Doc# OMA-CD-DCD-2008-0162-CR_SCR_Tables_for_Semantics_TS.doc[image: image4.jpg]
Change Request

Doc# OMA-CD-DCD-2008-0162-CR_SCR_Tables_for_Semantics_TS.doc
Change Request

Change Request

	Title:
	SCR Tables for Semantics TS
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD-DCD

	Doc to Change:
	OMA-TS-DCD_Semantics-V1_0-20080425-D

	Submission Date:
	1 May 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bryan Sullivan, AT&T, bryan.sullivan@att.com

	Replaces:
	n/a

1 Reason for Change

The intent of this CR is to provide the baseline for the SCR tables in the Semantics TS.
The approach to defining the SCR levels and dependencies takes into consideration the following objectives:
· To ensure interoperability

· To enable DCD Service Providers to optimize deployments according to their varying business model objectives

· To enable DCD vendors to optimize development of DCD Servers and DCD Clients that can support varying customer requirements

· In general, to increase the chances of DCD adoption by the market through support of phased feature development/deployment, by providing DCD implementation/deployment options ranging from simple/minimal, to complex/full

Based upon a review of the current TS, it should be possible to ensure interoperability even if one or more of the features described below are not supported by a DCD Server or DCD Client. The UAProf extension schema and Error Notification mechanism should provide all that is needed to enable DCD Servers or DCD Clients to determine which features are usable with the other entity. In addition, Vendors and Service Providers typically provide developer guidelines that describe in detail which features are supported by platforms and deployments, thus application developers should be able to determine in advance which features are usable.

Considered essential, and expected to be supported in the simplest/minimal implementation are the core enhancements that DCD offers above existing syndicated content delivery technologies, e.g. (a) content delivery service arrangement (channel subscription), which (b) establishes client/server alignment on the delivery service options (channel metadata), that define (c) the subsequent automated operation of the enabler (scheduled/on-demand pull and/or push-based delivery, with discrete content item handling per associated content metadata)
Considered supplemental and thus optional, are:

· client activation and session management

· application registration

· subscription personalization

· DCD-provided content storage management

· enabler-based content discovery

· service suspension and resumption

· usage tracking

· contextual information awareness

· content repair

· support for standardized external interfaces

While these optional features can definitely add value or even be essential in some contexts (and thus mandated through DCD Client and DCD Server customer requirements), there are others in which they clearly would represent unnecessary implementation/deployment overhead. Given that there are reliable alternatives which preserve interoperability, there is no inherent reason to mandate implementation of specific features that can reasonably be said to serve only part of the potential market. At the same time, there is significant value in standardizing those features so that when they are mandated by the market (e.g. through DCD Service Provider requirements), they can be relied upon to provide specific functional capabilities in an interoperable manner. So the work done in the DCD TS is essential in these cases, yet still can be said to be optional for implementation.
For the optional features listed above, such reliable alternatives to the standard DCD functions may include:

· client activation and session management: where network-based authentication methods are deployed (or no authentication at all), session management adds no specific value other than interface routing optimization (e.g. serving DCD-3 via WAP proxies, and DCD-1 non-proxied, to reduce WAP proxy load), which may itself not be a critical factor in some deployments. DCD can operate in a stateless mode, i.e. each DCD-1/DCD-3 transaction is handled in the same way as normal HTTP servers handle browser requests; if authentication is required, WAP proxies can forward user identity headers, or clients can add trusted authentication headers (e.g. GBA tokens) at the HTTP layer.
· application registration: the two goals of application registration (service matching and connection profile selection) may be equally provided at the application layer. It may be sufficient for the DCD Client to simply submit application requests (e.g. for a content address defined as a service bootstrap URL by the DCD Service Provider, and designed into the application) as DCD-1 Content Update Requests, to which the DCD Server responds with initial content, channel subscription notifications, etc. In this process, the content address URL itself may represent all the information that the DCD Server needs to know about the application or it’s content preferences (since the URL can be service or application specific). Thus application registration can be achieved through the service design of the DCD Server.
· subscription personalization: possible at the application layer, e.g. through use of the DCD-1 Content Submission or through unspecified enabler-external means. Some deployments may provide no personalization at all, while others may extensively use the location/presence/XDMS and other metadata-driven personalization features, yet manage the personalization of these metadata outside the DCD-3 subscription transactions. Thus in those cases, it may only be necessary for the channel metadata to be delivered to the DCD Client, without any need to support updated channel metadata parameters in response. Thus the channel metadata flows in one direction only, and is assumed to be static unless it is later updated by the DCD Server.
· DCD-provided content storage management: the management of content and content metadata may be completely deferred to applications, with the DCD Client responsible only for channel metadata management and automated content update requests based upon the channel metadata.

