OMA-AD_Multimodal_Multi-devices-V1_0-20040808R01-D
Page 9 V(41)

	[image: image33.png]
	

	Multimodal and Multi-device Architecture

	Draft Version 1.0 – 08 August 2004

	Open Mobile Alliance

	OMA-AD_Multimodal_Multi-devices-V1_0-20040808R01-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope (Informative)

62.
References

62.1
Normative References

62.2
Informative References

83.
Terminology and Conventions

83.1
Conventions

83.2
Definitions

83.3
Abbreviations

94.
Introduction (Informative)

94.1
Target Audience

94.2
Use Cases

104.2.1
“Map request and turn-by-turn directions” scenario

114.2.2
“Local and Remote dialing” scenario

124.2.3
“Flight Reservation, form filling” scenario

144.3
Requirements

146.1 High level requirements

146.1.1 User-centric high level requirements

156.1.2 Service-centric high level requirements

156.1.3 OMA-Centric high level requirements

166.2 Security

176.3 Privacy

176.4 Charging

176.5 Administration

186.6 Terminal devices and smartcards

186.6.1 Terminal devices

186.6.2 Smartcards

196.7 Platforms

196.8 Network interfaces

206.9 Usability

216.10 Interoperability

216.11 Application development

224.4
Planned Phases

245.
Context Model (Informative)

245.1
Introduction

245.1.1
Modalities

255.1.2
Model – View - Controller

255.1.3
View Independent Model

285.2
Multimodal and Multi-device Execution Model

295.3
Associated Mobile Deployment Configurations

335.4
Multimodal and Multi-device Authoring

335.5
Context Diagram

365.6
Context Collaboration Model

376.
Architectural Model (Informative)

376.1
System and Subsystem Descriptions

376.1.1
User agent (per modality and device)

376.1.2
Interaction capture

376.1.3
Synchronization manager

376.2
Subsystem Collaboration

39Appendix A.
Change History (Informative)

39A.1
Approved Version History

39A.2
Draft/Candidate Version <current version> History

40Appendix B.
<Additional Information>

40B.1
App Headers

40B.1.1
More Headers

Figures

11Figure 1 – Partial flows associated to the “Map request and turn-by-turn directions” scenario

12Figure 2 - Partial flows associated to the “Map request and turn-by-turn directions” scenario

13Figure 3 - Flows associated to the “Local and Remote dialing” scenario

14Figure 4 - Flows associated to the “Flight Reservation, form filling” scenario

25Figure 5 - Modality as a building block

26Figure 6 - Modelling modalities using MVC

27Figure 7 - Centralized model

27Figure 8 - View model serves role of independent model

28Figure 9 - Compound Client Architecture

28Figure 10 - Distributed Client Architectures

29Figure 11 – Fundamental execution model of multimodal or multi-device applications; independent of programming model or configuration.

30Figure 12 – architecture to support multimodal and multi-device interactions illustrated for voice and GUI interaction.

31Figure 13 – Example of sequential configuration (no voice and data support simultaneously) for voice and GUI interaction. This configuration does not require SRF: it can be deployed on 2G or 2.5G networks. Only one modality is available at a given moment. The user may switch at any time or when allowed or imposed by the application.

31Figure 14 – Example of Thin Client Configuration (voice and data support) with server-side speech engines local to speech browser for voice and GUI interaction.

32Figure 15 – Example of Thin Client Configuration (voice and data support) with server-side speech engines remote with respect to speech browser for voice and GUI interaction.

32Figure 16 – Example of Fat client configuration with local speech engines for speech and GUI interaction. This can be combined within a browser implementation.

33Figure 17 - Example of Fat client configuration with server-side speech engines for speech and GUI interaction. The speech engines are remote controlled by SRCP.

33Figure 18 – Example of Multi-device configuration.

34Figure 19 – Different types of multimodal or multi-device authoring methods

35Figure 20 – Illustrates the logical architecture of the multimodal and multi-device enabler with the OSE

37Figure 21 – Logical architecture for multimodal and multi-device enabler implementation including logical PEEM.

Tables

15Table 1: Example Table – Listed in the Table of Tables

1. Scope
(Informative)

This document describes the architecture for multimodal and multi-devices services in the scope of the OSE.

Such a multimodal and multi-device enabler enables access to mobile services through different modalities (e.g. keypad, GUI, Voice, handwriting) or devices.

The architecture applies only to supporting the applications or services for which multimodal or multi-device interactions make sense and are desired. Applications and services may otherwise be designed without providing such a user experience.
2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT

2.1 Normative References

	[MM-MDRD]
	Multimodal and Multi-device RD, OMA-RD-Multimodal_Multi-device_Services-V1_1-20031112-A, November 2003.

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[@@@-RD]
	“@@@ Requirements”, Open Mobile Alliance, OMA-RD_@@@-Vx_y, URL:http://www.openmobilealliance.org/

	[OSE]
	Editor’s note: To be added

	
	<< Add/Remove reference rows as needed! >>

2.2 Informative References

	[ARCH-INVENT]
	“Inventory of Existing Architectures in OMA”, <doc ref>, URL:http://www.openmobilealliance.org/

	[ARCH-PRINC]
	“OMA Architecture Principles”, <doc ref>, URL:http://www.openmobilealliance.org/

	[ARCH-REVIEW]
	“OMA Architecture Review Process”, <doc ref>, URL:http://www.openmobilealliance.org/

	[OMA-DICT]
	“OMA Dictionary”, <doc ref>,URL:http://www.openmobilealliance.org/

	[OMA-CF]
	“OMA Common Functions”, <doc ref>, URL:http://www.openmobilealliance.org/

	[@@@-UC]
	“@@@ Use Cases”, <doc ref>, URL:http://www.openmobilealliance.org/

	
	

	
	<< Add/Remove reference rows as needed! >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

<<The Architecture Document is assumed to contain normative material and is expected to use the previous two paragraphs, if not (is it really an AD?), replace it with the following paragraph. DELETE THIS COMMENT >>

This is an informative document, which is not intended to provide testable requirements to implementations.

<<If needed, describe or declare using appropriate normative references the additional conventions that are used. DELETE THIS COMMENT >>

3.2 Definitions

<< Add definitions in new rows of the following table as needed. Delete all definitions that are not used in the document. DELETE THIS COMMENT >>

	Collaborative Context Model
	An extension of the Context Model. It expands on the Context Model by describing the interactions (collaborations) between the entities of this architecture and external entities (e.g. entities in other architectures).

	Contextual Item
	A logical entity in an architecture

	Context Model
	A model that identifies all contextual items relevant to understanding architecture.

	Interface
	See [OMA-DICT].

	Reference Point
	See [OMA-DICT].

	System
	A functional entity

	
	

3.3 Abbreviations

<< Add abbreviations as needed to the following table. DELETE THIS COMMENT >>

	OMA
	Open Mobile Alliance

	xxx
	xxx

	
	

4. Introduction
(Informative)

<< Describe the high level architecture in greater detail than provided in section 1. From a market perspective, this section should answer the following questions (in prose):

What is the purpose of this architecture?

What problems does this architecture solve?

Briefly describe how this architecture relates to the various views (i.e. the reference point view) specified in [ARCH-INVENT].

DELETE THIS COMMENT >>

4.1 Target Audience

The target audience for this document includes but is not limited to the following:

· The Working Group(s) that will create specifications based on this subject matter

· Working Groups that need to understand the architecture of this subject matter

· Architecture Working Group (e.g. during Architecture Reviews as defined in [ARCH-REVIEW], to determine compliance of [ARCH-PRINC], etc.)

