 OMA-CD-GotAPI-2015-0008-INP_Security_Considerations_for_the_GotAPI_5_Interface
Change Request

OMA-CD-GotAPI-2015-0005-CR_Asynchronous_messaging_channel
Change Request

Change Request

	Title:
	Security Considerations for the GotAPI-5 Interface
	|X| Public |_| OMA Confidential

	To:
	Content Delivery (GotAPI) WG

	Doc to Change:
	OMA-ER-GotAPI-V1_1-20150611-D, Draft Version 1.1 – 11 Jun 2015

	Submission Date:
	12 July 2015

	Classification:
	|X| 0: New Functionality
|_| 1: Major Change
|_| 2: Bug Fix
|_| 3: Editorial

	Source:
	Max Hata, NTT DOCOMO, masato.hata.uf@s1.nttdocomo.com
Takafumi Yamazoe, NTT DOCOMO, yamazoet@nttdocomo.com

	Replaces:
	

Reason for Change
This CR updates the section "7.3.3.3 HMAC server authentication using trusted Application ID for the Server spoofing attack" for GotAPI 1.1 draft, because the GotAPI-5 Interface newly added.
When asynchronous messaging based on WebSocket over the GotAPI-5 Interface is initiated by the application, all the initializations have already been executed using the GotAPI-2 and the GotAPI-1 Interfaces including provisioning the key, K, and granting an access token as defined in 7.2.2.5, and there is the trust relationship between the application and the GotAPI Server. Thus, since the GotAPI Server is assumed to be one application providing the GotAPI-1, the GotAPI-2, and the GotAPI-5 Interfaces, when the GotAPI-5 Interface is initiated from the GotAPI-1 Interface, the trust relationship is maintained and can be carried over to the GotAPI-5 Interface by the use of the HMAC server authentication over the WebSocket based GotAPI-5 Interface. Using the HMAC server authentication over the GotAPI-5 Interface based on the key that was most recently provided before the transition to the GotAPI-5 occurred, the Server spoofing attack is prevented.
Impact on Backward Compatibility
None
Impact on Other Specifications
none
Intellectual Property Rights
[bookmark: _GoBack]Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.
Recommendation
Recommend to incorporate this CR to the GotAPI specification into the GotAPI 1.1 draft.

Detailed Change Proposal
Update the section "7.3.3.3 HMAC server authentication using trusted Application ID for the Server spoofing attack"

[bookmark: _Ref402777771]7.3.3.3 HMAC server authentication using trusted Application ID for the Server spoofing attack
This counter measure works for a platform and a UA that satisfy the following requirements. This is based on the trust provided by the Application ID of the native application, and not embedding any credentials in the GotAPI native application.
· The Application ID is unique and trusted, which is guaranteed by the platform.
· The execution environment, e.g., UA, provides a one-way channel for an application to connect directly and send messages to a native application by designating its Application ID, e.g. a URI scheme.
· The application can be connected exclusively and securely with a native application by designating its Application ID. Namely, there is no eavesdropping, no man-in-the-middle, or no spoofed destination in the channel from the application to the destination native application.
We call this type of channel as “Trusted Channel”.
Note: Intent URI Scheme for qualified browsers on Android and Explicit intents for Android native application satisfyapplications satisfies all these requirements. The destination is designated by the package name of the native application to which applications attempts to send messages.
Other assumptions are:
· The HTTP channel may be eavesdropped (*).
· Any application can terminate other applications that are running in the background and take over the port that the application is listening to.
· The application knows the Application ID of the genuine GotAPI application, implementing both the GotAPI Server and the GotAPI Auth Server. The Application ID is provided to the application out of the band in a trusted manner.
Note: It has been shown that eavesdropping is not possible over the GotAPI-1 or, the GotAPI-2 HTTP interfaces, or the GotAPI-5 WebSocket interfaces on Android unless the device is rooted. Nonetheless, this assumption is introduced here because there may be a way for eavesdropping the HTTP or the WebSocket connection that we are not aware of.
If the Trusted Channel is available, the Server spoofing attack is prevented using the HMAC server authentication as follows:

Shared key distribution using the Trusted Channel:;
1. The application generates a key, K, composed of unpredictable random characters, and stores the key securely.
2. The application sends the key, K, to the genuine rServer through the Trusted Channel designating the Application ID of the genuine GotAPI application. The application knows the genuine GotAPI application’s Application ID in an out-of-band trusted channel.
3. The genuine GotAPI application stores the key securely.