· enabler-based content discovery: possible at the application layer, e.g. through a DCD channel used as a service discovery and selection service, or enabler-external Electronic Service Guide (ESG) functions. Given that such a method is deployed for distribution of DCD channel metadata, there is no inherent reason to require (for such deployments) the use of DCD implementations that support DCD Server or DCD Client initiated content discovery transactions.
· service suspension and resumption: these features can be deployed solely within the control of the DCD Server and DCD Client with no need to inform the other, i.e. DCD Server locally suspends/resumes Push-based channel actions and DCD Client locally suspends/resumes Pull-based channel actions.
· usage tracking: usage tracking can be a function of the application and occur transparently to the enabler, e.g. being reported through Content Submission transactions, especially for applications that are trusted by the entity that depends upon the usage tracking reports.
· contextual information awareness: also possible to coordinate at the application layer, as Content Providers can use Push-based content delivery to issue requests for context information directly from an application, which can respond through the Content Submission transaction.
· content repair: given a notice to the DCD Server that a transaction failed (provided by Error Notification), the DCD Server can reissue the transaction, or take other actions based upon application layer knowledge of the value/risk of attempting to repair the failed transaction (which as noted in the Paris meeting, is not a simple decision, given the possibly complex interrelationships of the DCD-opaque content).
· support for standardized external interfaces: it has been clear from the beginning of DCD discussions that there will be deployments in which the roles of Content Server and DCD Server, and DCD Client and DCD-Enabled Client Application, are respectively combined into more or less monolithic server and client implementations, for which the external interfaces are not necessary, or implemented other ways (possibly using existing standard or proprietary technologies)
To illustrate these points further, following are example descriptions of some deployment options, focusing on device requirements for DCD Client and/or DCD-enabled applications.

Minimal Implementation with Monolithic DCD Client/Application

Figure 1 illustrates a minimal implementation based upon a device with a monolithic application, with embedded DCD functions. This example is based upon MIDP as the execution environment, since it supports DCD-2 pushed notifications via an open interface (the MIDP Push Registry). However other native platforms or deployments without push support can also be considered.

Key aspects of this approach:

· The application may be pre-loaded by the device vendor or downloadable, as long as either approach supports use of the MIDP Push Registry for DCD-2 transactions.

· The application does not use the DCD-3 Activation and Application Registration processes. Rather, when the user activates the application, the application makes the initial request for content, and proceeds based upon the DCD Server response (see below). The deployment addresses authentication through routing DCD requests via a WAP Gateway (per the configuration of the application), which forwards the user’s MSISDN to the DCD Server.

· The application’s internal interfaces (if any) are proprietary.

· The application handles all DCD data, including channel metadata, content metadata, and content.

· Content discovery and subscription actions are implemented at the application layer. DCD involvement in subscription is limited to activation of channel delivery through the related DCD-3 transactions.

· Service activation follows the example process:

· The application is designed with default content, e.g. a way for the user to select from among DCD-enabled service types, which are configured with corresponding service addresses (URLs) supported by the DCD Service Provider.

· When the user activates the application, the application attaches to the MIDP Push Registry using a configured port, and issues a DCD-1 Content Update Request for a default service, or a user-selected service.

· The DCD Server responds with one or both of:
· a set of content, which could provide an update to the default content and/or a menu of currently available services

· one or more channel subscription notifications (embedded in the response, or via pushed subscription notifications) including a set of channel metadata for default channels and/or channels specific to the user’s pre-defined service plan, or service selection made by the user

· The application stores the content and content metadata, if any. If newly subscribed channel metadata was provided in the response, the application stores the channel metadata, and sends DCD-1 Content Update Requests for each of the newly subscribed channels.

· The DCD Server responds with the related content and content metadata. The application stores the content and content metadata.

· The application proceeds with further requests per the received channel metadata, e.g. per the defined update schedule, or handling of DCD-2 Content Update Notifications for push-enabled channels.

