Doc# OMA-Template-ChangeRequest-20140101-I.doc[image: image7.jpg]
Change Request

OMA-CD-GotAPI-2014-0054-CR_Various_Protocol_over_GotAPI_1
Change Request

Change Request

	Title:
	Various Protocol over GotAPI-1
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	Content Delivery (GotAPI) WG

	Doc to Change:
	OMA-ER-GotAPI-V1_0-20141120-D

	Submission Date:
	26 November 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Max Hata, NTT DOCOMO, masato.hata.uf@s1.nttdocomo.com

Takafumi Yamazoe, NTT DOCOMO, yamazoet@nttdocomo.com

	Replaces:
	

1 Reason for Change

The GotAPI Server can support not only HTTP but also WebSocket, Server-Sent Events, WebRTC as needed. This CR adds the more detailed descriptions and diagrams of these protocols to the following sections.
The related sections are:

· 7.2.2.1 GotAPI-1
· 7.2.2.1.1 The Temporary Server Feed (TSF) Mechanism
· 7.2.2.4.4 Data Forwarding
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommend this CR to be incorporated in the spec.
6 Detailed Change Proposal

Change 1: 7.2.2.1 GotAPI-1
7.2.2.1 GotAPI-1

The GotAPI-1 interface enables applications to make API requests and receive responses. This interface is generically specified by GotAPI, as GotAPI-based API specifications will define specific request/response transactions that can be utilized in host devices based upon the available interface technologies, payload protocols, and their applicable design patterns. These options include:

· The interface technologies TLS 1.2, HTTP/1.1, HTTP/2, WebSocket, EventSource, WebRTC

· The design patterns REST and JSON, such as JSON-RPC

· The Temporary Server Feed (TSF) mechanism for binary data responses and triggering a different protocols, as described below

The GotAPI Server SHALL support HTTP/1.1 as a communication protocol on the GotAPI-1 interface.
Additionally, the GotAPI Server MAY support HTTP/2 [HTTP2], WebSocket [WebSocket] [WebSocketProtocol], EventSource(Server-Sent Events) [SSE], and WebRTC [WebRTC][Rtcweb] as needed.
For example, if the GotAPI Server provides an API for enabling asynchronous notifications such as an event listener (One-way push API), the API can use Server-Sent Events.
[image: image1.png]
Figure 4 One shot API and One-way push API
If the GotAPI Server provides an API for enabling full-duplex real-time communications such as a chat service, the API can use WebSocket. WebSocket, however, requires another port numbers in addition to 4035/4036 for HTTP/HTTPS to be assigned. This specification does not specify the port numbers for WebSocket (ws: and wss:). Therefore, the GotAPI Server is encouraged to use the TSF mechanism described in the next section for such APIs.
The GotAPI Server SHALL support JSON as a data container format on the GotAPI-1 interface. Additionally, the GotAPI Server MAY support JSON-RPC [JSON-RPC] as needed.
Change 2: 7.2.2.1.1 The Temporary Server Feed (TSF) Mechanism
7.2.2.1.1 The Temporary Server Feed (TSF) Mechanism

There are two possible approaches which the GotAPI Server returns API result data to applications:

· Direct response approach:
· GotAPI Server returns binary data as a response directly

· This approach is very common and GotAPI-1 already supports it

· Temporary Server Feed (TSF) approach:
· When an app request something to the GotAPI Server on GotAPI-1, the GotAPI Server creates a temporary URI for the requested data, then return it to the app with additional information

· Then the app accesses the URI in order to fetch the binary data

The TSF approach has advantages below:

· Flexible API design

· The TSF mechanism brings flexibility to API design for GotAPI-1

· APIs can provide additional information relevant to the requested binary data with applications

· For example, APIs can provide adaptive streaming protocols over HTTP, such as SME + MPEG-DASH

1. An application requests MPD (Media Presentation Description) data over GotAPI-1

2. The application fetches fragments of the video data sequentially following the URLs defined in the MPD

· Web developer friendly

· Lots of existing server-side Web APIs on the Internet provide APIs similar to TSF with developers

The GotAPI Server MAY support the TSF mechanism.

