OMA-CD-GotAPI-2014-0034-CR_Section_7.3.2.2_GotAPI_2[image: image2.jpg]
Change Request

OMA-CD-GotAPI-2014-0034-CR_Section_7.3.2.2_GotAPI_2
Change Request

Change Request

	Title:
	Section 7.3.2.2 GotAPI-2
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	Content Delivery (GotAPI) WG

	Doc to Change:
	OMA-ER-GotAPI-V1_0-20140825-D

	Submission Date:
	31 October 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Max Hata, NTT DOCOMO, masato.hata.uf@s1.nttdocomo.com

Takafumi Yamazoe, NTT DOCOMO, yamazoet@nttdocomo.com

	Replaces:
	

1 Reason for Change

This CR fills the section "7.3.2.2. GotAPI-2".
The section describes the architecture of the application authentication on the GotAPI-2 Interface.
In addition to the basic authentication procedure, there are two threats on the GotAPI-2 Interface:

1) GotAPI Auth Server spoofing: discussed in 0031R01 and 0032

This is the case where the bogus GotAPI Auth Server is running.

Applications need to be able to determine if the Auth Server is genuine or not.

The HMAC server authentication resolves the spoofing attack as in the case with the GotAPI-1 Interface.

2) Application’s origin spoofing: a new type of attack

This is the case where the malicious application acts as other application sending a fake identity to the GotAPI Auth Server.

The GotAPI Auth Server need to be able to determine if the identify that it has received over GotAPI-2 Interface is authentic or not.

This section presents (i) the basic authentication procedure and (ii) the security enforced authentication procedure.

Since these attacks are easy-to-do attacks, it is highly recommended that the GotAPI-2 and the GotAPI Auth Server are able to support the security enforced authentication procedure.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommend this CR to be incorporated in the GotAPI specification draft.
6 Detailed Change Proposal

Change 1: Filling the section "7.3.2.2 GotAPI-2"
(No changes from the original)
7.3.2.2 GotAPI-2

The GotAPI-2 interface enables applications to obtain authorization for access to GotAPI-based APIs. This interface is fully specified by GotAPI, being a common (though optionally used) support function for all GotAPI-based APIs. GotAPI-2 supports bindings and request/response transactions that can be utilized in host devices based upon the available interface technologies. These options include the interface technologies TLS 1.2, HTTP/1.1, HTTP/2, and URI scheme handling.

The GotAPI-2 interface is based upon the concepts of OAuth, though with different semantics as necessary for adaptation to the available interface technologies.

(Newly added)
In this specification, an "origin" is an identifier of an application, which is globally unique.

If the application is a web application, the origin is literally an origin as defined by RFC6454, which is a concatenating string that is composed of the scheme, the fully qualified host name, and the TCP port number. For example, if the URL of a web application is "https://app.example.com:443/index.html", the origin is "https://app.example.com:443".

If the application is an OS-specific native application, the origin is an application identifier managed by the underlying OS, such as a package name. For example, if the OS is Android, the origin could be "com.example.app".
The origin is embedded in the HTTP request header by the application itself or by the web browser automatically as described in the section "8.7 GotAPI Authorization Server".
The authenticity of the origin of the application is crucial for the entire operation of the GotAPI system.

The GotAPI Auth Server SHALL be able to extract the origin from the HTTP request header appropriately.
A) Basic GotAPI-2 Interface procedures:
The GotAPI-2 Interface must be able to run the steps as follows:
1) Authorization of application

When the GotAPI Auth Server receives the request for application authorization from an application, the GotAPI Auth Server SHALL ask the user if the application is acceptable or not. In practice, the GotAPI Auth Server shows an OS-specific dialog box to the user.

The GotAPI Auth Server SHALL show the items in the dialog box as below:

· The information of the application (e.g. the origin of the web application or the package name of the OS-specific native application)

· A button which the user presses if the user accepts the application

· A button which the user presses if the user declines the application

If the user declines the application, the GotAPI Auth Server SHALL NOT allow the application to proceed any further beyond the point.
The GotAPI Auth Server MAY support a white-list of origins that have been pre-authenticated by the GotAPI service provider. If the GotAPI Auth Server supports such a white-list and the origin is listed in the white-list, the GotAPI Auth Server MAY implicitly authorize the application without showing any dialog box to the user.
If the GotAPI Auth Server accepts the application, the GotAPI Auth Server SHALL create a series of random digits, called as “grant”, that is long enough not to be predicted, and, then, SHALL send the response to the application with the grant.
2) Issuance of an access token

When the application receives the grant from the GotAPI Auth Server, it immediately sends an access token request to the GotAPI Auth Server. When the GotAPI Auth Server receives the request from the application, the GotAPI Auth Server SHALL create an access token for the application, which is a series of random digits that is long enough not to be predicted. Then the GotAPI Auth Server SHALL send the response with the access token to the application.
The application subsequently sends API requests with the access token on the GotAPI-1 Interface.