· Interoperability Working Group (e.g. for early analysis of interoperability requirements)

· Security Working Group

4.2 Use Cases

Use cases are described in the multimodal and multi-device RD [MM-MDRD]. They included:

· Presenting complementary information on different output modes
· Allowing switching between different modes depending on the context
· Allowing switching between different configurations

· Biometric Authentication
· Adaptive interfaces
· Multi-user interactions
· Multi-device interactions
· Remote control capabilities
· Proximity payments and transactions systems
· Kiosk / wall screen combinations with mobile terminals
· Accessibility device
· Multimodal Content Use Cases

· Multimodal Automobile Use Cases

· Multimodal Call Center Use Cases

· Multimodal Use Cases with Local and Remote Functionality

· Multimodal Application Download Use Cases

· Multimodal Accessibility Use Cases

In addition, the following awction describes additional use cases that have been specifically studied to design and understand the multimodal and multi-device architecture.
4.2.1 “Map request and turn-by-turn directions” scenario

Following is a use case, describing a scenario where the user requests a map with directions “to go from this place to that place”. In the W3C defined use cases there exist a similar scenario [http://www.w3.org/TR/mmi-use-cases/#driving-dir].
The components are discussed in sections 5.5 and 5.6. The following flows are illustrated in Figure 1and Figure 2, based on Figure 20 and Figure 21.

[image: image1.jpg]
Figure 1 – Partial flows associated to the “Map request and turn-by-turn directions” scenario

[image: image2]
Figure 2 - Partial flows associated to the “Map request and turn-by-turn directions” scenario

1. An interactive map application is loaded from a backend application server and available as multimodal application in the synchronization manager.

2. The device supports GUI/pen in the user agent A where the map is loaded and voice in the second user agent for voice commands.
3. The user requests on the map (i.e. I want to go from “HERE” to “THERE”). We assume that he pointed with a stylus to two places on the map, while saying the command.
4. The speech command is captured by the audio subs-system. The user agent has loaded the appropriate speech data files (i.e. grammars and acoustic models) in a local speech recognition engine, through its I2 interface. It received the recognized command through the same I2 interface.
5. The user agent A identifies two pointing events.
6. Through I0 interfaces (multimodal synchronization) the two events are communicated to the client synchronization manager as multimodal interaction event.

7. The synchronization manager identifies the complete request

8. The Voice user agent generates a TTS output through its I2 interface to an TTS engine.
9. The engine plays it back (thorugh I2) through the audio subsystem: “did you say you want to go from Sodermalm to Sollentuna?”).
10. The user confirms (using the modality of choice), this may involve multiple steps

11. The request is submitted to the backend web server via HTTP, along with the available modalities (including positioning), preferences (preferred output mode, etc) etc.
12. The application running in the web server checks that the client can determine its position (e.g. via GPS)
13. The application generates a multimodal turn-by-turn application.
14. The application server adapts it to the characteristics of the device.
15. The multimodal application is loaded (HTTP response to submission) by the clients-side synchronization manager and modality specific presentations are uploaded in each user agent.
16. The application in the synchronization manager establishes a listener for the user’s location (I0 or I2 interface depending f location is obtained via requests to a location enabler or acquired from a local location sub-system (e.g. GPS).
17. After confirmation from the user, the device is ready to provide turn by turn directions, where instructions can be requested by the user in multi-modal way and instructions for the next turn are prompted whenever the location of the user is close to the next turn.
18. When needed (e.g. if the user drifts away from the prescribed directions), the multimodal application can request updates from the web server.
In the above scenario, speech recognition and speech user agent may be distributed in the network instead of located on the server.

It is also possible that the synchronization manager be located in the network on a server.

It is possible that the synchronization switches from a client synchronization manager to a server synchronization manager, for example when switching from command and control to support for the turn by turn direction application.
4.2.2 “Local and Remote dialing” scenario

This use case covers “local and remote functionality” issues and may also be found in the W3C defined use cases [http://www.w3.org/TR/mmi-use-cases/#name-dialing].

When the application is invoked, a local application running in the client-side synchronization manager will first look if the application functionality can be satisfied on the Client (e.g. in this case if the desired phone number is in the local address book) and if not, then the Client-side synchronization Manager will communicate with the backend application server to look for the information remotely.

The components are discussed in sections 5.5 and 5.6. The following flows are illustrated in Figure 3, based on Figure 20 and Figure 21.

The initial steps are analogous to the previous use case.

[image: image3]
Figure 3 - Flows associated to the “Local and Remote dialing” scenario
1. The user wants to call a certain person. The name of the selected contact is spoken into the microphone of the terminal (audio sub-system).

2. The local speech recognition engine interprets the utterance and passes this information to the speech user agent (through I2 interfaces).

3. The application in the client synchronization manager has also instructed the speech user agent to record the utterances.

4. The recognized command (name as guessed) is passed as an interaction event (multimodal synchronization) to the Client synchronization Manager. The application in the synchronization manager checks if if this matches a name in the address book. In this case, no match is found.

5. The synchronization manager instructs the client speech user agent to send the recording to a remote speech engine and to perform remote recognition. The speech user agent achives that through its I2 interface (e.g. using IETf SPEECHSC to set the grammar, instruct recognition and recovers the result).

6. The new result is passed as an synchronization event (multimodal synchronization) to the Client synchronization Manager. The application in the synchronization manager checks if if this matches a name in the address book. In this case, no match is found.

7. The recognized name is submitted to the remote application server, that recognizes the name and finds the phone number in its directory.

8. The application prepares an answer. Depending on the user preferences, the reply may consist of a number displayed on the screen, rendered audibly using a text-to-speech engine, via a text message, a vCard or any other preferred format.

9. The application server checks interface with the client / user profile enabler.

10. The application server adapts it to the characteristics of the device.
11. The multimodal application is loaded (HTTP response to submission) by the clients-side synchronization manager and modality specific presentations are uploaded in each user agent.
4.2.3 “Flight Reservation, form filling” scenario

This use case covers the scenario where a user wants to reserve a flight ticket, using both voice and keypad/pen. This use case may also be found in the W3C defined use cases [http://www.w3.org/TR/mmi-use-cases/#form-filling]. A similar use case, but for movie ticket reservations, may also be found in the OMA Multimodal Services requirement. This use case includes the exchange of billing information.
The components are discussed in sections 5.5 and 5.6. The following flows are illustrated in Figure 3, based on Figure 20 and Figure 21.

[image: image4]
Figure 4 - Flows associated to the “Flight Reservation, form filling” scenario
1. The user fetches the flight reservation start page, which is an ordinary web-page. The Client synchronization Manager sends a request to the Application Server to respond with the start page.

2. The application server adapts it to the characteristics of the device.
3. The multimodal application is loaded (HTTP response to submission) by the clients-side synchronization manager and modality specific presentations are uploaded in each user agent.
4. The user fills in the fields with voice as discussed in previous scenarios.

· If there is a local speech recognition engine, the Client synchronization Manager gathers the interpreted input received from the speech user agents (received via multimodal synchronization) and displays this as text in the corresponding fields in the GUI user agent (via multimodal synchronization)
· If there is no local speech recognition engine, the Client synchronization Manager sends the voice stream to the remote speech recognition engines.
5. The remote engine forwards the interpretation to the client speech user agent (for example the output from the recognition engine could be a list of possible interpretations, such as New -York or Newark. This case also exists for ordinary text input, where several instances of a name exist, such as: York-UK or New -York-US).

6. The client synchronization Manager receives the interpreted input received from the speech user agents (received via multimodal synchronization) and displays this as text in the corresponding fields in the GUI user agent (via multimodal synchronization).
7. If multiple choices exist, a multimodal dialog may take place to let the user select the correct input. The user can also correct a recognition mistake. This is reflected in the different modalities and at the level of client-side synchronization manager.
8. After completion, the application is submitted to the backend Application Server, requesting the information that will be tailored to the client capabilities, modalities, etc. The Application Server gathers the required information and adapts to the client.
9. The multimodal application is loaded (HTTP response to submission) by the clients-side synchronization manager and modality specific presentations are uploaded in each user agent.