HMAC calculation and sending messages through the GotAPI-1 or, the GotAPI-2, or the GotAPI-5 Interface:;
1. Before the application sends a request, it creates a nonce, N, which is a series of random digits that is long enough not to be predicted, and, then, it sends the message, M, and the nonce, N, through the GotAPI-1 or, the GotAPI-2 or the GotAPI-5 Interface.
2. When the genuine Server receives the request, it calculates an HMAC, h'=HMAC (K,N), with the nonce, N, and the key, K, that the application distributed through the Trusted Channel before.
3. The genuine Server sends a response with the HMAC, h', and the response message, m, to the application through the GotAPI-1 or, the GotAPI-2 interfaceor the GotAPI-5 Interface.
4. The application calculates an HMAC, H'=HMAC (K, N), and it checks if H' is equal to h' that is received from the GotAPI Server. If equal, verification of the Server authentication is successful and the application verifies that the response has surely been sent by the genuine Server. If not, application determines that the Server that sent the message is spoofed.

The figure below presents a normal case of the HMAC server authentication for the GotAPI Server (the GotAPI Auth Sever case is the same) for a web application.

[bookmark: _Toc410893758][bookmark: _Toc421792224]Figure 13: HMAC server authentication – Normal Case
 (a web application communicating with the GotAPI Server over GotAPI-1)

HMAC server authentication for GotAPI-5:
When asynchronous messaging based on WebSocket over the GotAPI-5 Interface is initiated by the application, all the initializations have already been executed using the GotAPI-2 and the GotAPI-1 Interfaces including provisioning the key, K, and granting an access token as defined in 7.2.2.5, and there is the trust relationship between the application and the GotAPI Server. Thus, since the GotAPI Server is assumed to be one application providing the GotAPI-1, the GotAPI-2, and the GotAPI-5 Interfaces, when the GotAPI-5 Interface is initiated from the GotAPI-1 Interface, the trust relationship is maintained and can be carried over to the GotAPI-5 Interface by the use of the HMAC server authentication over the WebSocket based GotAPI-5 Interface. Using the HMAC server authentication over the GotAPI-5 Interface based on the key that was most recently provided before the transition to the GotAPI-5 occurred, the Server spoofing attack is prevented.

Figure 14: HMAC server authentication – GotAPI-5 Interface
As shown in the figure abobe, when the application receives asynchronous messages on the GotAPI-5 Interface, the application obtains the same HMAC (h') for all the asynchronous messages unless the key is changed during the asynchronous messaging phase. The HMAC(h’) is the one that was generated when the GotAPI Server responded for the asynchronous messaging API request on the GotAPI-1 Interface based on the nonce N; since there are no requests sent from the application to the GotAPI Server during the asynchronous messaging phase, there is no new nonce provided by the application. The GotAPI Server continues using the nonce N for WebSocket over the GotAPI-5 Interface that was provided during the HTTP phase.
The application may change the key during the asynchronous messaging phase using the Trusted Channel as described above. In such a case, the GotAPI Server SHALL use the N and K that were most recently received from the application to calculate the HMAC. Note that there may be an out-of-synchronization problem between the application and the GotAPI Server relative to the timing of updating the key and the calculation of HMAC to be attached to asynchronous messages. Therefore, after the application has updated the key, it needs to try HMAC validation using both the new key and the previous key since the application does not know from which asynchronous message the GotAPI Server starts using the new key to calculate the HMAC. Once the application finds that the new key is used for the HMAC calculation, the application can try validating the HMAC using the new key only.

Spoofing attack case:

The Figure 10 15 presents a spoofing attack case of the HMAC server authentication, where a web application is communicating with the GotAPI Server over GotAPI-1. The same flows apply to the case of a web application is communicating with the GotAPI Auth Server. The same mechanism applies to the GotAPI-5.
When a bogus server attempts to spoof the genuine GotAPI Server, the bogus server can't calculate a right HMAC because it never knows the key, K, generated by the application.

[bookmark: _Toc410893759][bookmark: _Toc421792225]Figure 1415: HMAC server authentication – Spoofing Attack Case
 (a web application communicating with the GotAPI Server over GotAPI-1)
Since GotAPI Server spoofing is an easy-to-do attack, the GotAPI enabler needs to protect it from the attack.
· If the Trusted Channel is available in the device from the application to the genuine Servers, the GotAPI Server and the GotAPI Auth Server SHOULD support the HMAC server authentication described in this section to prevent the Server spoofing attack.
· If the HMAC server authentication is supported, the GotAPI Server and the GotAPI Auth Server SHALL support SHA-256 for the hash algorithm to calculate an HMAC.
· The GotAPI Server and the GotAPI Auth Server SHALL be able to support and respond to the application regardless of the application being using the HMAC server authentication or not. But the GotAPI Server SHALL NOT respond to applications which have not been authenticated by the GotAPI Auth Server through the GotAPI-2 Interface.
· The GotAPI Server and the GotAPI Auth Server SHALL accept keys sent by applications anytime through the Trusted Channel. The GotAPI Server and the GotAPI Auth Server SHALL calculate an HMAC using the new key that was most recently provided from the application.

