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Reason for Change
This CR updates the section "7.3.3.3 HMAC server authentication using trusted Application ID for the Server spoofing attack" for GotAPI 1.1 draft, because the GotAPI-5 Interface newly added.
When asynchronous messaging based on WebSocket over the GotAPI-5 Interface is initiated by the application, all the initializations have already been executed using the GotAPI-2 and the GotAPI-1 Interfaces including provisioning the key, K, and granting an access token as defined in 7.2.2.5, and there is the trust relationship between the application and the GotAPI Server. Thus, since the GotAPI Server is assumed to be one application providing the GotAPI-1, the GotAPI-2, and the GotAPI-5 Interfaces, when the GotAPI-5 Interface is initiated from the GotAPI-1 Interface, the trust relationship is maintained and can be carried over to the GotAPI-5 Interface by the use of the HMAC server authentication over the WebSocket based GotAPI-5 Interface. Using the HMAC server authentication over the GotAPI-5 Interface based on the key that was most recently provided before the transition to the GotAPI-5 occurred, the Server spoofing attack is prevented.
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None
Impact on Other Specifications
none
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Recommendation
Recommend to incorporate this CR to the GotAPI specification into the GotAPI 1.1 draft.


Detailed Change Proposal
Update the section "7.3.3.3 HMAC server authentication using trusted Application ID for the Server spoofing attack"

[bookmark: _Ref402777771]7.3.3.3 HMAC server authentication using trusted Application ID for the Server spoofing attack
This counter measure works for a platform and a UA that satisfy the following requirements. This is based on the trust provided by the Application ID of the native application, and not embedding any credentials in the GotAPI native application.
· The Application ID is unique and trusted, which is guaranteed by the platform.
· The execution environment, e.g., UA, provides a one-way channel for an application to connect directly and send messages to a native application by designating its Application ID, e.g. a URI scheme. 
· The application can be connected exclusively and securely with a native application by designating its Application ID. Namely, there is no eavesdropping, no man-in-the-middle, or no spoofed destination in the channel from the application to the destination native application.
We call this type of channel as “Trusted Channel”.
Note: Intent URI Scheme for qualified browsers on Android and Explicit intents for Android native application satisfyapplications satisfies all these requirements. The destination is designated by the package name of the native application to which applications attempts to send messages.
Other assumptions are:
· The HTTP channel may be eavesdropped (*).
· Any application can terminate other applications that are running in the background and take over the port that the application is listening to.
· The application knows the Application ID of the genuine GotAPI application, implementing both the GotAPI Server and the GotAPI Auth Server. The Application ID is provided to the application out of the band in a trusted manner.
Note: It has been shown that eavesdropping is not possible over the GotAPI-1 or, the GotAPI-2 HTTP interfaces, or the GotAPI-5 WebSocket interfaces on Android unless the device is rooted. Nonetheless, this assumption is introduced here because there may be a way for eavesdropping the HTTP or the WebSocket connection that we are not aware of.
If the Trusted Channel is available, the Server spoofing attack is prevented using the HMAC server authentication as follows:

Shared key distribution using the Trusted Channel:;
1. The application generates a key, K, composed of unpredictable random characters, and stores the key securely.
2. The application sends the key, K, to the genuine rServer through the Trusted Channel designating the Application ID of the genuine GotAPI application. The application knows the genuine GotAPI application’s Application ID in an out-of-band trusted channel.
3. The genuine GotAPI application stores the key securely.

HMAC calculation and sending messages through the GotAPI-1 or, the GotAPI-2, or the GotAPI-5 Interface:;
1. Before the application sends a request, it creates a nonce, N, which is a series of random digits that is long enough not to be predicted, and, then, it sends the message, M, and the nonce, N, through the GotAPI-1 or, the GotAPI-2 or the GotAPI-5 Interface.
2. When the genuine Server receives the request, it calculates an HMAC, h'=HMAC (K,N), with the nonce, N, and the key, K, that the application distributed through the Trusted Channel before.
3. The genuine Server sends a response with the HMAC, h', and the response message, m, to the application through the GotAPI-1 or, the GotAPI-2 interfaceor the GotAPI-5 Interface.
4. The application calculates an HMAC, H'=HMAC (K, N), and it checks if H' is equal to h' that is received from the GotAPI Server. If equal, verification of the Server authentication is successful and the application verifies that the response has surely been sent by the genuine Server. If not, application determines that the Server that sent the message is spoofed.

