OMA-CD-DWAPI-2015-0021R01-CR_AD_Section_Proposal
Change Request

OMA-CD-DWAPI-2015-0021R01-CR_AD_Section_Proposal
Change Request

Change Request

	Title:
	AD Section Proposal
	|X| Public |_| OMA Confidential

	To:
	Content Delivery (DWAPI/GotAPI) WG

	Doc to Change:
	Device WebAPI Draft Version 1.0 – 13 June 2015

	Submission Date:
	3 August 2015

	Classification:
	|X| 0: New Functionality
|_| 1: Major Change
|_| 2: Bug Fix
|_| 3: Editorial

	Source:
	Max Hata, NTT DOCOMO, masato.hata.uf@s1.nttdocomo.com
Takafumi Yamazoe, NTT DOCOMO, yamazoet@nttdocomo.com

	Replaces:
	

Reason for Change
R01: Corrected typo during CC on Aug. 4.

This CR proposes the text for the whole AD section "7. Architectural Model" in the Device WebAPI specification.

This CR adds 3 APIs for the Device WebAPI AD based on GotAPI 1.1:

1. The Service Discovery API enables applications to obtain information of Plug-Ins and IEEE 10773 11073 devices available.
2. The One-shot measuring API enables applications to get a one set of measuring values in response to a request.
3. The asynchronous messaging API enables applications to listen to asynchronous messages from the targeted device via the relevant Plug-In.

These APIs are consistent to what are already specified in GotAPI 1.1. This specification shows how these APIs can be used in conjunction with Device WebAPIs, based on GotAPI 1.1. These versatile APIs can be used for various types of devices and applications, not limited to healthcare devices.
It also adds that all the security requirements defined in GotAPI 1.1 must be adhered to.

Impact on Backward Compatibility
None
Impact on Other Specifications
none
[bookmark: _GoBack]Intellectual Property Rights
Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.
Recommendation
Recommend to incorporate this CR to the Device WebAPI specification.
Detailed Change Proposal
Fill the section "7. Architectural Model"

[bookmark: _Toc292974254][bookmark: _Toc306587899][bookmark: _Toc422054905][bookmark: _Toc56839764][bookmark: _Toc90106599][bookmark: _Toc211749331]Architectural Model
This section describes the architectural model and related aspects of the Device WebAPI Enabler.

[bookmark: _Toc292974256][bookmark: _Toc306587901][bookmark: _Toc422054907]Architectural Diagram

GotAPI Framework Summary
This section summarizes how the GotAPI framework works, in which the DWAPI is functioning. This section adheres to the specifications that are defined by GotAPI 1.1 [GotAPI 1.1].
As defined by GotAPI 1.1 [GotAPI 1.1], when an application is initiated by a user, the application obtains authorization for access to GotAPI-based APIs using the GotAPI-2 Interface. Once the application is authorized by the GotAPI Auth Server, the application can access the GotAPI Server using the GotAPI-1 Interface.
After the authorization, the application asks the GotAPI Server, using the GotAPI-1 Interface, what kind of services are available. Then the GotAPI Server requests the current status of the available services to all the installed Extension Plug-Ins using the GotAPI-4 Interface. This procedure is called the "Service Discovery", which is defined in the GotAPI specification. After the Service Discovery, the application can interact with the specified device (i.e., the service) via the Plug-In. Note that, in the GotAPI specification, external devices and internal enablers are collectively called as “services”.
When an application sends an API request on the GotAPI-1 Interface, the GotAPI Server passes it to the Plug-In using the GotAPI-4 Interface.

[bookmark: _Toc336824482]Figure 3: Architectural Diagram
In addition to HTTP, an application may connect to the GotAPI Server using WebSocket, which is the GotAPI-5 Interface. The GotAPI-5 Interface enables that whenever the targeted device reports event messages, the application receives the messages on the GotAPI-5 Interface asynchronously.
The GotAPI Server is agnostic to what Plug-Ins do inside. The GotAPI Server just passes a request from an application to a Plug-In and passes a response from the Plug-In to the application.