Summary of application requirements (note the DCD Client is part of the application):

· Support for DCD-1 and DCD-2 content request/response, and notification transactions

· Support for MIDP Push Registry based delivery of DCD-2 transactions

· Support for DCD-3 subscription transactions and channel metadata

· Support for DCD-XML, ATOM+DCD, or RSS+DCD content packaging and content metadata (specific support indicated through UAProf)

· Support for content storage management
Figure 1 Minimal Implementation with Monolithic DCD Client/Application

[image: image1.emf]DCD-Enabled

Terminal

Execution Environment (JVM)

MIDP Application

DCD Client Functions

Content

Provider

Content

Publication

Push

Registry

Direct Access

Content Server

WAP

Gateway

R

e

q

u

e

s

t

s

w

/

M

S

I

S

D

N

DCD Server

Cache

Content

Presentation and

Interaction

Non-DCD

content /

service

access

Scheduled /

On-Demand /

Notification

Requests

Content

Update

Availability

Notification

Metadata

Storage

Content

Storage

Internal API

implementation

Applications / Components

Idle Screen Access

Content Presentation

Content Uploader

Search / LBS

Catalog / Ad Engine

Parental Controls

Usage Tracker

Minimal Implementation with Native DCD Client

Figure 2 illustrates a minimal implementation based upon a device with an embedded DCD Client. Key aspects of this approach:

· The DCD Client is embedded by the device vendor, as it must be capable of getting DCD Push Notifications routed from the native Push Client based upon the DCD Push Application ID (similar to how embedded Browser, MMS, Device Management, etc clients get WAP Push messages routed via their corresponding Push Application IDs).

· A single application may be supported (which provides an applet execution environment for multiple applets), or multiple applications may be supported. However application type awareness, if required by the DCD Server, is implemented at the application layer.

· Rather than using the DCD-3 Activation and Application Registration processes, the DCD Client simply waits for applications to make the initial request for content, and proceeds based upon the DCD Server response (see below). The deployment addresses authentication through routing DCD requests via a WAP Gateway (per the configuration of the DCD Client), which forwards the user’s MSISDN to the DCD Server.

· The DCD Client has been designed to offer a proprietary application interface rather than the DCD-CAR and DCD-CADE interfaces.

· The DCD Client has been designed to manage channel metadata only, i.e. it does not provide any content storage management. The DCD Client does manage scheduled content updates per the channel metadata, but delivers all content and content metadata to the applications when received. The applications provide their own content storage management based upon the content metadata or other methods.

· Content discovery and subscription actions are implemented at the application layer. DCD involvement in subscription is limited to activation of channel delivery through the related DCD-3 transactions.

· Service activation follows the example process:
· The application is designed with default content, e.g. a way for the user to select from among DCD-enabled service types, which are configured with corresponding service addresses (URLs) supported by the DCD Service Provider.

· When the user activates the application, the application issues a request for content for a default service, or a user-selected service. The DCD Client forwards the request as a DCD-1 Content Update Request to the DCD Server.

· The DCD Server responds with one or both of:
· a set of content, which could provide an update to the default content and/or a menu of currently available services

· one or more channel subscription notifications (embedded in the response, or via pushed subscription notifications) including a set of channel metadata for default channels and/or channels specific to the user’s pre-defined service plan, or service selection made by the user

· The DCD Client delivers the content and content metadata, if any, to the application. If newly subscribed channel metadata was provided in the response, the DCD Client stores the channel metadata, and sends DCD-1 Content Update Requests for each of the newly subscribed channels.

· The DCD Server responds with the related content and content metadata. The DCD Client forwards the content and content metadata to the application.

· The DCD Client proceeds with further requests per the received channel metadata, e.g. per the defined update schedule, or handling of DCD-2 Content Update Notifications for push-enabled channels.
Summary of DCD Client requirements:

· Support for DCD-1 and DCD-2 content request/response, and notification transactions

· Support for WAP Push based delivery of DCD-2 transactions

· Support for DCD-3 subscription transactions and channel metadata

· Support for DCD-XML, ATOM+DCD, or RSS+DCD content packaging and content metadata (specific support indicated through UAProf)
Figure 2 Minimal Implementation with Embedded DCD Client

