OMA-CD-GotAPI-2015-0005-CR_Asynchronous_messaging_channel[image: image17.png]
Change Request

OMA-CD-GotAPI-2015-0005-CR_Asynchronous_messaging_channel[image: image18.png]
Change Request

Change Request

	Title:
	Asynchronous messaging channel
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	Content Delivery (GotAPI) WG

	Doc to Change:
	OMA-ER-GotAPI-V1_0
Candidate Version 1.0 – 10 Feb 2015, OMA-ER-GotAPI-V1_0-20150210-C

	Submission Date:
	6 June 2015

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Max Hata, NTT DOCOMO, masato.hata.uf@s1.nttdocomo.com

Takafumi Yamazoe, NTT DOCOMO, yamazoet@nttdocomo.com

	Replaces:
	

1 Reason for Change

GotAPI V1.0 does not provide any asynchronous messaging mechanisms between the GotAPI Server and applications. There are many use cases using asynchronous notifications, such as those with health care devices. In these cases, the WebSocket is suitable.

We propose:

· Newly add the GotAPI-5 Interface to enable WebSocket in the architecture of the GotAPI
· Update the GotAPI V1.0 (Candidate Version 1.0 – 10 Feb 2015, OMA-ER-GotAPI-V1_0-20150210-C) to V1.1 for a quick release
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommend to incorporate this CR to the GotAPI specification for a quick new release as GotAPI 1.1.
6 Detailed Change Proposal

Change 1: Replacing the diagrams in the section "7.1 Architectural Diagram"
[image: image2.png]
Figure 2: GotAPI Architectural Diagram

[image: image4.png]
Figure 3: GotAPI Architectural Diagram (Informative)

Change 2: Adding a new section "7.2.2.5 GotAPI-5"

7.2.2.5 GotAPI-5
The GotAPI-5 interface enables applications to listen to asynchronous messages from Extension-Plug-Ins via the GotAPI Server using WebSocket.
After the application obtains authorization to access GotAPI-based APIs using the GotAPI-2 Interface and completes the Service Discovery, the application can use the asynchronous messaging service provided by the Plug-In through the GotAPI Server.
[image: image5.png]
[image: image6.png]
Figure: Procedure of establishing a WebSocket connection for the GotAPI-5 interface

[image: image7]
1. The user triggers a request of the API on the application.

2. Label (1): The application sends a request to the GotAPI Server using HTTP (REST) using the GotAPI-1 Interface. Note that the HTTP method of the request is "PUT".
3. Label (2): The GotAPI Server passes the request to the targeted Plug-In on the GotAPI-4 interface with the Action name "PUT".

4. The GotAPI Server runs the Plug-In Approval procedure if needed, which is defined in this specification.
5. When the Plug-In receives the request, it connects to the targeted external device if needed.
6. Label (3): The Plug-In sends a response with the message using the GotAPI-4 interface.
7. Label (4): When the GotAPI Server receives the response from the Plug-In, the GotAPI Server passes the response to the application on the HTTP connection as an HTTP response.

8. Label (5): The application establishes a WebSocket connection to the GotAPI Server if the application does not have a WebSocket connection to the GotAPI Server.

9. Label (6): As the WebSocket connection has been established, the application sends the access token to the GotAPI Server through the WebSocket connection. The access token is a token which the application obtained from the GotAPI Auth Server when the application was authorized by the GotAPI Auth Server.

10. Label (7): When the GotAPI Server receives the access token from the WebSocket channel, the GotAPI Server returns the result on whether the request is accepted or not.

11. Label (8): Whenever the targeted external device reports a message, e.g., a data or a measurement value, the Plug-In sends the message to the GotAPI Server on the GotAPI-4 Interface with the Action name "PUT".

12. Label (9): Whenever the GotAPI Server receives a message from the Plug-In, the GotAPI Server passes it to the application on the WebSocket connection.

13. Label (10): When the application finishes or decides to finish using the service, it sends a request to stop the monitoring to the GotAPI Server. The request is sent over the GotAPI-1 Interface using HTTP. Note that the URI is as the same as that of the first request except that the HTTP method is "DELETE".

14. Label (11): When the GotAPI Server receives the stop request, it sends a request to the Plug-In to stop the monitoring with the Action name "DELETE". Then the GotAPI server closes the WebSocket connection.
15. Label (12): When the Plug-In receives the stop request from the GotAPI Server, the Plug-In stops reporting messages, and it returns a response to the GotAPI Server on the GotAPI-4 Interface.

