the protocol (the data container format) of GotAPI-4 over an Explicit Intent. Note: The Plug-In Discovery has already found Extension Plug-Ins that are installed on the device.
(2) When an Extension Plug-In receives a Service Discovery Command from the GotAPI Server, the Extension Plug-In checks the availability of the service that is requested by the Service Discovery. When the Extension Plug-In completes checking the availability of the service, the Extension Plug-In sends a response to the GotAPI Server over an Explicit Intent.

(3) When the GotAPI Server has received responses from all of the Extension Plug-Ins, the GotAPI Server returns the result to the application as one response.
Multiple plug-ins and asynchronous responses:
Since there can be multiple Extension Plug-Ins installed on the device, each response is sent to the GotAPI Server asynchronously.

White List:
When an Extension Plug-In sends a response, it uses an Explicit Intent to the pre-defined GotAPI Server that is listed in the White List. The White List is provided in each Extension Plug-In by the provider of the Extension Plug-In. The White List enables Extension Plug-Ins to send responses only to the GotAPI Server applications that are listed in the list and prevents Extension Plug-Ins from sending responses to unknown GotAPI Servers. This is to disable spoofed GotAPI Servers to use Extension Plug-Ins.
Consolidated response from GotAPI Server:
After consolidating the responses that are sent from multiple Extension Plug-Ins asynchronously, the GotAPI Server sends a response to the originating application with the information that are received from the Extension Plug-Ins.

Stateless:
The GotAPI Server itself does not keep the status of the services that are discovered by the Service Discovery Command, keeping GotAPI Server stateless in terms of services. It is the sole responsibility of the applications that have received the service status information how to keep or use it.
Note: As described in the Plug-In Discovery section, the GotAPI Server must keep the up-to-date status of the Extension Plug-Ins that are installed on the device.
Change 4: Add the section "Appendix F. Plug-In Discovery Mechanisms for Android "
In order for the GotAPI Server to discover the installed Extension Plug-Ins, there are at least the following two mechanisms available on the Android platform.
1. GotAPI Server initiated search mechanism
When the GotAPI Server is invoked, the GotAPI Server searches installed Extension Plug-Ins using Android specific methods.
(1) Android supports the getInstalledApplications() method of the PackageManager class, which provides the list of the installed applications. [ANDROID_INSTALLED_APPS]

(2) When the GotAPI Server gets the list of the installed applications on the Android device, the GotAPI Server can find Extension Plug-In applications from the list. To identify which are the Extension Plug-Ins, the GotAPI Server can read the AndroidManifest.xml of each application, and determine if the application is an Extension Plug-In or not. [ANDROID_APP_MANIFEST]

Note: This specification does not define the way how to determine if an application is an Extension Plug-In or not. It is left to implementers of the GotAPI Server. Implementers of Extension Plug-Ins must follow the rules that are defined by each implementer of the GotAPI Server.

(3) The GotAPI Server must keep the list of the installed Extension Plug-In up-to-date during the GotAPI Server is running. To do so, the GotAPI Server must keep receiving events fired when new native applications are installed. Android supports the Broadcast Intent whose Action is "android.intent.action.PACKAGE_ADDED". [ANDROID_PACKAGE_ADDED]

(4) If the GotAPI Server adopts this mechanism, the GotAPI doesn't need to store the list in a persistent storage, because the GotAPI Server is able to create a complete list of the installed Extension Plug-Ins whenever the GotAPI Server is invoked and keep the list up-to-date during the GotAPI Server is running.

[References]

[ANDROID_INSTALLED_APPS]
http://developer.android.com/reference/android/content/pm/PackageManager.html#getInstalledApplications(int)

[ANDROID_PACKAGE_ADDED]
http://developer.android.com/reference/android/content/Intent.html#ACTION_PACKAGE_ADDED

[ANDROID_APP_MANIFEST]

http://developer.android.com/guide/topics/manifest/manifest-intro.html

2. Plug-In initiated registration mechanism

(1) After an Extension Plug-In is installed and invoked, the Extension Plug-In invokes the GotAPI Server and sends a request for registration to the GotAPI Server. For Android, the Extension Plug-In uses Explicit Intents to talk to the GotAPI Server. The Extension Plug-In must know the package name of the GotAPI Server application and the provider of the GotAPI Server implementation must ensure that the package name of the GotAPI Server implementation is hardcoded in the Extension Plug-In.
(2) The GotAPI Server polls all the registered Extension Plug-Ins periodically in order to determine if each Extension Plug-In is still installed.
(3) If the GotAPI Server adopts this mechanism, the GotAPI has to store the list in a persistent storage and keep it up-to-date, because the GotAPI Server doesn't know the complete list when the GotAPI Server is invoked.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