B) Security enforced GotAPI-2 Interface procedures:
In addition to the basic GotAPI-2 Interface procedures as described above, there are two security concerns for the GotAPI-2 Interface that needs to be addressed.

· GotAPI Auth Server spoofing, and

· Application’s origin spoofing
1) GotAPI Auth Server spoofing:

The GotAPI Auth Server spoofing is an attack where a bogus GotAPI Auth Server takes over the genuine GotAPI Auth Server and pretends as if it was the GotAPI Auth Server. When the application sends a request to the GotAPI Server for the first time, there may even be a case where the GotAPI Server has already been taken over by the attacker.

Since GotAPI Auth Server spoofing is an easy-to-do attack, applications need to be able to verify if the GotAPI Auth Server is genuine or not. The HMAC server authentication resolves this spoofing attack.
The GotAPI Auth Server SHOULD be able to support the HMAC server authentication using the Trusted Channel with the Application ID as described in the section "7.4.3.2 GotAPI Server spoofing attack".
2) Application’s origin spoofing:
The application’s origin spoofing is an attack where a malicious application acts as other application by sending a fake identity (a.k.a. origin) to the GotAPI Auth Server. The GotAPI Auth Server needs to be able to verify if the identity that it has received from the application is authentic or not.
When an application sends a request for authentication over the GotAPI-2 Interface, the origin of the application is included in the HTTP request header.
If the application is a web application running on a web browser, the application cannot override the Origin header in the HTTP request header [W3C XHR]. Therefore, the origin coming from a web application is trustable.
On the other hand, if the application is an OS-specific native application, the application may send a fake identity in the HTTP request header. Besides, a malicious native application may set the Origin header to be a fake origin pretending a web application running on a web browser.
When an application sends a request for authentication, the GotAPI Auth Server SHOULD be able to verify the origin coming from the application to determine if the origin is authentic or not.

The verification needs to depend on the features of the underlying OS domain on which the GotAPI Auth Server is running.
Here is an example of such a verification mechanism if the underlying OS is Android.
An example of verifying origin spoofing on Android:

· Android supports the netstat command by default. But it does not provide the process ID of the native application establishing the HTTP connection.

· Using Android NDK, however, the full-featured netstat can be built and packaged within an Android native application (i.e., GotAPI Server application).
· The GotAPI Auth Server embedding the full-featured netstat identifies the process ID of the native application from the result of the full-featured netstat, and it can get the package name and application name from the process ID using the Android API.
· The GotAPI Auth Server uses a white-list of application names of legitimate browsers that have been verified to be compliant to the origin header’s not-over-ridden requirements [W3C XHR]. The white-list enables the GotAPI Auth Server to distinguish the case of (i) a web application declaring an origin from (ii) a malicious native application fakes origin header to pretend a web application.
The Table below shows all the cases where an attacking native application, com.attacker.app, declares various origins in the HTTP header and what the netstat can find. As shown in the table, the faked origins can be completely found by the netstat.
Table-1 Cases of origins declaration by attacking native application and what the netstat can find.
	
	Real package name
	Declared origin in HTTP header
	True/Fake
	What netstat finds
	Results
	Notes

	1
	com.attacker.app
	http://example.com
	Fake
	com.attacker.app
	Fake found
	*1

	2
	com.attacker.app
	com.example.app
	Fake
	com.attacker.app
	Fake found
	*2

	3
	com.attacker.app
	com.attacker.app
	True
	com.attacker.app
	True confirmed
	*3

*1: If the declaration of the origin was from a web application running in a legitimate browser, the netstat should have found the name of the browser that is registered in the white-list of legitimate browsers, instead of the package name of the attacking native application, com.attacker.app.

 *2: The package name that the netstat has found is different from the origin that the application is declaring in the HTTP header.
*3: GotAPI Auth Server confirms what the native application is declaring in the HTTP header is authentic.
The figure blow shows the procedure of application authorization on the GotAPI-2 Interface including the security enforced measures against the threats, GotAPI Auth Server spoofing, and application origin spoofing.
[image: image1.png]
Figure XXX Procedure of security enforced application authorization on the GotAPI-2 Interface.
In order to prevent GotAPI Auth Server spoofing and application’s origin spoofing, the GotAPI Auth Server SHOULD be able to support the security enforced GotAPI-2 Interface procedures as described in Figure XXX.
Change 2: Add the references to “2.2 Informative References”
	[RFC6454]
	“The Web Origin Concept”
https://www.ietf.org/rfc/rfc6454.txt

	[W3C XHR]
	“XMLHttpRequest Level 1”,

http://www.w3.org/TR/XMLHttpRequest/

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 5 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