	Recommendations for applications (non-normative)
· The use of the HMAC server authentication is OPTIONAL for an application.
· An application SHALL generate a new key, K, and use it whenever the application is invoked.
· An application SHALL create a new nonce every time it sends a request to the GotAPI Server.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.
THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.
USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.
THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.
[bookmark: Template]© 2014 Open Mobile Alliance Ltd. All Rights Reserved.	Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-ChangeRequest-20140101-I]
© 2014 Open Mobile Alliance Ltd. All Rights Reserved.	Page 2 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-ChangeRequest-20140101-I]
image2.png
Web Application Genuine GotAPI Server

The web application sends a key (K) whenever it

Generate a key K starts. It can update the key (K) anytime after that.

<a href="intent://#Intent,;scheme=gotapi;) =
package=jp.docomo.gotapi; Invoke the server origin=app.example.jp Wake u K
S.origin=app.example.jp;S.key=0123456789;; | (sl e e - key=0123456789 Trusted channel >
end">Invoke the GotAPI Server

origin=app.example.jp
key=0123456789

Only the Genuine GotAPI Server knows the key.

Create a request message [Bogus Server never knows the key.

nonce
The web application creates a Create a nonce (A random digit series enough
new nonce every time it sends a long not to be predicted)
request to the GotAPI Server Asynchronous messaging origin=app.example.jp, M B Execute the API request m
API request message=M Create a result message
Calculate an HMAC =HMAC(| K |,|N |)
h'||m
Receive the response Retum the result message
with the HMAC with the HMAC
Calculate an HMAC | FIESVIYT I RN
Accept the response
GotAPI-1 Interface (HTTP)
h'| jm1
Receive the response Retumn an asynchronous
with the HMAC message with the HMAC
Accept the response
h' | |m2|
Receive the response Return an asynchronous
with the HMAC message with the HMAC

checkif [==

GotAPI-5 Interface (WebSocket)

image3.png
intent://#Intent;scheme=gotapi;
package=jp.docomo.gotapi;
S.origin=app.example.jp;S.key=0123456789;;
end">Invoke the GotAPI Server

Web Application

Generate a key

Invoke the server
(URI Scheme w/ package name)

Create a request message

AP request

Receive the response
with the HMAC

Calculate an HMAC

Don't accept the response

origin=app.example.jp
key=0123456789

nonce

(A random digit series enough
long not to be predicted)

origin=app.example.jp, Execute the API request

Genuine GotAPI Server

Trusted channel

Bogus Server

Kill the Genuine Server

message=M

Create a result message

origin=app.example.jp
key=0123456789

Only the Genuine GotAPI Server knows the key.
Bogus Server never knows the key.

Calculate an HMAC

Bogus Server can't calculate a right HMAC,

NJ)

Return the result message

[|=Hmac([k |.[N])

with the HMAC

because it never knows the key.

image1.png
Web Application Genuine GotAPI Server

The web application sends a key (K) whenever it

Generate akey starts. It can update the key (K) anytime after that.
intent://#Intent;scheme=gotapi; . - K
package=jp.docomo.gotapi; Invoke the server =app.example.jp Wake u K origin=app.example.jp
S.origin=app.example.jp;S.key=0123456789;; (URI Scheme w/ package name) 123456789 Trusted channel i key=0123456789
end">Invoke the GotAPI Server
Only the Genuine GotAPI Server knows the key.
UEERAEIHENESEE | M Bogus Server never knows the key.
nonce
The web application creates a Create a nonce (A random digit series enough
new nonce every time it sends a long not to be predicted)
request to the GotAPI Server
origin=app.example.jp, M [l Execute the API request
API request = = q m
message=M Create a result message

Calculate an HMAC h'| =HMAC(| K |,|N|)

Return the result message
with the HMAC

Receive the response
with the HMAC

Calculate an HMAC m HMAC(| K |,IN|)

Check if m ==n

Accept the response

image4.jpeg
"sOMaQa

Open Mobile Alliance