The Charging has several solutions. Two are discussed here. In the first case, a payment is done by entering the credit card information. This requires availability of a secure channel. The confidential information is then handled by the application on the Application Server exactly as payments today on the Internet. In the second case, the charging is made by the backend application by calling the I0 interface of a charging enabler.
4.3 Requirements

	Requirement ID/Number
	Phase Met
	Section(s)

	6.1.1 #1
	1.0
	7.1, 7.2

	6.1.1#2
	None
	

	6.1.1#3
	1.0, 2.0
	7.1, 7.2, 7.3

	
	
	

Table 1: Example Table – Listed in the Table of Tables

Editor’s note: The following captures the supported requirements. It is extracted from OMA-RD-Multimodal_Multi-device_Services-V1_1-20031112-A. This should be arranged in the table above. However as the RD does not number the requirements, some work will need to be done (RD update or clever explanation to map). We proposed that this be done upon completion of the work.
6.1 High level requirements

6.1.1 User-centric high level requirements

· A user MUST be able to use several modalities to interact with the same application. [Inherent to proposed architecture and execution model. Number and nature of modalities is not imposed. DI authoring of type C allows support for any number of modalities by an existing application. Type A and B require knowledge at authoring of the modalities.]

· A user SHOULD be able to use several devices to interact with the same application [Inherent to proposed architecture and execution model. Number and nature of devices is not imposed. DI authoring of type C allows support for any number of devices by an existing application. Type A and B require knowledge at authoring of the devices.]

· When supported by the application, the user MUST be able to select the preferred mode of interaction for any particular interaction in a particular situation (supplementary use of modalities). [Supported by the proposed architecture. An actual application will allow this if authored in type C. Type A and B will support such selection only if support for this mode in stand-alone is explicitly built in at authoring.]

· The user MUST be able to switch back and forth between the modalities supported by a service while in a session. [Consequence of the previous requirement]

· The user MUST be able to control the availability of devices and modalities for the service, when supported by the application. [Requires discovery, registration and deregistration of modalities or devices as proposed in section Error! Reference source not found..]

· Access to multimodal and multi-device services MUST NOT compromise security and privacy. [This can be achieved by providing secure and authenticated MM synchronization and update exchanges.]

· Delays in presentation updates as a result of a user interaction MUST be as small as possible. [This may require 1) optimizing the MM synchronization protocol 2) associating appropriate QoS]

· The multimodal service specification MUST support the following modalities: [Proposal works with any modality]

· GUI (Screen, keyboard or keypad)

· Voice

· TTY

· The multimodal service specification SHOULD support: [Proposal works with any modality]

· Handwriting and gestures

· Extensibility for other modalities SHOULD be provided in order to cope with emerging interaction modalities. [Proposal works with any modality]
· The supported configurations MUST include multi-device support. [Inherent by design.]

6.1.2 Service-centric high level requirements

· Multimodal and multi-device services SHOULD support a wide range of multimodal capabilities (synchronization granularity [This requires only that the granularity of synchronization includes exchanges and updates at the level of interaction event, field-level input, form-level input and page-level], available modalities and devices [Proposal works with any modality], etc…).

· Multimodal and multi-device services SHOULD be adaptive to the multimodal and multi-device capabilities. [A priori this requires application authored as type C or adaptation / multiple authoring of applications authored as Type A or B.]

· It MUST be possible to deploy services that make complementary use of modalities or devices and therefore impose to the user the modality to use for a particular interaction in a particular situation. [Supported by the proposed architecture with all authoring approaches.]

· Depending on the user’s preferences or network provider settings, the multimodal or multi-device services MUST support automatic configuration established upon connection to the network or manual requests of configuration by the user. [Supported by the proposed architecture. It imposes requirements on the discovery / registration and de-registration mechanisms.]

· The deployment of declarative multimodal or multi-device services SHOULD support the programming model developed by the W3C MMI working group. However, it MAY be optimized for mobile deployments. [Inherent to the proposal.]

· Until such a specification is produced, user agents MAY interoperate with services authored with the different authoring approaches considered by the W3C MMI.

· It is however recommended to aim at supporting the W3C MI specification as main target.

· If a W3C MMI authoring specification is unavailable or if it is inadequate to support the requirements enumerated in the present document, a multimodal and multi-device authoring specification MUST be provided.

· It is hoped that this would be limited to the work on the specification of a profile.

· Non-declarative multimodal and multi-device services MAY be supported. [The proposal is not limited to the use of browsers or declarative code.]

6.1.3 OMA-Centric high level requirements

· User agents SHOULD be able to interoperate with multimodal or multi-device services across a wide range of configurations: [Demonstrated in section 5.3]

· Thin client configurations, where the user agent that support other modalities is on the server

· Fat client configurations, where the user agent supports other modalities and is local to the terminal; (e.g. local speech recognition).

· Hybrid or Distributed Configuration. Processing and functionality is distributed on the client and a remote server (e.g. DSR).

· Configurations with multiple devices (fat client, thin client, or distributed configurations).

· Hybrid or distributed configurations MUST support the highest QoS for input and output interaction exchanges (multimodal exchanges).
[This is a specification requirement. It may require definition of such a concept or support by underlying transport protocols of a high QoS for multimodal synchronization and updates exchanges.]

· Multimodal exchanges MUST be secure when distributed. [This is a specification requirement that can be satisfied by supporting authentication and encryption.]

· A user MUST be able to move from local multimodal services (e.g. on fat clients) to remote multimodal services and vice versa
. [See footnote.]

· Modality interfaces to the modalities available on the device MUST be specified for mobile devices to enable download of multimodal applications [Supported by specifying the DOM or equivalent interface for this modality as proposed in section Error! Reference source not found..]

· Device capabilities descriptions (e.g. modality interfaces or supported configurations) MUST be specified for mobile devices to enable download of multimodal applications. [Supported by proposal to allow discovery and registration of addresses and capabilities.]

6.2 Security

In the case of distributed multi-modal or multi-device browser, the exchange of interaction events and client manipulation raise the following security issues that must be addressed:

· Interaction events and presentation manipulations can be intercepted by unauthorized third parties. This would enable reconstruction of the complete interaction with the application; especially in between submits to the backend. Any exchanged information such as temporarily selections etc would be accessible!

· Unauthorized third parties may be able to issue presentation manipulations that would affect the user agent.

[This is addressed by authentication of parties and encryption of the exchanges.]

Of course as for other application, authentication of users is expected to be required to allow access to confidential data

For example, security MUST NOT be compromised by multimodal synchronization or remote engine processing in distributed configurations.

Addressing this requirement MAY involve:

· Confidentiality and integrity of the exchanged information.

· That presentation manipulation are accepted only from trusted or authorized parties.

· Leverage of underlying network bearer security mechanisms.

In the case of client-based speech engines, additional security (and privacy) issues arise when the application is downloaded from a third party service provider:

· The speech data files (acoustic model grammars, language models, vocabularies, NL parser data files, etc…) sent to the client may contain proprietary or sensitive information (e.g. passwords, list of customers and associated input information, propprietary grammar, …). [This can be handled via authentication and encryption of the download of data files]

· The data files may be intercepted by un-authorized third parties or tampered with in the UE.

· This may relate to the Digital Right Management work items.

· Results of some client-side engine sent across the network can be tampered with or intercepted on the UE or when transmitted. [The design support integrity checks.]

These issues MUST be addressed by appropriate mechanisms or by requiring server-side engines when needed.

6.3 Privacy

Multimodal and multi-device privacy requirements MUST be at least as good as for other mobile services or voice sessions:

· It MUST be possible to encrypt modality-specific and multimodal synchronization exchanges.

· It MUST be possible to prevent exchange of the user's true identity, location and other terminal or user related information when required.