[image: image2.emf]DCD-Enabled

Terminal

Execution Environment

Native/MIDP Application

DCD Client Functions

Content

Provider

Metadata

Storage

Content

Publication

Direct Access

Content Server

WAP

Gateway

R

e

q

u

e

s

t

s

w

/

M

S

I

S

D

N

DCD Server

Cache

Content

Presentation and

Interaction

Non-DCD

content /

service

access

Scheduled /

On-Demand /

Notification

Requests

Push

Client

WAP

PPG

Content

Update

Availability

Notification

Proprietary Request /

Notification API

Content

Storage

Applications / Components

Idle Screen Access

Content Presentation

Content Uploader

Search / LBS

Catalog / Ad Engine

Parental Controls

Usage Tracker

Full Implementation with Native DCD Client

Figure 3

 illustrates a full implementation based upon a device with an embedded DCD Client. Key aspects of this approach:

· The DCD Client is embedded by the device vendor, as it must be capable of getting DCD Push Notifications routed from the native Push Client based upon the DCD Push Application ID (similar to how embedded Browser, MMS, Device Management, etc clients get WAP Push messages routed via their corresponding Push Application IDs).

· The DCD Client uses the DCD-3 Activation and Application Registration processes. The deployment addresses authentication through routing DCD-3 requests via a WAP Gateway (per the configuration of the DCD Client), which forwards the user’s MSISDN to the DCD Server. DCD-1 requests are non-proxied.

· The DCD Client may support the DCD-CAR and DCD-CADE interfaces, or offer a proprietary application interface.

· The DCD Client has been designed to manage channel metadata, content metadata, and content storage management. The DCD Client delivers content and content metadata to the applications when requested by the application during registration. The applications may also provide their own content storage management based upon the content metadata or other methods.

· Content discovery is implemented at the DCD layer.

· Subscription is implemented at the application layer. DCD involvement in subscription is limited to activation of channel delivery through the related DCD-3 transactions.

· Service activation follows the example process:

· The application is designed with default content, e.g. a way for the user to select from among DCD-enabled service types, which are configured with corresponding service addresses (URLs) supported by the DCD Service Provider.

· When the user activates the application, the application registers with the DCD Client. The DCD Client activates DCD service via the DCD-3 interface, which is proxied by the WAP Gateway. The WAP Gateway forwards the user’s MSISDN to the DCD Server, which uses it for authentication.

· The DCD Server assigns a Session ID and Session TTL, and confirms the activation.

· Upon session confirmation, the DCD Client issues an application registration request via DCD-3.

· The DCD Server accepts the registration request, and responds with one or both of:
· a set of content, which could provide an update to the default content and/or a menu of currently available services related to the application

· one or more channel discovery and/or subscription notifications (embedded in the response, or via pushed subscription notifications) including a set of channel metadata for default channels and/or channels specific to the user’s pre-defined service plan, or service selection made by the user

· The DCD Client stores the content (the application being assumed here to have selected DCD-managed content storage) and content metadata. The DCD Client forwards a content update notification to the application (which is assumed here to have requested notification of updates), including the content metadata and reference to the stored content. If newly subscribed channel metadata was provided in the response, the DCD Client stores the channel metadata, and sends DCD-1 Content Update Requests for each of the newly subscribed channels.

· The DCD Server responds with the related content and content metadata. The DCD Client stores the content and content metadata, and forwards a content update notification to the application.

· The DCD Client proceeds with further requests per the received channel metadata, e.g. per the defined update schedule, or handling of DCD-2 Content Update Notifications for push-enabled channels.
Summary of DCD Client requirements:

· Support for DCD-1 and DCD-2 content request/response, and notification transactions

· Support for WAP Push based delivery of DCD-2 transactions

· Support for application registration and selection of DCD service options via the application profile

· Support for DCD-3 activation and registration transactions

· Support for DCD-3 subscription and content discovery transactions

· Support for DCD-XML, ATOM+DCD, or RSS+DCD content packaging and content metadata (specific support indicated through UAProf)

· Support for content storage management, and application access to content through a proprietary API or the DCD-CADE interface