If the GotAPI Server supports the TSF mechanism, the GotAPI Server SHALL support the following steps for data retrieved via a TSF:
· An application sends a request for accessing certain data to the GotAPI Server over the GotAPI-1.

· When the GotAPI Server receives the request, the GotAPI Server creates a non-predictable random URI for the binary data that is requested, and associates the URI with the binary data. The port number of the URI is not necessarily 4035 or 4036. The GotAPI Server MAY decide the port number of the URI appropriately as needed.
· The GotAPI Server sends a response with the URI and additional information (if needed) to the application over the GotAPI-1.

· Receiving the URI, the application accesses the URI in order to get the requested binary data from the GotAPI Server. The GotAPI Server works as a Web server.

· The GotAPI Server discards the URI after the application gets the binary data and/or after certain while for the purpose of security.

Example:
[image: image3.png]
Figure 5 The TSF Procedure
Though the example in the figure above shows thea case where HTTP is used, the GotAPI Server MAY use HTTP/2, WebSocket, Server-Sent Events, and WebRTC as needed.

The TSF mechanism can be used for triggering communications using these protocols as well as transferring binary data. The GotAPI Server MAY use the TSF mechanism for other types of data and triggering other protocols.

For example, if the GotAPI Server provides an API for enabling full-duplex real-time communications such as a chat service, the GotAPI Server can use WebSocket instead of HTTP GET.
[image: image4.png]
Figure 6 WebSocket used for TSF.
Change 3: 7.2.2.4.4 Data Forwarding
7.2.2.4.4 Data Forwarding
Once a connection between the GotAPI Server and the targeted Extension Plug-In is established (i.e., GotAPI-4 Plug-In Discovery (optional) and GotAPI-4 Approval have been successfully completed), the application can communicate with the targeted Extension Plug-In. The data transferred between the application and the Extension Plug-In pass-through the GotAPI Server.

The GotAPI-4 Data Forwarding defines the protocol (the data container format) between the GotAPI Server and the Extension Plug-Ins that are connected with external devices or internal enablers.
Example:

The following description and Figure-7 show how the pass-through mechanism of the Data Forwarding works:

An application sends a request to the GotAPI Server using an HTTP connection with some parameters in accordance with the GotAPI-1. The GotAPI Server converts the request to the data format (protocol) in accordance with the GotAPI-4 Data Forwarding specification. Then the GotAPI Server conveys the converted data to the targeted Extension Plug-in using the OS adaptation, such as Intent for Android. Finally, the Extension Plug-In invokes the APIs with the received and re-converted data. The APIs are implemented in the Extension Plug-In. This mechanism allows requests and responses between applications and external or internal entities to be passed-through to the APIs.

[image: image5.png]
Figure 7 Pass-through mechanism of Data Forwarding
The JSON data and some URIs in the diagram above are just samples and simplified. See the section "8.1 GotAPI Server" for the exact definition of the data set.
In order to get data (binary files, streaming, event notifications, etc.) using HTTP or a different protocol, e.g., WebSocket, Server-Sent Events , WebRTC, from the Plug-Ins, the Temporary Server Feed (TSF) mechanism may be used:

· An application sends a request to the GotAPI Server over the GotAPI-1 interface.

· The GotAPI Server passes the request to the Plug-In over the GotAPI-4 interface.
· When the Plug-In receives the request, the Plug-In creates a non-predictable random URI for the data that is requested, and associates the URI with the data.
· The Plug-In sends a response with the URI and additional information (if needed) to the GotAPI Server over the GotAPI-4 interface, and the GotAPI Server passes the response to the application over the GotAPI-1 interface.

· Receiving the URI, the application accesses the URI using the protocol that is indicated by the Plug-In in order to get the requested data from the Plug-In directly. The Plug-In works as a Web server.

· The Plug-In discards the URI after the application gets the data or a preset life time expires for the purpose of security.
· The URI may use the same IP address as the GotAPI Server but with a different port number. This enables the Plug-In to be a separate application than the GotAPI Server application.
[image: image6.png]
Figure 8 The TSF mechanism for GotAPI-4
The JSON data in the diagram above are simplified examples. See the section "8.3 GotAPI Server" for the exact definition of the data set.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