[This is handled by authentication and encryption.]

Multimodal and multi-device services may enable the service provider to collect information about the user or usage. This information should be treated according to the policies in place for data and voice (e.g. human to operator or human to automated service) services. Therefore, multimodal or multi-device services MUST NOT add additional privacy risks.

[This is to be investigated]

Also, interaction events enable reconstruction of the complete interaction with the application, including in between submission to the backend and therefore possibly beyond the knowledge or control of the user. This information or aspect of it may be considered as private by the user. Therefore, the multimodal synchronization SHOULD be associated to mechanisms that let the user specify the use that can be done of the information. Multimodal and multi-device services MUST produce similar schemas or mechanisms to describe their handling and use of the information or allow automation of the acceptance of privacy policies. [This is to be investigated]

Trust and resolution mechanisms MUST be provided to enable the user to accept the particular service and configuration on the basis of the usage that will be made of such information or the management options provided to the user. [Authentication of the parties allows satisfying the above. Other mechanisms could be investigated.]

Privacy of user SHOULD NOT be threatened when exchanging speech data files (or other modality-specific data files) across the wireless network or by storing them on devices. [Encryption allows satisfying the above. Other mechanisms could be investigated.]

6.4 Charging

The charging of multimodal and multi-device services MUST support a variety of business models: the user can be charged for sessions with the speech or multimodal/multi-device service in a variety of ways.

In particular, the following charging models MUST be possible:

· By duration of session (including “one-off” charge/flat rate)

· By data volume transferred (number of packets) or other similar criteria.

· By subscription fees for the service (unlimited usage or unlimited usage up to a point and then per-use fees)

· Free (e.g. with the service being subsidised by advertising revenue from advertisement spots).

Speech or multimodal/multi-device services MUST be available to pre-paid and post-paid subscribers.

[The requirements above are satisfied as the proposed architecture does not impose any charging restriction. Charging context may however to be defined and associated to multimodal exchanges.]

6.5 Administration

It MUST be possible for the provider of the multimodal or multidevice service to control access. [Trivially satisfied.]

It MUST be possible that multimodal and multi-device services are provisioned by the network operator as well as third party service providers. [No restriction is imposed by the proposal]

The administration of the multimodal and multi-device services (authorization, deauthorization, registration, deregistration, activation, deactivation, configuration, optimization) MUST be under the control of the network operator when needed and available to third party providers when authorized. [No restriction is imposed by the proposal]

6.6 Terminal devices and smartcards

6.6.1 Terminal devices

· Local (e.g. fat client configurations) multimodal configurations depend only on the terminal; except when they rely on remote speech engine functions (or other modality-specific processing). Such implementations may not require any standardization other than support of the authoring format. However, terminal with fat client multimodal configuration capabilities MAY also support thin client configurations.
 [This is a statement compatible with the architecture proposal]

· Terminals that are to support distributed configurations MUST support the multimodal synchronization interfaces and protocols. [This is consistent with the architecture proposal.]

· Devices MUST provide information about their multimodal capabilities; possibly in a given configuration: [These are conditions on the discovery / registration.]

· This MAY be in answer to a specific external query about the device capabilities.

· This MAY be provided automatically by the device with all request or once / periodically within a session.

· This may be provided by the device automatically upon changes to the device capabilities.

· The specifications SHOULD support connected/disconnected mode of operation where the device is sometimes connected through the network and sometime disconnected. [This can be achieved by either a fat client configuration, or a system that support switch to a fat client configuration or an application authored to support interaction only with the modality available for off-line use (e.g. GUI only).]

· The specifications MAY support informing the user of the available (depending if the device is connected or disconnected) devices or modalities when picking the most appropriate mode of interaction. [Supported by the architecture – requirement on discovery / registration mechanisms.]

· It SHOULD be possible to seamlessly adapt the multimodal and multi-device behaviour based on the status of the network connectivity. [Supported by the architecture. This may require special authoring or switches between configurations.]

· The specifications SHOULD support seamless switch between connected and disconnected mode and adaptation of the user interface. [Supported by architecture.]

· Devices that allow the execution of downloaded multimodal applications MUST provide modality interfaces to the modalities available on the device to multimodal applications. [Supported by specifying the DOM or equivalent interface for this modality as proposed in section Error! Reference source not found..]

6.6.2 Smartcards

No requirement has been identified directly specific to smartcards other than the needs to:

· Identify the user and multimodal service subscription information

· Use, manage and provision user profile and preference

Such usages are not expected to introduce any new requirements on the smartcards.

6.7 Platforms

· The specifications MUST s upport distributing the different components between the devices and/or servers. [Inherent to the architecture proposal]

· The specifications SHOULD support dynamic changes of configuration and change of the location of the synchronization management. [Inherent to the proposal]

· The specifications MUST support dynamic provisioning of devices / channels to support a particular configuration when accessing a multimodal or multi-device service. [Covered by discovery, registration / de-registration plus possible state synchronization.]

· Multimodal and multi-device services MUST be able to use a default or MAY advertise and negotiate a default or specific synchronization granularity level or coordination capability. [Supported but details are TBD.]

· Default levels of synchronization granularity and coordination capabilities and behaviours MUST be specified.

· Behaviours in case of incompatible capabilities MUST be specified.

· The specifications MUST support the exchanges of such mechanisms.

· Multi-modal synchronization interfaces and protocols MUST enable handling and possible distribution of interaction events from one or multiple modalities or devices. [Inherent to proposal (see section Error! Reference source not found.)]

· E.g. Interaction events MAY be represented as DOM events and XML events (distributed when needed) [Inherent to proposal (see section Error! Reference source not found.)]

· Multi-modal synchronization interfaces and protocols MUST enable manipulation, possibly remotely, of the presentation associated to each modality or device. [Inherent to proposal (see section Error! Reference source not found.)]

· E.g. Presentation manipulation MAY be implemented via XML events and DOM (remote when needed) instructions. [Inherent to proposal (see section Error! Reference source not found.)]

6.8 Network interfaces

· Multimodal and multi-device services SHOULD be supported by Packet Switched Data networks. [The proposal does not introduce any restriction.]

· Multimodal and multi-device services MAY be supported by Circuit Switched Data networks. [The proposal does not introduce any restriction.]

· Remote speech engines MAY rely on a Speech Recognition Framework as defined by 3GPP and Speech Engine Remote Control as defined by IETF. [The proposal does not introduce any restriction.]

· Multimodal synchronization protocols MUST support mechanisms to guarantee security and privacy. [Authentication and encryption of the synchronization exchanges address this requirements]

· The multimodal synchronization protocols SHOULD support mechanisms that enable the different components to identify and process input events and/or output manipulations and switch between modalities. [Covered by discovery, registration / de-registration plus possible state synchronization.]

· Multimodal synchronization MUST have access to the highest possible quality of service available from the underlying network in order to minimize delays in the synchronization and confusing user interface behaviours. [This is a specification requirement. It may require definition of such a concept or support by underlying transport protocols of a high QoS for multimodal synchronization and updates exchanges.]

· Multimodal synchronization protocols SHOULD provide mechanisms that enable handling synchronization delays introduced by the network. [To be investigated.]

· The infrastructure MUST support exchanges of device / channel capabilities (possibly in a given configuration) with other components: [To be investigated by covered by discovery / registration]

· This MAY be in a query response mode

· This MAY be initiated by the device or server

6.9 Usability

· The use of device or modalities to interact with multimodal and multi-device services MUST comply with the user’s preferences and/or environment; based on the available devices and modalities. [Supported by architecture proposal. Always possible with Type C. Type A and B must cover at authoring the modality preferred by the user…]

· The specifications SHOULD support selection or changes of the configurations of the systems that are supported by the device and user agents. [Supported by architecture proposal. Always possible with Type C. Not guaranteed with type A or B.]