GotAPI Framework and IEEE 10773 11073 Healthcare Devices
This section describes how the GotAPI framework and IEEE 11073 healthcare devices work together using Extension Plug-Ins. The following diagram shows the basic flow of DWAPI-PCH.
Under the GotAPI framework, the Plug-In implements web-based APIs, DWAPI-PCH, and the Manager whose function is defined by IEEE 11073. The Plug-In with the Manager communicates with IEEE 11073 healthcare devices that implements Agent and Sensor through some media such as Bluetooth or WIFI. IEEE 11073 defines all the necessary protocols, data formats, and the roles for Manager and Agent. From the Manager, some data is made available to DWAPI-PCH to be exposed in the web-based APIs to applications through the GotAPI framework. The Plug-In makes such data available to applications through DWAPI-PCH consistently under the GotAPI framework.
[image:]
Figure 4: DWAPI-PCH Basic data flows

[bookmark: _Toc292974257][bookmark: _Toc306587902][bookmark: _Toc422054908]Functional Components and Interfaces/reference points definition
DWAPI-PCH consists of the following three APIs;
1) The Service Discovery API enables applications to obtain information of Plug-Ins and IEEE 10773 11073 devices available.
2) The One-shot measuring API enables applications to get one set of measuring values in response to a request.
3) The asynchronous messaging API enables applications to listen to asynchronous messages from the targeted device via the relevant Plug-In.

Service Discovery API
Service Discovery API specification adheres to that of GotAPI 1.1.
As defined by GotAPI 1.1, after the application obtains authorization for access to GotAPI-based APIs using the GotAPI-2 Interface, the application sends the Service Discovery request to the GotAPI Server. Then the GotAPI Server sends the Service Discovery request to all of the installed Extension Plug-Ins. The message flow of the Service Discovery is shown in Fig. 5.

Figure 5: Message flow of the Service Discovery
The specific data in the message flows labelled (4) in the figure above are defined by the Plug-In that implements Manager functionality of IEEE 10773 11073 and is communicating with healthcare devices.
The other message flows SHALL be consistent to what are defined in the GotAPI 1.1 specification.

One-shot measuring API
As defined by GotAPI 1.1, after the application obtains authorization to access GotAPI-based APIs using the GotAPI-2 Interface and completes the Service Discovery, the application can use the service (so called "One-shot measuring API") provided by the Plug-In through the GotAPI Server.
The One-shot measuring API offers a measurement result reported by the targeted device in response to a request. The message flow of this API is as shown blow.

Figure 6: Message flow of the One-shot measuring API
1. The user triggers a request of the API in the application.
2. Label (1): The application sends a request to the GotAPI Server using HTTP (REST) over the GotAPI-1 Interface. Note that the HTTP method of the request is "GET".
3. Label (2): The GotAPI Server passes the request to the targeted Plug-In on the GotAPI-4 Interface with the Action name "GET".
4. The GotAPI Server runs the Plug-In Approval procedure if needed, which is defined in the GotAPI 1.1 specification.
5. When the Plug-In receives the request, it connects to the targeted external device if needed.
6. The Plug-In obtains current measurement values from the targeted device.
7. Label (3): The Plug-In sends a response with one set of the measurement values using the GotAPI-4 Interface.
8. Label (4): When the GotAPI Server receives the response from the Plug-In, the GotAPI Server passes the response to the application on the GotAPI-1 Interface as an HTTP response.

The overall message flows to obtain data by sending HTTP request and response over the GotAPI-1 Interface SHALL adhere to the specifications defined in GotAPI 1.1.
The specific data in the message flows labelled (3) and (4) in the figure above are defined by the Plug-In that implements Manager functionality of IEEE 10773 11073 and is communicating with healthcare devices.

Asynchronous messaging API
As defined by GotAPI 1.1, after the application obtains authorization to access GotAPI-based APIs using the GotAPI-2 Interface and completes the Service Discovery, the application can use the service (so called "Asynchronous messaging API") provided by the Plug-In through the GotAPI Server.
The Asynchronous messaging API offers a series of measurement values reported by the targeted device to an application in real time as the measurement values become available. The timing when and the reasons why such measurement values become available is determined by the Plug-Ins and connected devices, and is out of the scope of this specification.
This API uses WebSocket protocol to handle asynchronous event messages. The message flow of this API is shown blow:
[image:]