16. Label (13): When the GotAPI Server receives the response, the GotAPI Server passes the response to the application on the GotAPI-1 Interface.
The diagram above shows that the application establishes a WebSocket connection as the GotAPI-5 interface after the application sends an API request on the GotAPI-1 interface. But the application can establish a WebSocket connection at any time after the application has received an access token from the GotAPI Auth Server.
The GotAPI-5 interface is NOT on a per API request basis. It is on a per application basis. That is, the application uses a single WebSocket connection for asynchronous messages derived from any API requests.
[image: image8.png]
Figure: Common use of a single WebSocket connection for multiple APIs
The GotAPI Server SHOULD listen to WebSocket connections on TCP port 4035 as ws: scheme or 4036 as wss: scheme, which is same as the GotAPI-1 Interface (HTTP).
If the GotAPI Server can not listen to WebSocket connections on TCP port 4035 or 4036, it MAY listen WebSocket connections on an arbitrary TCP port which is pre-defined by the GotAPI Server.

[image: image9]

[image: image10]
Change 3: Modify the description in "7.2.2.1 GotAPI-1"

If applications require full-duplex real-time communications such as a chat service or asynchronous messaging, WebSocket is a suitable protocol. This specification provides two ways to enable WebSocket connections for applications with Plug-Ins, (i) WebSocket provided via GotAPI-5 interface where the GotAPI Server bridges WebSocket connections with Plug-Ins, and (ii) TSF(Temporary Server Feed) mechanism where Plug-Ins directly provides WebSocket connections to applications.
Change 4: Adding a new section "8.4 Asynchronous messaging on the GotAPI-5 Interface"

8.4 Asynchronous messaging

8.4.1 Request for asynchronous messaging on the GotAPI-1 Interface

When the application uses the API in order to receive asynchronous messages, it sends a request to the GotAPI Server on the GotAPI-1 Interface as follows:

Definition of the HTTP request
	
	Definitions

	Method
	HTTP PUT

	Request URL
	Depends on the API

Definition of the request parameters
	Parameter name
	Definition of value
	Mandatory/Optional

	serviceId
	The identifier of the targeted service. This value is available from the Service Discovery API on the GotAPI-1 Interface.
	Mandatory

	accessToken
	The access token obtained from the GotAPI Auth Server through the GotAPI-2 Interface.
	Mandatory

	key
	A random string used for the counter measure against the GotAPI Server spoofing. This key is generated by the application. If the key is present, the GotAPI Server will include a HMAC in the response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Optional

Example of the request URL

	http://127.0.0.1:4035/gotapi/health/thermometer?serviceId=abcdefg123&accessToken=0987654321&key=93b3a219347

When the GotAPI Server receives a request from an application using HTTP PUT method, this means that the requested API handles asynchronous messaging.

The GotAPI Server SHALL have an "asynchronous messaging mapping table" internally in order to remember which application is interacting with the targeted Plug-In and the external device for asynchronous messaging. The "asynchronous messaging mapping table" consists of the items as listed below:
· The access token (to identify the application)

· The requested URI (to identify the targeted service, Plug-In, and external device)
· The WebSocket connection reference (to determine which connection is for the application, or to determine if the application has established the GotAPI-5 Interface)
The entry always has at least two items, the access token and the WebSocket connection reference, or the access token and the requested URI.
If the application has established the GotAPI-5 Interface before sending a request for asynchronous messaging on the GotAPI-1 Interface, then the relevant entry has the access token and the WebSocket connection reference. If the application sends a request for asynchronous messaging on the GotAPI-1 Interface before it establishes the GotAPI-5 Interface, then the relevant entry has the access token and the requested URI.

8.4.2 Request for asynchronous messaging on the GotAPI-4 Interface

When an application sends a request to the GotAPI Server on the GotAPI-1 Interface, the GotAPI Server passes the request to the Plug-In on the GotAPI-4 Interface. The request includes the data object as follows:

[image: image11]
8.4.3 Response for asynchronous messaging on the GotAPI-4 Interface

When the Plug-In receives the request, it SHALL respond to the GotAPI Server as follows:

[image: image12]
If the request was failed, the GotAPI SHALL remove the relevant entry in the "asynchronous messaging mapping table".

8.4.4 Response for asynchronous messaging on the GotAPI-1 Interface

When GotAPI Server receives the response from the Plug-In, the GotAPI Server passes it to the application as follows:

Definition of the HTTP response
	
	Definitions

	MIME-Type
	application/json

	HTTP status
	200 OK

Definition of the data object for the response

	Name
	
	Type
	Definition of value
	Mandatory/Optional

	product
	
	String
	The name of the GotAPI Server (e.g. "ABConnect")
	Mandatory

	version
	
	String
	The version of the GotAPI Server (e.g. "1.0").
	Mandatory

	result
	
	Number
	If success, the value is 0, otherwise an integer greater than 0, which indicates an error code.

This specification doesn't define error codes.
	Mandatory

	hmac
	
	String
	An HMAC generated for the counter measure against the GotAPI Server spoofing attack.