· It MUST enable dynamic re-configuration (e.g. adding or removing a device or modality; modifying the role of a device (e.g. synchronization management); changing usage preferences or multimodal synchronization granularity) during a session or while accessing a particular multimodal or multi-device service.

· Distributed multimodal and multi-device configurations MUST support registration and configuration mechanisms.

· At initiation or during a session

· When re-configuring or disconnecting devices

· The user MUST be able to control/decide the set of the multiple devices or modalities combination and configure the system, within the limits of the configurations supported by a particular multimodal or multi-device service. [Supported by architecture proposal through discovery, registration and de-registration. Always possible with Type C. Not guaranteed with type A or B.]

· It MUST be possible for the user to determine what are allowable configurations and settings (coordination capability, supplementary versus complementary, etc) supported by a multimodal/multidevice service.

· The user MUST be able to determine easily the current configuration and settings (e.g. multimodal synchronization granularity).

· The user MUST be able to add or remove new modalities or devices or (re)configure them prior to accessing a multimodal and multi-device service or while interacting with it.

· The user SHOULD be able to initiate access to a multimodal or multi-device service from any of the modality or device; if supported by the authoring of the service. [Trivially supported with the proposed architecture. Always supported with type C]

· Access to a multimodal or multi-device service MAY trigger automated or manual configuration of the system. [To be investigated.]

· Users of multimodal and multi-device services MUST be able to initiate multimodal and multi-device sessions from one or multiple devices by providing (entering, selecting, speaking, etc) an addressing scheme. [Supported by proposed architecture.]

· Conflicting interpretations of the user input (conflicting interaction events, dialog management issues with conversational multimodal applications) MAY be reported and left to the user to resolve, unless if specified otherwise by user profile. [To be investigated]

· User interactions with multimodal and multi-device services MUST be secure and provide privacy guarantees: [Supported by authentication and encryption.]

· Unsafe interactions (depending of nature of services, trust model, advertised privacy policy etc…) MUST be notified prior to execution

· Whenever possible, more secure configurations or settings MAY be proposed to the user.

· Multimodal and multi-device systems SHOULD be able to access monochannel applications, provided that the session involves a user agent that supports the corresponding application / presentation format. [Trivially supported by proposed architecture that reuses modality specific user agents.]

· Supplementary multimodal and multi-device services SHOULD be accessible as monochannel applications. [Always supported by type C applications. May not be supported by type A or B.]
· The user MUST be able to select the most appropriate modality or device for a particular type of interaction at a particular moment and in a particular situation, when this is supported by the multimodal and multi-device service (e.g.. when the application supports supplementary use of modalities or devices). [Always supported by type C applications with proposed architecture. This may not work with type A or B.]

· User SHOULD be able to use another modality to correct errors in one modality or device. [Always supported by type C applications with proposed architecture. For other types, it may require that a built-in error correction application.]

6.10 Interoperability

· The specification MUST address the following issues: “interoperability, extensibility and longevity”..

· Across configurations: [Inherent to proposed architecture.]

· For example, a same server middleware, user agent or device can be used in different configurations.

· Across capabilities (levels of synchronization granularities, conversational capabilities, network capability, new modalities, …) of the runtime and infrastructure. [Inherent to proposed architecture.]

· For example, the same server middleware, user agent or device can be used to support different capabilities based on the capability of the network and terminal or based on the quality of service available from the network.

· Multimodal and multi-device services MUST be able to support sequential multimodal or multi-device interactions for example for deployment on network or access through terminal that do not support voice and data simultaneously. In this case, on-going interaction with an application in one modality or on one device can be suspended and resumed on another device or using another modality. [Inherent to proposal]

· Across different authoring approaches and features of the multimodal and multi-device services: [Inherent to proposal]

· For example, a same server middleware, user agent or device can be used with different authoring approaches or features of multimodal and multi-device services.

· The end-to-end specifications MUST support the widest set of relevant configurations of user agents to access multimodal and multi-device services. [Inherent to proposed architecture.]

· Multimodal and multi-device services MUST be interoperable across configurations. [Inherent to proposed architecture.]

· Multimodal and multi-device services MUST be interoperable across different level of the synchronization granularity. [To be investigated. Supported with type C authoring.]

· Multimodal and multi-device services MUST be interoperable across different type of navigation and dialog management capabilities. [Inherent to proposed architecture.]

· The multimodal and multi-device specifications MUST be consistent with specifications produced by other related standard bodies. [To be considered but inherent to proposal.]
· Multimodal synchronization protocols MUST be able to accommodate user agents that render declaratively programmed multimodal and multi-device services as well as non-declaratively programmed multimodal and multi-device services; if such services are introduced. [The proposal is not limited to the use of browsers or declarative code.]

6.11 Application development

· There MUST be authoring language specifications and guidelines to develop multimodal and multi-device services. These specifications and guidelines MUST be consistent with the one produced by W3C MMI. [Supported by type A, B and C authoring. We have illustrated the link between these authoring approaches and the architecture proposal.]

· These multimodal authoring language specifications SHOULD specify all what author needs to write multimodal and multi-device services and applications that rely on them. [Supported by type A, B and C authoring. We have illustrated the link between these authoring approaches and the architecture proposal.]

· The multimodal and multi-device authoring language specifications MUST support the deployment of applications with the wide range of multimodal capabilities discussed in this document. [Supported by type C authoring. Type A and B may not support all of these.]

· Supplementary and complementary user interfaces

· Different deployment configurations

· Different multimodal synchronization granularities

· Different modalities, devices

· Dynamic changes of some of the above

· The multimodal and multi-device authoring language specifications MUST let the author develop applications customized for a particular set of capabilities. [This is a requirement on authoring languages or their usage.]

· The multimodal and multi-device authoring language specifications MUST let the author develop applications written for a range of capabilities. [This is a requirement on authoring languages or their usage.]

· The author SHOULD then be able to also customize for particular capabilities.

· The multimodal and multi-device authoring language specifications MUST let the author impose or forbid configurations or capabilities and impose behaviour. E.g.: [This is a requirement on authoring languages or their usage.]

· Impose a modality switch

· Indicate a system-initiated reconnect (e.g. system initiated voice call or GUI push)

· Indicate where and what particular type of processing should take place (e.g. input processing by speech recognition engine or output processing by Text-to-Speech engine).

· Program such processing.

· Distribute at will the processing or indicate how the distribution is selected.

· The multimodal and multi-device authoring language specifications MUST let the author indicate to the system that the application relies on the behaviour provided by default by the deployment conditions. [This is a requirement on authoring languages or their usage.]

· Declarative multimodal and multi-device authoring language specifications MUST be available [This is a requirement on authoring languages or their usage.]

· Non-declarative multimodal and multi-device authoring language specifications SHOULD be available. [This is a requirement on authoring languages or their usage.]

· There MUST be authoring language specifications and guidelines to develop multimodal and multi-device applications for the download to devices and for local execution on the user's device. [This is a requirement on authoring languages or their usage.]
4.4 Planned Phases

<< Specify where this architecture is within the projected phases (e.g. phase 1.0, phase 2.0, etc.). If the current phase is greater than phase 1.0, briefly describe how this version of the architecture differs from the previous version. It may be appropriate to include a separate sub-section for the various phases. DELETE THIS COMMENT >>

Editor’s note: TBD after completion of a first pass at section 6.
5. Context Model
(Informative)

5.1 Introduction

For this introduction, we will limit the discussion to declarative user agents. The architecture introduced after is however not limited to browsers.

The Multimodal and multi-device (MMMD) enabler architecture is based on four building blocks used to perform multimodal presentation.

· Modalities

· Model-View-Controller pattern

· View Independent Model

· Event based synchronization of modalities

These are the building blocks that enable user interaction based on a multimodal presentation markup generated by the application. There are no restrictions on how this markup is created (static, transcoding, dynamic…) and the interaction between the presentation and application layers conform to current web standards.