Figure 3 Full Implementation with Embedded DCD Client

[image: image3.emf]DCD-Enabled

Terminal

Execution Environment

DCD Client

DCD-Aware

Content

Provider

DC

Storage

N

o

t

i

f

y

A

c

t

i

v

a

t

e

Register

Publish

Request

Content

Access API

N

o

t

i

f

y

R

e

q

u

e

s

t

R

e

g

i

s

t

e

r

Push

Client

Direct Access

Content Server

WAP

Gateway

A

c

t

i

v

a

t

e

w

/

M

S

I

S

D

N

WAP

PPG

DCD Server

Cache

DCD-CAR / DCD-CADE

or Proprietary API

implementations

Proprietary or File

System Access API

Content

Update

Availability

Notification

S

c

h

e

d

u

l

e

d

/

O

n

-

D

e

m

a

n

d

/

N

o

t

i

f

i

c

a

t

i

o

n

R

e

q

u

e

s

t

s

DCD-CPR / DCD-CPDE

or Proprietary API

implementations

Non-DCD

content /

service

access

Applications / Components

Idle Screen Access

Content Presentation

Content Uploader

Search / LBS

Catalog / Ad Engine

Parental Controls

Usage Tracker

Content

Presentation and

Interaction

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The proposed text should be discussed, comments noted in the minutes. If agreed, the text should be included in the Semantics TS.
6 Detailed Change Proposal

Change 1: Replace current SCR section
Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

D.1 SCR for DCD Client

	Item
	Function
	Reference
	Status
	Requirement

	DCD-C-001
	Client Activation and Deactivation
	5.1, 5.4, 6.1.1
	O
	

	DCD-C-002
	Application Registration and Deregistration
	5.2.1, 5.3.1, 6.1.2
	O
	

	DCD-C-003
	Subscription and Unsubscription
	5.5, 5.5.3, 8.2
	M
	DCD-C-004 OR DCD-C-005

	DCD-C-004
	Internal Subscription and Unsubscription
	5.5, 6.1.3.1, 6.1.3.4
	O
	

	DCD-C-005
	External Subscription and Unsubscription
	5.5, 6.1.3.2, 6.1.3.4
	O
	

	DCD-C-006
	Subscription Personalization
	5.5.2, 6.1.3.3
	O
	

	DCD-C-007
	Channel Metadata Update
	6.1.4
	O
	

	DCD-C-008
	Content Delivery
	5.6
	M
	DCD-C-009 OR DCD-C-010

	DCD-C-009
	DCD Client-Initiated Content Delivery
	6.1.5.2, 6.1.5.3, 6.1.5.6
	O
	

	DCD-C-0010
	DCD Server-Initiated Content Delivery
	6.1.5
	O
	DCD-C-011 OR DCD-C-012

	DCD-C-0011
	Content Update Push
	6.1.5.4, 6.1.5.6
	O
	

	DCD-C-0012
	Content Update Notification
	6.1.5.5, 6.1.5.6
	O
	

	DCD-C-0013
	Content Item Handling
	6.1.5.7, 8.3
	M
	

	DCD-C-0014
	DCD-Managed Content Storage
	6.1.5.7, 6.1.5.8
	O
	

	DCD-C-0015
	Content Submission
	5.7, 6.1.6
	O
	

	DCD-C-0016
	Suspension and Resumption
	5.8, 6.1.7, 6.1.7.1
	O
	DCD-C-017 OR DCD-C-018 OR DCD-C-019

	DCD-C-0017
	DECA-Initiated Suspension and Resumption
	6.1.7.2
	O
	

	DCD-C-0018
	DCD Client-Initiated Suspension and Resumption
	6.1.7.2
	O
	

	DCD-C-0019
	DCD Server-Initiated Suspension and Resumption
	6.1.7.3
	O
	

	DCD-C-0020
	Channel Discovery
	5.2.2, 6.1.8
	O
	DCD-C-021 OR DCD-C-022

	DCD-C-0021
	On-Demand Channel Discovery
	6.1.8.1, 6.1.8.3
	O
	

	DCD-C-0022
	DECA-Initiated Channel Discovery
	6.1.8.2, 6.1.8.3, 6.1.8.4
	O
	

	DCD-C-0023
	Usage Tracking Report
	6.1.9
	O
	

	DCD-C-0024
	Contextual Information Upload
	6.1.10
	O
	

	DCD-C-0025
	Charging
	6.1.11
	M
	

	DCD-C-0026
	Content Repair
	6.1.12
	O
	

D.2 SCR for DCD Server

	Item
	Function
	Reference
	Status
	Requirement

	DCD-S-001
	Client Activation and Deactivation
	Section 5.1, 5.4, 6.2.1
	O
	

	DCD-S-002
	Application Registration and Deregistration
	Section 5.2.1, 5.3.1
	O
	

	DCD-S-003
	Channel Registration and Deregistration
	Section 5.2.2, 5.3.2, 6.2.3.1
	O
	

	DCD-S-004
	Subscription and Unsubscription
	Section 5.5, 5.5.3, 8.2
	M
	(DCD-S-009 OR DCD-S-010)