If the application includes a key for HMAC calculation in the API request, the GotAPI Server adds this value in the API response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Mandatory if the application provide a key to the GotAPI Server

The GotAPI Server SHALL pass all of the values other than values listed above keeping the structure of the data object.

The GotAPI Server MAY append additional data in the data object as needed.
The GotAPI Server SHALL serialize the data structure above as a JSON formatted stream (i.e. JSON string).
Example of the response
	{

 "product" : "ABCConnect",

 "version" : "1.0",

 "requestCode" : 10,

 "result" : 0,

 "hmac" : "0123456789",
 "config" : "any data"
}

8.4.5 Establishing a WebSocket connection

The application establishes a WebSocket connection with the GotAPI Server in order to receive an asynchronous event stream as follows:

Definition of the HTTP request
	
	Definitions

	Request URL
	ws://127.0.0.1:4035/gotapi/websocket

wss://127.0.0.1:4036/gotapi/websocket

Example of the request URL

	http://127.0.0.1:4035/gotapi/websocket

Basically, the GotAPI Server SHALL accept any WebSocket connections without any authorization or authentication. But the GotAPI Server MAY reject WebSocket connections for the purpose of security reasons.

The GotAPI Server MAY close WebSocket connections which have not been established as the GotAPI-5 Interface for a certain period (i.e. the application didn't send the access token for a certain period). For example, the GotAPI Server closes the WebSocket connection which has not been established as the GotAPI-5 Interface in 10 seconds since the WebSocket connection was opened
8.5.6. Establishing the GotAPI-5 Interface

After a WebSocket connection between the application and the GotAPI Server was established, the application sends the access token which the application has received from the GotAPI Auth Server previously. The format of the data to be sent is a JSON string as follows:

Definition of the data object
	Name
	
	Type
	Definition of value
	Mandatory/Optional

	accessToken
	
	String
	The access token which the application got from the GotAPI Auth Server previously
	Mandatory

Example of the JSON string

	{

 "accessToken" : "abcdef0123456789"
}

When the GotAPI Server receives an access token from the WebSocket connection, the GotAPI Server checks if the access token has been authorized by the GotAPI Auth Server.
8.4.7 The response for establishing the GotAPI-5 Interface

The GotAPI Server returns the result to the application using the WebSocket connection. The format of the data is a JSON string as follows:

Definition of the data object
	Name
	
	Type
	Definition of value
	Mandatory/Optional

	result
	
	Number
	If success, the value is 0, otherwise an integer other than 0, which indicates an error code.

This specification doesn't define error codes.
	Mandatory

The GotAPI Server MAY append additional data in the data object as needed.
Example of the JSON string

	{

 "result" : 0

}

If the access token was valid, the GotAPI SHALL add or update the relevant entry in the "asynchronous messaging mapping table". Otherwise, the GotAPI Server SHALL close the WebSocket connection after sending the response as an error.

If the application has already established a WebSocket connection, the GotAPI Server SHALL close the new WebSocket connection after sending the response as an error on the new WebSocket connection.
8.4.8 Asynchronous message from the Plug-In to the GotAPI Server on the GotAPI-4 Interafce
The Plug-In sends an asynchronous message as follows:

[image: image13]
8.4.9 Asynchronous message from the GotAPI Server to the application on the GotAPI-5 Interface

When the GotAPI Server receives an asynchronous message from the Plug-In, the GotAPI Server passes it to the application on the GotAPI-5 Interface. The format of the data is a JSON string as follows:

Definition of the data object
	Name
	Sub name
	Type
	Definition of value
	Mandatory/Optional

	serviceId
	
	String
	The identifier of the targeted Service. This value is provided by the application when the application send the originated API request on the GotAPI-1 Interface.
	Mandatory

	hmac
	
	String
	An HMAC generated for the counter measure against the GotAPI Server spoofing attack.

If the application includes a key for HMAC calculation in the API request, the GotAPI Server adds this value in the API response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Mandatory if the application provide a key to the GotAPI Server

The GotAPI Server SHALL pass all of the values other than values listed above keeping the structure of the data object.