5.1.1 Modalities

The first building block of the MMMD enabler presentation layer is the notion of a modality (e.g. GUI, Voice …). Each modality of a MMMD enabler is handled with a browser for each modality markup. For flexibility across devices, infrastructure and applications, modalities may be rendered in either separate browsers or compound browsers. The architecture accommodates either configuration. Figure 5 illustrates this building block of the MAMD.

[image: image5]
Figure 5 - Modality as a building block
Interaction between Presentation and Application layers follow the standard web request response model. Compound browsers may be viewed as a single component capable of rendering the multimodal markup with internal components for each modality. Individual browsers render the markup for the relevant modality. Examining this latter construct reveals the necessary components and relationships of the architecture.

5.1.2 Model – View - Controller

The MMMD presentation layer is further developed by decomposing the Modalities into useful logical components relationships and interactions. It is useful to model a multimodal system in terms of model-view-controller (MVC) terms. In the context of web applications, as discussed, we use a browser to implement a modality. With MVC, a given modality can represent its data (the Model) in the most efficient format for its interaction modality (the View), and enable user interaction via presentation logic (the Controller) as shown in Figure 6. Modelling a modality using MVC is the second building block of the MMMD architecture.

[image: image6]
Figure 6 - Modelling modalities using MVC

Models that are tied to a view are “view dependent” models. Models that are not tied to a view are “view independent” models. To illustrate, consider a navigation system. A view dependent model of a person’s location is one that is tied to a view. In a modality with a graphics display, the location data becomes an (X,Y) point on a screen. In a modality for a Global Positioning Satellite (GPS) device, the location is a latitude and longitude. For a voice modality, it’s some text (perhaps a street address or lat/long) to be synthesized in audio. A view independent model, on the other hand is a representation of the location that can be used across the modalities. In this example, a lat/long would serve to represent the location and each modality translates it appropriately.

It is useful to note that a given view’s model need not be view dependent. In the navigation example, the Lat/Long model used in a GPS modality can serve all the others as a view independent model.

5.1.3 View Independent Model

The view independent model is the third building block of the MMMD. The view independent model enables a centralized system where one model serves in a role in which it is updated by interaction in one modality and, in turn, reflected in other modalities. This centralized model fills the role of “synchronizatioon manager” between modalities. A centralized model enables several useful configurations of models, views and controllers and can be used to implement various multimodal architectures. In a two modality configuration, a centralized model serves two independent modalities as shown in Figure 7. This configuration is useful for multi-device support where each modality is handled by a browser.

Another variation of this concept is when the view independent model role is served by a model in one of the modalities as shown in Figure 8.

The concepts of modalities, MVC, and view independent model create a framework for handling a variety of multimodal configurations. Key in this framework is the notion that modalities can have optimized internal representations of their views and changes in state and data can be reflected to other modalities. This requires the last building block: an event based interface for synchronizing state and data across modalities.

Event Based Synchronization of Modalities

This building block enables an important flexible distribution of function between client and infrastructure.

[image: image7]

[image: image8]
 Figure 7 - Centralized model

Figure 8 - View model serves role of independent model

As previously stated, the MAMD enables both local and distributed multimodal systems. To illustrate the role of event based synchronization, consider and environment with two modalities (Voice and GUI). More modalities are possible but two modalities allow an optimization that is desirable to have in the reference architecture and is illustrated in the non-distributed case called the compound client.

The Compound Client

In the compound client, GUI and voice are both rendered in the client. User interactions in one modality are reflected in the other modality through events that enable synchronization between modalities and changes in data models. Figure 9 shows the architecture of the compound client.

[image: image9]

Figure 9 - Compound Client Architecture

In this case, the GUI browser Document Object Model (DOM) serves as the view independent model. Changes in data and interaction state are communicated between modalities. In this instance, a change occurring in the voice modality is reflected via an event to the GUI modality where it is reflected in the GUI and stored in the GUI DOM (the view independent model).

The Distributed Client

In the distributed client, the voice modality is handled in the infrastructure. In contrast to the compound client, the interface between modalities must be capable of distributing the voice modality across a network. For mobile devices, this is typically a low bandwidth wireless data connection. Figure 6 shows two variations of the architecture of the distributed client. One uses the GUI DOM for the model and the other uses a centralized model distributed into the network.

[image: image10]

Figure 10 - Distributed Client Architectures

Another variation of both the compound and distributed architectures that is desirable is to distribute the speech engines (Automated Speech Recognition (ASR) and Text To Speech (TTS)) from the voice browser.

In all cases, a view independent model that can be synchronized across modalities via events enables both centralized configurations and peer to peer configurations. The peer to peer configuration can be used for both compound and distributed multimodal systems consisting of two modalities. The centralized configuration can be used for multidevice and three or more modality systems

5.2 Multimodal and Multi-device Execution Model

This section describes a basic flow for multimodal and multi-device interactions, believed to support the different use cases and requirements identified in the multimodal and multi-device RD. It supports the fundamental execution mode of multimodal and multi-device applications.

It is proposed that OMA multimodal and multi-device services satisfy this execution model.

In this document, the term user agent is used loosely to designate the component that renders the presentation data into physical effects that can be perceived and interacted with by the user. For a given modality this may be a separate browser or platform or one or multiple components internal to a browser or platform.

The fundamental execution model of multimodal and multi-device applications is the following:

· A user interaction in one of the available modalities (user agent) results into interaction events

· These events are passed to a synchronization manager that handles a representation of the interaction event and determines the impact of the interaction based on the state of the application and synchronization rules.

· This in turns results into updates of the state of the application and update instructions sent to all the registered modalities (user agents) available to the user.

[image: image20.wmf]Modality A

Modality B

Modality B

Modality B

Modality A

Modality B

Modality B

e.g. Page load

Modality A

Modality B

Model

Etc

…

Type A

Type B

Type C

e.g.

XHTML+Voice

, SALT

e.g.

XForms

with or without DI authoring

e.g. co

-

browser applications

This is summarized in Figure 11, where each user agent may represent a different modality (e.g. VoiceXML browser and XHTML-MP browser or GUI and Voice Java applications) or different devices (e.g. smart phone and PDA or kiosk).

Figure 11 – Fundamental execution model of multimodal or multi-device applications; independent of programming model or configuration.
The user action may or may not result into an immediate update of the affected modality state prior to the synchronization (step 2). Immediate updates provide faster response in the modality that the user currently uses, but may lead to problems or confusing behaviors for example with composite inputs, concurrent or almost concurrent inputs in different modalities and conversational multi-modal application (i.e. where inputs are to be understood or disambiguated first).

Other events than user input may also trigger interaction events to transmit through step (3). When the service uses dialog management, it would typically be responsible for establishing and managing the multimodal synchronization.

The following basic architecture implements this execution model (Figure 12).

[image: image11.wmf]GUI User

Agent

Voice User

Agent

Synchronization

Manager

MM

 Synchronization

Figure 12 – architecture to support multimodal and multi-device interactions illustrated for voice and GUI interaction.

Each of these module or portions of these modules may be partitioned or combined on a single device or distributed across several devices or servers.

5.3 Associated Mobile Deployment Configurations

Figure 13 to Figure 18 present examples of multimodal or multi-device configurations that implement the multimodal and multi-device execution model and architecture discussed above.

Except for the multi-device configuration described in Figure 18, the figures illustrate multimodal interactions with voice and GUI. Nothing imposes these modality or to limit the synchronization to two modalities or devices.

Except for the sequential configuration, they can support any synchronization granularity authorized by application, network or user.

