OMA-CD-GotAPI-2014-0031-CR_Adding_GotAPI_Server_spoofing_attack_to_7.4.3 [image: image3.jpg]"sOMaQa

Open Mobile Alliance

Change Request

OMA-CD-GotAPI-2014-0031-CR_Adding_GotAPI_Server_spoofing_attack_to_7.4.3
Change Request

Change Request

	Title:
	Adding GotAPI Server spoofing attack to 7.4.3
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	Content Delivery (GotAPI) WG

	Doc to Change:
	OMA-ER-GotAPI-V1_0-20140825-D

	Submission Date:
	25 October 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Max Hata, NTT DOCOMO, masato.hata.uf@s1.nttdocomo.com

Takafumi Yamazoe, NTT DOCOMO, yamazoet@nttdocomo.com

	Replaces:
	

1 Reason for Change

In the case of Android, any application can kill other applications that are running in the background. A bogus app can spoof the genuine GotAPI Server easily by killing it and taking over the port that the GotAPI Server has been listening to. The bogus application may offer fake or harmful information to the web app.

When an application receives a response from the server, the application needs a measure to verify that the response is coming from the genuine server.

This change request proposes to add a measure against GotAPI Server spoofing attack in "7.4.3 Immunity from Attack", and proposes HMAC server authentication based on the trust of Application ID as the measure.
2 Impact on Backward Compatibility

<statement describing the scope and nature of impacts of the change on the compatibility with previous versions of the document>

3 Impact on Other Specifications

<statement describing impacts on other specifications, this may relate to dependencies (either way), or on related requirements or technology material covered in other documents

if changes are required in other documents describe the plan to handle these (e.g. companion CRs being submitted for those docs, liaisons with owning groups are proposed, etc.)>

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommend to incorporate this CR to the GotAPI specification draft.
6 Detailed Change Proposal

Change 1: (optional)Brief description of specific change
7.4.3 Immunity from Attack
7.4.3.1 Traffic based attack

(No changes from the original)

Since it exposes a service on host devices, GotAPI by nature consumes device resources in handling service requests. This presents a risk if the GotAPI Server is not adequately protected from rogue applications that may launch intrusion or denial-of-service (DOS) attacks on the host device, which may cause GotAPI Server host device instability, unusability, or excessive resource consumption (e.g. battery). Such attacks can involve excessive API requests or malformed API requests. The following requirements are intended to address these risks:

· GotAPI Servers SHALL limit API request volume to an unspecified maximum rate, in order to limit exposure to DOS attacks. GotAPI Servers SHALL temporarily disable API permissions for applications that are suspected of excessive API requests.

· GotAPI Servers SHALL ensure the validity of API requests prior to processing them. GotAPI Servers SHALL temporarily disable API permissions for applications that are suspected of sending maliciously malformed API requests.

GotAPI Servers SHALL provide a means for users to be informed of applications that have been suspended from API access due to suspected security violations, and a means to re-authorize API access for those applications.

7.4.3.2 GotAPI Server spoofing attack

If the underling operating system allows for an application to kill other applications that are running in the background , it is possible for a bogus application to spoof the genuine GotAPI Server and provide fake or harmful information to the application. An attack can be made by 1) terminating the running GotAPI Server and 2) taking over the port that the GotAPI Server has been listening to. If this attack is made, the application that is communicating only through the port, has no way to know that the GotAPI Server is spoofed. This type of attack is called the GotAPI Server spoofing attack. To prevent this attack, the application must be able to authenticate the GotAPI Server that it is communicating with.
There are two approaches possible to enable such authentication of the genuine GotAPI Server.

(1) Approaches not to embed any credentials in the GotAPI application, and

(2) Approaches to embed credentials in the GotAPI application

The first approach is based on other trust that may be provided by the operating system and/or the application market ecosystem. Many application market ecosystems provide an Application ID for an application that is guaranteed to be unique in the ecosystem including the operating system and the devices. An Application ID may be used for the trust of the GotAPI application for the authenticity. This approach, however, may be a solution depending on the operating system.

The second approach is based on the credential embedded in the application as the trust. It typically requires an external server to verify the authenticity of the credential of the GotAPI Server for the application. The challenge of this approach is how to protect the credential that is embedded in the GotAPI application from attackers who are able to reverse engineer the application. If the same credential is embedded in all the applications and distributed to many devices and if the credential is compromised on one device, all the devices implementing the application would be compromised.
7.4.3.2.1 HMAC server authentication using trusted Application ID for the GotAPI Server spoofing attack
This counter measure works for a platform and a UA that satisfy the following requirements. This is based on the trust provided by the Application ID of the native application, and not embedding any credentials in the native application.
· The Application ID is unique and trusted, which is guaranteed by the platform.

· The execution environment, e.g., UA, provides a one-way channel for an application to connect directly and send messages to a native application by designating its Application ID, e.g. a URI scheme.

· The application can be connected exclusively and securely with a native application by designating its Application ID. Namely, there is no eavesdropping, no man-in-the-middle, or no spoofed destination in the channel from the application to the destination native application.
We call this type of channel as “Trusted Channel”.

Note: Intent URI Scheme for Android satisfies all these requirements. The destination is designated by the package name of the native application to which a web applications attempts to send messages.
Other assumptions are:
· The HTTP channel may be eavesdropped (*).
· Any application can terminate other applications that are running in the background and take over the port that the application is listening to.