Figure 7: Message Flow of the Asynchronous messaging API

1. The user triggers a request of the API in the application.
2. Label (1): The application sends a request to the GotAPI Server using HTTP (REST) over the GotAPI-1 Interface. Note that the HTTP method of the request is "PUT".
3. Label (2): The GotAPI Server passes the request to the targeted Plug-In on the GotAPI-4 Interface with the Action name "PUT".
4. The GotAPI Server runs the Plug-In Approval procedure if needed, which is defined in the GotAPI 1.1 specification.
5. When the Plug-In receives the request, it connects to the targeted external device if needed.
6. Label (3): The Plug-In sends a response with the message using the GotAPI-4 Interface.
7. Label (4): When the GotAPI Server receives the response from the Plug-In, the GotAPI Server passes the response to the application on the HTTP connection as an HTTP response.
8. Label (5): The application establishes a WebSocket connection to the GotAPI Server if the application does not have a WebSocket connection to the GotAPI Server yet.
9. Label (6): As the WebSocket connection has been established, the application sends the access token to the GotAPI Server through the WebSocket connection. The access token is a token which the application obtained from the GotAPI Auth Server when the application was authorized by the GotAPI Auth Server.
10. Label (7): When the GotAPI Server receives the access token from the WebSocket channel, the GotAPI Server returns the result on whether the request is accepted or not.
11. Label (8): Whenever the targeted external device reports a message, e.g., a data or a measurement value, the Plug-In sends the message to the GotAPI Server on the GotAPI-4 Interface with the Action name "EVENT".
12. Label (9): Whenever the GotAPI Server receives a message from the Plug-In, the GotAPI Server passes it to the application on the WebSocket connection.
13. Label (10): When the application finishes or decides to finish using the service, it sends a request to stop the monitoring to the GotAPI Server. The request is sent over the GotAPI-1 Interface using HTTP. Note that the URI is as the same as that of the first request except that the HTTP method is "DELETE".
14. Label (11): When the GotAPI Server receives the stop request, it sends a request to the Plug-In to stop the monitoring with the Action name "DELETE". Then the GotAPI server closes the WebSocket connection.
15. Label (12): When the Plug-In receives the stop request from the GotAPI Server, the Plug-In stops reporting messages, and it returns a response to the GotAPI Server on the GotAPI-4 Interface with the Action name “RESPONSE”.
16. Label (13): When the GotAPI Server receives the response, the GotAPI Server passes the response to the application on the GotAPI-1 Interface.
The diagram above shows that the application establishes a WebSocket connection as the GotAPI-5 Interface after the application sends an API request on the GotAPI-1 Interface. It should be noted, as defined in GotAPI 1.1, the application is permitted to establish a WebSocket connection only after the application has received an access token from the GotAPI Auth Server.
The overall message flows to establish/close an asynchronous messaging session and to receive measurement values asynchronously from Plug-Ins SHALL adhere to the specifications defined in GotAPI 1.1.
The specific data in the message flows labelled (1) to (13) in the figure above are defined by the Plug-In that implements Manager functionality of IEEE 10773 11073 and is communicating with healthcare devices.

[bookmark: _Toc292974258][bookmark: _Toc306587903][bookmark: _Toc422054909]Security Considerations
This specification SHALL adhere to all the security requirements that are defined in GotAPI 1.1.
The GotAPI 1.1 specification considers every security risks and implements necessary counter measures for them.　For example:
· The GotAPI 1.1 has an application-authorization mechanism. Applications can't access the APIs without user permissions. Besides, when applications access devices via Plug-Ins, the relevant Plug-In obtains a permission from the user.
· The GotAPI 1.1 has an HMAC server authentication mechanism. Applications are able to detect if the GotAPI Server is spoofed.
See the section "7.3 Security Considerations" in the GotAPI 1.1 specification for the details of the security considerations of the GotAPI 1.1.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.
THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.
USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.
THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.
[bookmark: Template]© 2014 Open Mobile Alliance Ltd. All Rights Reserved.	Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-ChangeRequest-20140101-I]
© 2014 Open Mobile Alliance Ltd. All Rights Reserved.	Page 2 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-ChangeRequest-20140101-I]
image3.png
Application
User Web Runtime GotAPI (Auth) Server Plug-In