The speech recognition framework (SRF) refers to a framework currently studied by 3GPP (3GPP TR 22.977 – Feasibility Study for Speech Enabled Services (Release 6). The speech recognition framework (SRF) enables to distribute the audio sub-system and the speech services by sending encoded speech and meta-information between the client and the server over a packed switched network. The SRF may use conventional codecs like AMR or Distributed Speech Recognition (DSR) optimized codecs.

The SRF can be deployed over a packet switched (PS) network. Over a generic PS network, SRF will require:

· Uplink and downlink transport of audio (e.g. RTP)

· Session establishment, signalling and control

· Codec negotiations

· Quality of service negotiation and provisioning

· Service administration.

The distribution of processing for other modality may require extension similar frameworks.

[image: image12.wmf]Presentation

Network

GUI User

Agent

Client

Speech

Browser

VoiceXML

XHTML

Audio

Sub-system

Voice

http

Web

Server

Synchronization

Manager

Server

Figure 13 – Example of sequential configuration (no voice and data support simultaneously) for voice and GUI interaction. This configuration does not require SRF: it can be deployed on 2G or 2.5G networks. Only one modality is available at a given moment. The user may switch at any time or when allowed or imposed by the application.

[image: image13.wmf]Presentation

Network

Synchronization

Manager

GUI User

Agent

Client

VoiceXML

XHTML

Codec

Speech

Recognition

Framework

MM

Synchronization

Web

Server

MM

Synchronization

Possible

Event

coordination,

...

Speech

Engines

Speech

Browser

Server

Figure 14 – Example of Thin Client Configuration (voice and data support) with server-side speech engines local to speech browser for voice and GUI interaction.

[image: image14.wmf]Presentation

Network

Synchronization

Manager

GUI User

Agent

Client

VoiceXML

XHTML

Codec

Speech

Recognition

Framework

MM

Synchronization

Web

Server

MM

Synchronization

Possible

Event

coordination,

...

Speech

Engines

Speech

Browser

SRCP

Server

Figure 15 – Example of Thin Client Configuration (voice and data support) with server-side speech engines remote with respect to speech browser for voice and GUI interaction.

[image: image15.wmf]Presentation

Network

Synchronization

Manager

GUI User

Agent

Client

VoiceXML

XHTML

Codec

MM

Synchronization

Web

Server

MM

Synchronization

Speech

Engines

Speech

Browser

Figure 16 – Example of Fat client configuration with local speech engines for speech and GUI interaction. This can be combined within a browser implementation.

[image: image16.wmf]Presentation

Network

Synchronization

Manager

GUI User

Agent

Client

Speech

Browser

VoiceXML

XHTML

Codec

Web

Server

Speech

Engines

Speech

Recognition

Framework

SRCP

MM

Synchronization

MM

Synchronization

Figure 17 - Example of Fat client configuration with server-side speech engines for speech and GUI interaction. The speech engines are remote controlled by SRCP.

[image: image17.wmf]WAP Browser

XHTML Browser

Synchronization

Manager

WAP Phone

Wireless PDA

XHTML Browser

Kiosk

Figure 18 – Example of Multi-device configuration.

Configurations as illustrated in Figure 15 and Figure 17 require remote engine remote control APIs or protocols, as developed by IETF as part of SPEECHSC. Other modalities may require modality-specific extensions.

In the multi-device configuration illustrated in Figure 18, the synchronization manager may be located on the server or on a mobile device.

In all cases, the configuration may change dynamically and it may be of interest for the user to support seamless transition between these configurations, for example with mechanisms like discovery, negotiation, replication, etc…

The different configurations and functions is a function of the devices / channels, tasks and environment. Configurations may require registration and negotiation or dynamic provisioning of the device when accessing a multimodal or multi-device service. It also depends on having appropriate mechanisms to query, or examine the device capabilities and configuration modes.

5.4 Multimodal and Multi-device Authoring

[image: image21.png]Methods for authoring of multimodal and multi-device applications can be divided into several types as summarized in Figure 19.

Figure 19 – Different types of multimodal or multi-device authoring methods
Different authoring approaches have been proposed so far:

· Type A multimodal and multi-device authoring where the application is authored as stand alone presentation for each modality with different data models and synchronization or co-visit tags (e.g. Co-browser authoring).

· Type B multimodal and multi-device authoring, where the application is authored for one modality with events and event handlers that specify what to do in the others. Approaches like XHTML + Voice (http://www.w3.org/TR/xhtml+voice/) and SALT (http://www.saltforum.org/) follow this approach. The presentation associated to one modality or device may or may not share at authoring a common data model.

· Type C multimodal and multi-device authoring, where the applications are authored at the level of the data model (e.g. XForms in XHTML container, JSP, …) and the presentations for each modality or device are bound to the data model and manually authored or automatically generated from the data model (CSS). Synchronization results from the binding to the data model.

The execution model and architecture proposed supports the three authoring types, for example by transforming at runtime type A and type B into type C. Indeed, the module responsible for the application of the synchronization rules can interprets multimodal applications and executes the synchronization. This renders the proposed execution model independent of the authoring language and compatible with the different approaches that have been proposed so far, including XHTML+Voice, SALT and Xforms-based synchronization, with binding to pre-compiled presentation or to a device-independent representation.
Note also that Figure 12 does not address the steps internal to the user agents. For example, a voice or handwriting user agent will interface with speech engines to process input and generate outputs.
5.5 Context Diagram

Multimodal and multi-device enablers are considered in the context of the OSE (OMA service architecture) [OSE].
Based on the fundamental execution model and architecture described in section 5, the following entities have been identified (see Figure 12):
· Synchronization manager

· User agent for modality or device A

· User agent for modality or device B

· Additional user agents may be considered.

Figure 20 represents the logical architecture for multimodal or multi-device services in the context of the OSE, following the conventions of the OSE [OSE].

[image: image18]
Figure 20 – Illustrates the logical architecture of the multimodal and multi-device enabler with the OSE
This figure logically supports the different deployments models as illustrated in.
· Figure 13 is realized by:
· Modality A is Voice:

· The voice interaction capture enabler implementation consists of:

· I2 interfaces to terminal audio sub-system (codec)
· I2 interfaces to establish voice session (call or SIP session) with voice browser / speech engines

· Typically no I0 interfaces needs to be exposed to applications, but logically I0 interfaces allow interacting with the speech browser (to exchange speech events).

· The speech browser enabler implementation is located in the network as user agent A enabler implementation

· I2 interfaces interact with speech engines:

· Locally through speech APIs used to realize the speech browser enabler implementation

· Remotely through SPEECHSC [MRCP]

· The speech browser exposes I0 interfaces:

· to logically interact with the voice interaction capture enabler implementation

· to interface with voice applications executed in the speech browser

· to support multimodal synchronization with the interaction manager enabler implementation

· Speech engines can be located locally or remotely.

· Modality B is GUI:
· User agent B is located on the terminal and exposes I0 interfaces:

· to interface with GUI applications executed in the user agent

· to support multimodal synchronization with the interaction manager enabler implementation

· The GUI interaction capture implementation enabler could logically be considered as interfacing through an I0 interface with the GUI user agent enabler implementation. However, in practice, it is typically purely logical and provided by the terminal platform via I2 interfaces.

· The interaction manager enabler implementation is located in the network

· It exposes I0 interfaces to support multimodal synchronization with the GUI and Speech user agents (via their I0 interfaces).