· The application knows the Application ID of the genuine GotAPI server. The Application ID is provided to the application out of the band in a trusted manner.
Note: It has been shown that eavesdropping is not possible over the GotAPI-1 interface on Android unless the device is rooted. Nonetheless, this assumption is introduced here because there may be a way for eavesdropping the HTTP connection that we are not aware of.
If the one-way Trusted Channel is available, the GotAPI Server spoofing attack is prevented using the HMAC server authentication as follows:
Shared key distribution using the Trusted Channel:

1. The application generates a key, K, composed of unpredictable random characters, and stores the key securely.
2. The application sends the key, K, to the genuine GotAPI Server through the Trusted Channel designating the Application ID of the genuine GotAPI Server. The application knows the genuine GotAPI Server application’s Application ID in an out-of-band trusted channel.
3. The genuine GotAPI Server stores the key securely.
HMAC calculation and sending messages through the GotAPI-1 Interface:

4. Before the application sends a request, it creates a nonce, N, which is a random digit series enough long not to be predicted, and, then, it sends the message, M, and the nonce, N, through the GotAPI-1 Interface.

5. When the genuine GotAPI Server receives the request, it calculates an HMAC, h'=HMAC(K,N), with the nonce, N, and the key, K, that the application distributed through the Trusted Channel before.

6. The genuine GotAPI Server sends a response with the HMAC, h', and the response message, m, to the application through the GotAPI-1 interface.

7. The application calculates an HMAC, H'=HMAC(K, N), and it checks if H' is equal to h' that is received from the GotAPI Server. If equal, verification of the GotAPI Server authentication is successful and the GotAPI Server verifies that the response has surely been sent by the genuine GotAPI Server. If not, application determines that the server that sent the message is spoofed.
The Figure XXX1 presents a normal case of the HMAC server authentication.
[image: image1.png]Web Application Genuine GotAPI Server

The web application sends a key (K) whenever it

Generate akey starts. It can update the key (K) anytime after that.
intent://#Intent;scheme=gotapi; . - K
package=jp.docomo.gotapi; Invoke the server =app.example.jp Wake u K origin=app.example.jp
S.origin=app.example.jp;S.key=0123456789;; (URI Scheme w/ package name) 123456789 Trusted channel i key=0123456789
end">Invoke the GotAPI Server
Only the Genuine GotAPI Server knows the key.
UEERAEIHENESEE | M Bogus Server never knows the key.
nonce
The web application creates a Create a nonce (A random digit series enough
new nonce every time it sends a long not to be predicted)
request to the GotAPI Server
origin=app.example.jp, M [l Execute the API request
API request = = q m
message=M Create a result message

Calculate an HMAC h'| =HMAC(| K |,|N|)

Return the result message
with the HMAC

Receive the response
with the HMAC

Calculate an HMAC m HMAC(| K |,IN|)

Check if m ==n

Accept the response

Figure XXX1 HMAC server authentication – Normal Case.
The Figure XXX2 presents a spoofing attack case of the HMAC server authentication.
When a bogus server attempts to spoof the genuine GotAPI Server, the bogus server can't calculate a right HMAC because it never knows the key, K, generated by the application.
[image: image2.png]intent://#Intent;scheme=gotapi;
package=jp.docomo.gotapi;
S.origin=app.example.jp;S.key=0123456789;;
end">Invoke the GotAPI Server

Web Application

Generate a key

Invoke the server
(URI Scheme w/ package name)

Create a request message

AP request

Receive the response
with the HMAC

Calculate an HMAC

Don't accept the response

origin=app.example.jp
key=0123456789

nonce

(A random digit series enough
long not to be predicted)

origin=app.example.jp, Execute the API request

Genuine GotAPI Server

Trusted channel

Bogus Server

Kill the Genuine Server

message=M

Create a result message

origin=app.example.jp
key=0123456789

Only the Genuine GotAPI Server knows the key.
Bogus Server never knows the key.

Calculate an HMAC

Bogus Server can't calculate a right HMAC,

NJ)

Return the result message

[|=Hmac([k |.[N])

with the HMAC

because it never knows the key.

Figure XXX2 HMAC server authentication – Spoofing Attack Case.

Since GotAPI Server spoofing is an easy-to-do attack, GotAPI implementations needs to protect it from the attack.

· If the one-way Trusted Channel is available in the device from the application to the genuine GotAPI Server application, the GotAPI Server SHOULD support the HMAC server authentication described in this section to prevent the GotAPI Server spoofing attack.
· If the HMAC server authentication is supported, the GotAPI Server SHALL support SHA-256 for the hash algorithm for calculating an HMAC.
· The GotAPI Server SHALL be able to support and respond to the application regardless of the application being using the HMAC server authentication or not. But the GotAPI Server SHALL NOT respond to applications which have not been authenticated by the Authentication Server through the GotAPI-2 Interface.
· The GotAPI Server SHALL accept keys sent by authenticated applications anytime. The GotAPI Server SHALL calculate an HMAC using the new key that was most recently provided from the web application.
Editor’s Note:

Here is a recommendation for the application, which is not a normative part of this specification.

· The use of the HMAC server authentication is OPTIONAL for an application.
· An application SHALL generate a new key, K, and use it whenever the application is invoked.
· An application SHALL create a new nonce every time it sends a request to the GotAPI Server.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