	DCD-S-005
	Internal Subscription and Unsubscription
	Section 5.5, 6.2.4.1, 6.2.4.5
	O
	

	DCD-S-006
	External Subscription and Unsubscription
	Section 5.5, 6.2.4.2, 6.2.4.5
	O
	

	DCD-S-007
	Subscription Compatibility Verification
	Section 6.2.4.3
	O
	

	DCD-S-008
	Subscription Update
	Section 6.2.4.4
	O
	

	DCD-S-009
	Subscription Personalization
	Section 5.5.2
	O
	

	DCD-S-0010
	Channel Metadata Update
	Section 6.2.5
	O
	

	DCD-S-0011
	Content Publication
	Section 6.2.6.2
	O
	

	DCD-S-0012
	Content Delivery
	Section 5.6
	M
	DCD-S-013 OR DCD-S-014

	DCD-S-0013
	DCD Client-Initiated Content Delivery
	Section 6.2.6.3, 6.2.6.4, 6.2.6.5, 6.2.6.6
	O
	

	DCD-S-0014
	DCD Server-Initiated Content Delivery
	Section 5.6
	O
	DCD-S-015 OR DCD-S-016

	DCD-S-0015
	Content Update Push
	Section 6.2.6.7
	O
	

	DCD-S-0016
	Content Update Notification
	Section 6.2.6.8
	O
	

	DCD-S-0017
	Content Item Handling
	Section 6.2.6.9, 6.2.6.10, 8.3
	M
	

	DCD-S-0018
	Content Submission
	Section 5.7, 6.2.7
	O
	

	DCD-S-0019
	Suspension and Resumption
	Section 5.8, 6.2.8, 6.2.8.1
	O
	DCD-S-020 OR DCD-S-021 OR DCD-S-022

	DCD-S-0020
	DCD Client-Initiated Suspension and Resumption
	Section 6.2.8.2
	O
	

	DCD-S-0021
	DCD Server-Initiated Suspension and Resumption
	Section 6.2.8.3
	O
	

	DCD-S-0022
	Content Provider-Initiated Suspension and Resumption
	Section 6.2.8.4
	O
	

	DCD-S-0023
	Channel Discovery
	Section 5.2.2
	O
	DCD-S-024 OR DCD-S-025

	DCD-S-0024
	DCD Client-Initiated Channel Discovery
	Section 6.2.9.2
	O
	

	DCD-S-0025
	DCD Server-Initiated Channel Discovery
	Section 6.2.9.3, 6.2.9.4
	O
	

	DCD-S-0026
	Channel Guide Compatibility Verification
	Section 6.2.9.1
	O
	

	DCD-S-0027
	Usage Tracking Report
	Section 6.2.10
	O
	

	DCD-S-0028
	Contextual Information Upload
	Section 6.2.11
	O
	

	DCD-S-0029
	Charging
	Section 6.2.12
	M
	

	DCD-S-0030
	Content Repair
	Section 6.2.13
	O
	

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 14)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 14 (of 14)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

_1271182432.vsd
Data

DCD-Enabled
Terminal

Execution Environment

Native/MIDP Application

DCD Client Functions

Content Provider

Metadata Storage

Content
Publication

Direct Access Content Server

WAP Gateway

Requests
w/MSISDN

DCD Server

Cache

_1271182603.vsd
Data

DCD-Enabled
Terminal

Execution Environment

DCD Client

DCD-Aware
Content Provider

DC Storage

Notify

 Activate

Register

Publish

Request

Content Access API

Notify

Request

Register

Push Client

Direct Access Content Server

WAP Gateway

Activate
w/MSISDN

WAP
PPG

DCD Server

Cache

DCD-CAR / DCD-CADE or Proprietary API implementations

Proprietary or File System Access API

Content
Update
Availability
Notification

Scheduled / On-Demand / Notification Requests

DCD-CPR / DCD-CPDE or Proprietary API implementations

Non-DCD content /
service access

Applications / Components
Idle Screen Access
Content Presentation
Content Uploader
Search / LBS
Catalog / Ad Engine
Parental Controls
Usage Tracker

_1271182214.vsd
Data

DCD-Enabled
Terminal

Execution Environment (JVM)

MIDP Application

DCD Client Functions

Content Provider

Content
Publication

Push Registry

Direct Access Content Server

WAP Gateway

Requests
w/MSISDN

DCD Server

Cache