· It interfaces with multimodal applications through I0 interfaces

· Applications are authored and decomposed or adapted into multimodal, voice and GUI applications depending on the authoring model and as described in section 5. They may interface with backend applications local or remote.
· Figure 14 and Figure 15 are realized as Figure 13, except that:

· The voice interaction capture enabler implementation consists of:

· I2 interfaces to terminal codec

· I2 interfaces to establish voice session with voice browser / speech engines (local to speech browser (Figure 14) or remote (Figure 15))
· Logically I0 interfaces allow interacting with the speech browser (to exchange speech events)

· I0 interface may allow exchange of speech evenst with GUI agent
· The GUI user agent enabler implementation may also expose I0 interfaces to interact with the voice interaction capture enabler implementation
· Figure 16 and Figure 17 are realized as Figure 13, except that:
· Voice interaction capture enabler implementation, both user agent enabler implementations, speech GUI and multimodal applications are located on the terminal resulting of exchange of speech and speech events through I2 interfaces that interact with speech engines:

· Locally through speech APIs used to realize the speech browser enabler implementation

· Remotely through SPEECHSC [MRCP]

· Figure 18 is realized by adding user agents similarly to the pictures above.

· If other modalities are considered than voice and GUI, corresponding user agents enabler implementations, interaction capture enablre implementations and possible processing engines (e.g. handwriting recognition) can be similarly considered.
5.6 Context Collaboration Model

The different entities defined in section 5.5 interact with each others to implement the execution model and associated flows discussed in section 5 and illustrated in Figure 11.
Interactions logically take place through the I0 interfaces but may be supported by I2 interactions as discussed above.

Following the OSE specifications, I0 exchanges are logically processed by PEEM (policy enforcement, evaluation and management) to enforce policies and delegate authentication, authorization, billing, privacy etc… as specified by these policies.

[image: image19]
Figure 21 – Logical architecture for multimodal and multi-device enabler implementation including logical PEEM.

Interaction with other enabler implementations is done through I0 interfaces and processed by PEEM.
6. Architectural Model
(Informative)
6.1 System and Subsystem Descriptions
6.1.1 User agent (per modality and device)
There is logically one agent enabler implementation per available modality or device.

The user agent is responsible for rendering the presentation data of a particular modality specific application into physical effects that can be perceived and interacted with by the user. For a given modality this may be a separate browser or platform or one or multiple components internal to a browser or platform.
The user agent presents an I0 interface to support the execution of the modality specific application.

The user agent presents an I0 interface for multimodal synchronization with the synchronization manager enabler implementation.

The user agent may present I0 interface to support exchange of events with another interaction capture enabler implementation.

The user agent is realized using I2 interfaces to local or remote resources.
6.1.2 Interaction capture

The interaction capture enabler implementation captures events interactions from the users or generates appropriate output to the user.

It typically is realized with I2 interfaces to local or remote resources that perform these functions.

In the case of modalities like voice where user agent and engines that process the interactions can be distributed, it logically interacts through I2 interfaces with the corresponding remote user agent enabler implementation.

It may exchange events with other user agents through I0 interfaces.
6.1.3 Synchronization manager

The synchronization manager interfaces with modality or device specific user agent enabler implementations through I0 interfaces to exchange multimodal synchronization.

It supports multimodal applications through I0 interfaces.

It interfaces with backend applications through Io interfaces.

It adapts / generates modality-specific applications associated to a multimodal interface as described in section 5.

It maintains state of the multimodal or multi-device application.
6.2 Subsystem Collaboration

<< Include sequence diagrams that illustrate how the architectural structure fulfills the requirements (as derived from the relevant use cases). DELETE THIS COMMENT >>

The different entities interact as discussed in section 5 and implement the logical flows described in Figure 11.
The identified interfaces include:

Editor’s note: each detailed functionality should be described.

· I0 interfaces in modality-specific user agent to support multimodal synchronization

· I0 interfaces in synchronization manager to support multimodal synchronization

· I0 interfaces in modality-specific user agent that may support additional event exchanges

· I0 interfaces in interaction capture enabler implemntation that logically implement modality specific capture and exchange of input and output (local or remote)

· I2 interfaces to support realizations of modality-specific user agents (including local or remote processing of modality specific interactions)
· I2 interfaces to support interaction capture and exchange to local or remote user agent or processing engines

Additional items to specify include:

Editor’s note: Details of what and how the following will be standardized should be described.

· Synchronization mechanisms of user agents by exposing:

· Access to interaction events from the GUI browser (e.g. DOM UI events, XML events)

· Mechanisms to update the presentation in the GUI browser (e.g. DOM manipulation, Xupdate)

· Between interaction management (EMMA, XForms, DS,…)

· Distribution of these exchanges (.e.g based on SOAP):

· Discovery, registration and deregistration of modalities with synchronization manager:

· Addresses

· Capabilities

· Security via policies

· Privacy via policies

· Charging via policies

· Fat client browser enhancements

· Synchronization management

· Authoring of multimodal applications:

· Type A, B and C – possibly with mobile profile

· Possible non-declarative specifications
Editor’s note: the support of the execution model with the proposed technologies should be discussed in the remainder of the section.
Appendix A. Change History
(Informative)

<< The following is a model of a revision table. DELETE THIS COMMENT >>

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	01 Oct 2002
	Initial document to address the basic starting point

 Ref TP Doc# OMA-TP-2002-1234-xxyyzForApproval

	OMA-xxyyz-V1_1-20030405-A
	05 Apr 2003
	description of changed

 Ref TP Doc# OMA-TP-2003-0321-xxyyzV1_1forApproval

A.2 Draft/Candidate Version <current version> History

<< This section is available in pre-approved versions – it should be removed in the actual approved versions. DELETE THIS COMMENT >>

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-xxyyz-V1_2
	30 Jun 2003
	3.2, 8.2, 11.4, App A
	Incorporates input to committee:

 OMA-XY-2003-0053-CR_SpellingCorrections

 OMA-XY-2003-0098-CR_AddSectionOnPeanutButter

	
	12 Aug 2003
	9.2.2.2, 11.3
	Incorporates input to committee:

 OMA-XY-2003-0101R2-CR_ImproveJellyReferences

	Candidate Version

OMA-xxyyz-V1_2
	16 Sep 2003
	n/a
	Status changed to Candidate by TP

 TP ref # OMA-TP-2003-0abc-CandidateRequest_xxyyz_V1_2

	Draft Version

OMA-xxyyz-V1_2
	24 Sep 2003
	6.8
	Status changed to Draft (demoted) to address important class 1 CR

 OMA-XY-2003-0172-CR_AddSectionOnJellyGoesOnTop

	Candidate Versions

OMA-xxyyz-V1_2
	13 Nov 2003
	n/a
	Status changed to Candidate by TP

 TP ref # OMA-TP-2003-0def-CandidateRequest_xxyyz_V1_2_again

	
	21 Dec 2003
	4.2, 6.3
	Minor CR to address interpretation of bread references

 OMA-XY-2003-0205-CR_SlicedBreadClarification

Notice sent to TP of minor update

 TP ref # OMA-TP-2003-0ghi-CandidateUpdateNotice_xxyyz_V1_2

	
	12 Jan 2004
	4.2, 6.6
	Minor CR to cover cases where knife not available

 OMA-XY-2004-0012-CR_SpreadingWithoutKnife

Notice sent to TP of minor update

 TP ref # OMA-TP-2004-0jkl-CandidateUpdateNotice_xxyyz_V1_2

Appendix B. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

B.1 App Headers

<More text>

B.1.1 More Headers

� These issues should be investigated by the Work Item on Quality of Experience.

� This requirement is to be understood as a MUST in between transaction [Trivially supported] and a SHOULD within transactions [This requires synchronization of states between synchronization manager. This could be added to the specification plans in the future (it’s a SHOULD) as proposed in section � REF _Ref62804257 \r \h ��3.4�.].

� This issue also relates to the Work Item on Browser enhancement that should enable of multimodal and multi-device capabilities when considering the enhancements: e.g. synchronization interfaces, support of DOM, XML events, XForms, etc…

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ArchDoc-20040205]
(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ArchDoc-20040130]

[image: image22.png][image: image23.png][image: image24.png][image: image25.png][image: image26.png][image: image27.png][image: image28.png][image: image29.png][image: image30.png][image: image31.png][image: image32.png]