Initiates the
application

(1) Application Authorization

accessToken=0987654321

HTTP/GotAPI-2

(2) Sends the service discovery request

http://127.0.8.1:4035/gotapi/servicediscovery (3) Sends the service discovery request
PaccessToken=0987654321

"requestCode: 10,

"api" : “"gotapi",

"profile" "networkServiceDiscovery",
"attribute" : "getNetworkServices",

(4) Returns the result

(5) Return the result
"requestCode: 10,

c "result" : e,
"result": @, "s?r‘vices" il
sirvlces e [“scopes":["thermometer"],
wpypen: n
"scopes "thermometer"], “o)r:gine"‘ 1’:r‘ue
"type s ’ ’
"online": true,

HTTP/GotAPI-1 Intent/GotAPI-4

image4.png
Application GotAPI Server Plug-In

(1) Sends a HTTP request to start monitoring (2) Passes the request

GET
http://127.0.0.1:4035/gotapi/health/thermometer
?servield=org.example.devl

&accessToken=xxxxx

Action: "....GET",
{"requestCode": 10,

"profile" : "health",
"attribute" : “"thermometer", ...}

Plug-In Approval procedure (if needed)

Connects to the targeted device if needed
(3) Returns the result

(4) Passes the result

Content-Type: application/json
{"requestCode": 10, "result": @,
"thermometer": {"temperature": 36.4, ...},

.}

Action: "....RESPONSE",
{"requestCode": 10, "result": @,
"thermometer": {"temperature": 36.4, ...},

-}

Intent/GotAPI-4

HTTP/GotAPI-1

image5.png
Application

(1) Sends a HTTP request to start monitoring

GotAPI Server

(2) Passes the request

Plug-In

P

http://127.0.0.1:4035/ gotapi /heal thy thermometer
2servierd=org.example. el
&accessTokenxo00x

(4) Passes the result

actior i,

{"requestcode™: 10,

“profile” “healtn”,
“sttribute” : "thermometer”, ...}

Plug-In Approval procedure (if needed)

Connects to the targeted device if needed

(3) Retuns the result

‘Content_Type: application/json
Cresult™: o, ...3

HTTP/GotAPI-1

(5) Establishes a WebSocket connection if needed

action:
{"requestcode’

ws://127.0.6.1:2035 /gotapi/mebsocket

(6) Sends the access token

=

The sceasstoken & atoken provided by he
‘GotAPl Auth Senver previousl.

("accessToken™:"abcdefa12345")

(7) Retuns the result

Tresule o, -3

(9) Passes the result

(8) Reports the measurement value

Starts to report

{"servicerd™: “org.exmple.devi,

Detect the measurement value

action: T,
“thernoreter®: {"temerature™s %.4, -..}, {Frequestiode™: 16,
5 “thermometer~: {"temperature”: 3.4,
3
(9) Passesthe result | (8) Reports the measurement value
‘Cservicerd: org.cxomple.devt’, action: T,
“thernoreter®: {"temerature™s %.5, ...}, {Frequestiode™: 16,
5 “thermometer~: {"temperature”: 3.5,
3

WebSocket/GotAPI-5

Intent/GotAPI-4

Detect the measurement value

image6.png
Application GotAPI Server Plug-In

(10) Sends a HTTP request to stop monitoring (11) Request to stop monitoring
stops to report

DELETE Action: "....DELETE,
http://127.0.0.1:4035/gotapi/health/thermometer {"requestcode": 10,

?servieId=org. example.devl “profile” health”,

RaccessToken=xxxxx “attribute” thermometer”, ...}

(13) Passes the result (12) Returns the result
Content-Type: application/json Action: "....RESPONSE",
{"result": o, ...} {"requestcode”: 10, "result”: o, ...}
HTTP/GotAPI-1 Intent/GotAPI-4

Closes the WebSocket connection

image1.png

image2.png
Web app (in browser) ~ GotAPI GOtAPI IEEE 10773
Native/Hybridapp ~ Auth Server Server Device

IEEE11073

Embedding
Association

_—
Plug-In Discovery
1. GotAPI Service Discovery IEEE 11073
PR ——— 5 .
gﬁ ‘Domain
g
=&
SH=
x EEE 11073
< DataTransfer
2. GotAP Get Data [2
PR

IEEE11073
Association Release

image7.jpeg
"sOMaQa

Open Mobile Alliance