The figure below presents a normal case of the HMAC server authentication for the GotAPI Server (the GotAPI Auth Sever case is the same) for a web application.

[bookmark: _Toc410893758][bookmark: _Toc421792224]Figure 13: HMAC server authentication – Normal Case
 (a web application communicating with the GotAPI Server over GotAPI-1)

HMAC server authentication for GotAPI-5:
When asynchronous messaging based on WebSocket over the GotAPI-5 Interface is initiated by the application, all the initializations have already been executed using the GotAPI-2 and the GotAPI-1 Interfaces including provisioning the key, K, and granting an access token as defined in 7.2.2.5, and there is the trust relationship between the application and the GotAPI Server. Thus, since the GotAPI Server is assumed to be one application providing the GotAPI-1, the GotAPI-2, and the GotAPI-5 Interfaces, when the GotAPI-5 Interface is initiated from the GotAPI-1 Interface, the trust relationship is maintained and can be carried over to the GotAPI-5 Interface by the use of the HMAC server authentication over the WebSocket based GotAPI-5 Interface. Using the HMAC server authentication over the GotAPI-5 Interface based on the key that was most recently provided before the transition to the GotAPI-5 occurred, the Server spoofing attack is prevented.

Figure 14: HMAC server authentication – GotAPI-5 Interface
As shown in the figure abobe, when the application receives asynchronous messages on the GotAPI-5 Interface, the application obtains the same HMAC (h') for all the asynchronous messages unless the key is changed during the asynchronous messaging phase. The HMAC(h’) is the one that was generated when the GotAPI Server responded for the asynchronous messaging API request on the GotAPI-1 Interface based on the nonce N; since there are no requests sent from the application to the GotAPI Server during the asynchronous messaging phase, there is no new nonce provided by the application. The GotAPI Server continues using the nonce N for WebSocket over the GotAPI-5 Interface that was provided during the HTTP phase.
The application may change the key during the asynchronous messaging phase using the Trusted Channel as described above. In such a case, the GotAPI Server SHALL use the N and K that were most recently received from the application to calculate the HMAC. Note that there may be an out-of-synchronization problem between the application and the GotAPI Server relative to the timing of updating the key and the calculation of HMAC to be attached to asynchronous messages. Therefore, after the application has updated the key, it needs to try HMAC validation using both the new key and the previous key since the application does not know from which asynchronous message the GotAPI Server starts using the new key to calculate the HMAC. Once the application finds that the new key is used for the HMAC calculation, the application can try validating the HMAC using the new key only.   

Spoofing attack case:

The Figure 10 15 presents a spoofing attack case of the HMAC server authentication, where a web application is communicating with the GotAPI Server over GotAPI-1. The same flows apply to the case of a web application is communicating with the GotAPI Auth Server. The same mechanism applies to the GotAPI-5.
When a bogus server attempts to spoof the genuine GotAPI Server, the bogus server can't calculate a right HMAC because it never knows the key, K, generated by the application.

[bookmark: _Toc410893759][bookmark: _Toc421792225]Figure 1415: HMAC server authentication – Spoofing Attack Case
 (a web application communicating with the GotAPI Server over GotAPI-1)
Since GotAPI Server spoofing is an easy-to-do attack, the GotAPI enabler needs to protect it from the attack.
· If the Trusted Channel is available in the device from the application to the genuine Servers, the GotAPI Server and the GotAPI Auth Server SHOULD support the HMAC server authentication described in this section to prevent the Server spoofing attack. 
· If the HMAC server authentication is supported, the GotAPI Server and the GotAPI Auth Server SHALL support SHA-256 for the hash algorithm to calculate an HMAC.
· The GotAPI Server and the GotAPI Auth Server SHALL be able to support and respond to the application regardless of the application being using the HMAC server authentication or not. But the GotAPI Server SHALL NOT respond to applications which have not been authenticated by the GotAPI Auth Server through the GotAPI-2 Interface.
· The GotAPI Server and the GotAPI Auth Server SHALL accept keys sent by applications anytime through the Trusted Channel. The GotAPI Server and the GotAPI Auth Server SHALL calculate an HMAC using the new key that was most recently provided from the application.

	Recommendations for applications (non-normative)
· The use of the HMAC server authentication is OPTIONAL for an application.
· An application SHALL generate a new key, K, and use it whenever the application is invoked.
· An application SHALL create a new nonce every time it sends a request to the GotAPI Server.
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