The GotAPI Server MAY append additional data in the data object as needed.
The GotAPI Server SHALL serialize the data structure above as a JSON formatted stream (i.e. JSON string).
Example of the JSON string

	{

 "serviceId" : 0,

 "hmac": "123456",
 "thermometer": {

 "temperature": 36.4,

 "timeStamp": 1431856940275
 }

}

8.4.10 Stop request from the application to the GotAPI Server on the GotAPI-1 Interface
When the application wants to stop receiving asynchronous messages, it sends a request to the GotAPI Server on the GotAPI-1 Interface as follows:

Definition of the HTTP request
	
	Definitions

	Method
	HTTP DELETE

	Request URL
	Same as the API request

Definition of the request parameters
	Parameter name
	Definition of value
	Mandatory/Optional

	serviceId
	The identifier of the targeted service. This value is available from the Service Discovery API on the GotAPI-1 Interface.
	Mandatory

	accessToken
	The access token obtained from the GotAPI Auth Server through the GotAPI-2 Interface.
	Mandatory

	key
	A random string used for the counter measure against the GotAPI Server spoofing. This key is generated by the application. If the key is present, the GotAPI Server will include a HMAC in the response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Optional

Example of the request URL

	http://127.0.0.1:4035/gotapi/health/thermometer?serviceId=abcdefg123&accessToken=0987654321&key=93b3a219347

The stop request is the same as the relevant API request except that the HTTP method is "DELETE".

When the GotAPI Server accepts the stop request, the GotAPI Server SHALL remove the relevant entry in the "asynchronous messaging mapping table"

8.4.11 Stop request from the GotAPI Server to the Plug-In on the GotAPI-4 Interface
When the GotAPI Server receives a stop request from the application on the GotAPI-1 Interface, if entries associated with the targeted Plug-In and service was found in the "asynchronous messaging mapping table", then jump to the step described in the section "8.4.13 Stop response from the GotAPI Server to the application on the GotAPI-1 Interface", then return a result as OK.
Otherwise, the GotAPI Server sends a stop request to the Plug-in on the GotAPI-4 Interface. The request includes the data object as follows:

[image: image14]
8.4.12 Stop response from the Plug-In to the GotAPI Server on the GotAPI-4 Interface

When the Plug-In receives the stop request, it SHALL respond as follows:

[image: image15]
8.4.13 Stop response from the GotAPI Server to the application on the GotAPI-1 Interface

When the GotAPI Server receives the stop response, the GotAPI Server passes the response to the application follows:

Definition of the HTTP response
	
	Definitions

	MIME-Type
	application/json

	HTTP status
	200 OK

Definition of the data object for the response

	Name
	
	Type
	Definition of value
	Mandatory/Optional

	product
	
	String
	The name of the GotAPI Server (e.g. "ABConnect")
	Mandatory

	version
	
	String
	The version of the GotAPI Server (e.g. "1.0").
	Mandatory

	result
	
	Number
	If success, the value is 0, otherwise an integer greater than 0, which indicates an error code.

This specification doesn't define error codes.
	Mandatory

	hmac
	
	String
	An HMAC generated for the counter measure against the GotAPI Server spoofing attack.

If the application includes a key for HMAC calculation in the API request, the GotAPI Server adds this value in the API response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Mandatory if the application provide a key to the GotAPI Server

The GotAPI Server SHALL serialize the data structure above as a JSON formatted stream (i.e. JSON string).
Example of the response
	{

 "product": "ABCConnect",

 "version": "1.0",

 "result" : 0,

 "hmac" : "0123456789"

}

8.4.14 Unexpected disconnection of the WebSocket connection
If the WebSocket connection was disconnected unexpectedly (e.g., due to the application being terminated or crashed), the GotAPI Server SHALL remove the relevant entries in the "asynchronous messaging mapping table".
The GotAPI Server SHALL extract the requested URIs from the removed entries, and examine the URIs to determine if the relevant Plug-In is interacting with any other applications. If a Plug-In that is not interacting with any application is found, the GotAPI Server SHALL send a stop request to the Plug-Ins as described in the section "8.4.11 Stop request from the GotAPI Server to the Plug-In on the GotAPI-4 Interface".

[image: image16]
Editor's note:

The details of the GotAPI-4 interface is TBD.

Editor's note:

Assigning a different port number for a WebSocket connection from that of the GotAPI-1 Interface, I'm not sure that the GotAPI Server spoofing for the WebSocket channel and the application spoofing can be caused.

Editor's note:

NanoHttpd already includes a WebSocket server and implementation of a WebSocket server on the same port as the HTTP channel is straightforward.

� HYPERLINK "https://github.com/NanoHttpd/nanohttpd" �https://github.com/NanoHttpd/nanohttpd�

But in case where implementing a WebSocket server as a single application with the HTTP server is not possible, it is not possible to get the same port number assigned for the HTTP channel and the WebSocket channel. Thus, we have made it as a “SHOULD” requirement.

Editor's note:

TBD.

Editor's note:

TBD.

Editor's note:

TBD.

Editor's note:

TBD.

Editor's note:

TBD.

Editor's note:

This process assumes that the GotAPI Server manages interactions between Plug-Ins and applications. An alternative approach is to have Plug-Ins manage the interactions. The details of this process are TBD.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 15)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20140101-I]

[image: image19.jpg]