Doc# OMA-MAE-2005-0103R01-CR-to-TS_Client_Side_CS_FW [image: image4.jpg]"sOMaQa

Open Mobile Alliance

Submitted to BAC-MAE
13 Aug 2005

Doc# OMA-MAE-2005-0103R01-CR-to-TS_Client_Side_CS_FW
Submitted to BAC-MAE
13 Aug 2005

Change Request

	Title:
	Change Request to Client Side Content Screening Framework Technical Specification
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-MAE

	Doc to Change:
	OMA-TS_Client_Side_CS_FW-V1_0-20050413-D

	Submission Date:
	13 Aug 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Hyunsuk Seung, NTT DoCoMo Inc., seung@cet.yrp.nttdocomo.co.jp

	Replaces:
	OMA-MAE-2005-0103-CR-to-TS_Client_Side_CS_FW

1 Reason for Change

This Change Request (CR) is to update the Client Side Content Screening Framework Technical Specification (TS) based on OMA-MAE-2005-0064R01-LATE-Plan-TS_Client_Side_CS_FW. Summary of changes are:

1. Content scanning (CSF-1) interface is specified in normative section of the main spec.
2. Supporting interfaces (CSF-2 thru CSF-7) are specified in informative section of the main spec.

3. Interface invocation time is described in informative section of the main spec.

4. Screening actions are described in informative section of the main spec.

5. Use of interfaces in particular execution environments is provided in Annex as "Implementer's Note (Informative)”.
2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that this group discuss the proposed changes in this CR and update the TS in BAC-MAE’s permanent documents area with any required changes.

6 Detailed Change Proposal

Comments from the committee and their proposed resolutions are captured in the following table.

	ID
	Section
	Comments
	Resolution

	1
	5 Framework Interfaces
	Normative and informative interfaces should be described in separate sections and not intermixed within the same section.
	Closed
To split section 5 into normative and informative sections.

	2
	5 Framework Interfaces
	Clarify whether CSFGetLastError (CSF-7) is optional or informative. Optional is still normative and they define exactly what is to be done but vendors can choose whether they do them whereas informative is for guidance only and vendors can basically do what they like.
	Closed
To define CSFGetLastError (CSF-7) in normative section as optional interface. This is to allow the normative interface CSFScanData (CSF-1) to be meaningful in case of error. Platform independent error codes will be added as well.

	3
	5 Framework Interfaces
	In table 1, remove the column on “requirements to scan engine” since it places normative requirements to scan engine implementation.
	Closed
To revise table 1 so that it does not place normative requirements on informative interfaces.

	4
	5 Framework Interfaces
	Clarify the values of scan results returned from CSFScanData (CSF-1), similar to return codes in HTTP.
	Closed
To clarify the values of scan results returned from CSFScanData (CSF-1).

	5
	5 Framework Interfaces
	Avoid using SHALL/SHOULD/MAY in informative section.
	Closed
To remove SHALL/SHOULD/MAY in informative section.

	6
	5 Framework Interfaces
	CSFScanVersion (CSF-4) should provide other version information such as version number of the scan engine.
	Closed
To add scan engine version information as one of the results obtained from invoking CSFScanVersion (CSF-4).

	7
	5 Framework Interfaces
	Clarify error code returned by CSFScanData (CSF-1) thru CSFConfigGet (CSF-6) and error code retrieved by CSFGetLastError (CSF-7). Add more description to CSFGetLastError (CSF-7).
	Closed
To clarify the difference between the error code returned by CSF interfaces and that obtained from CSFGetLastError (CSF-7).
Note: CSF interfaces (other than CSFGetLastError) return either success (0) or failure (-1) as its error code. The original description which stated, “… and error code is set”, was intended to mean that actual error code would be set by the scan engine in case of a failure and that a call to CSFGetLastError interface would provide the actual error code.

	8
	5 Framework Interfaces
	Merge “return value” and “output parameter” together since they are both output obtained from invoking the CSF interfaces.
	Closed
To describe the “return value” and “output parameters” as output obtained from invoking CSF interfaces.

	9
	6 Scan Interface Invocation Time
	In table 2, clarify when the scan timing of the URL is conducted.
	Closed
To clarify scan timing in table 2.

	10
	6 Scan Interface Invocation Time
	In table 2, replace “app” with “enabler”.
	Closed
To replace “app” with “enabler” in table 2.

	11
	6 Scan Interface Invocation Time
	In table 2, prioritize recommended CSFScanData (CSF-1) invocation time instead of expressing it in terms of mandatory or optional which is misleading.
	Closed
To reprioritize table 2 so that it is not misleading.

	12
	7 Screening Actions
	Clarify the differences between “scan result” from CSFScanData (CSF-1) and “severity level” from section 7.
	Closed
To clarify the differences between “scan result” and “severity level”.

Please see next page for detailed changes based on the proposed resolutions.

5. Framework Interfaces
(Normative)
This section specifies technical details of framework interfaces of the client side content screening framework as identified in [CSCSF-AD-v1]. In order for OMA and non-OMA enablers to use the scan interface CSFScanData (CSF-1), a set of supporting interfaces is needed in order to provide the CSF-1 interface in mobile terminals. These supporting interfaces can be grouped into four types according to their functions, namely:

1. Scan Engine Initialization Interface

· CSF-2: CSFSystemInit

2. Virus Database Update Interface

· CSF-3: CSFScanUpdate

· CSF-4: CSFScanVersion

3. Scan Engine Configuration Interface

· CSF-5: CSFConfigSet

· CSF-6: CSFConfigGet

4. Error Retrieval Interface

· CSF-7: CSFGetLastError
Figure 1 shows the supporting interfaces in the context of architectural model of the client side content screening framework. The complete list of framework interfaces is shown in Table 1. Normative interfaces, CSFScanData (CSF-1) and CSFGetLastError (CSF-7) are described in subsections that follow. The rest of the supporting interfaces, CSFSystemInit (CSF-2) through CSFConfigGet (CSF-6), are described in section 6 as informative interfaces.

[image: image2]
Figure 1: Interfaces of Client Side Content Screening Framework
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Interface ID
	Interface Name
	Description

	CSF-1
	CSFScanData
	Requests scanning of content.

	CSF-2
	CSFSystemInit
	Initializes scan engine.

	CSF-3
	CSFScanUpdate
	Triggers update of virus database.

	CSF-4
	CSFScanVersion
	Returns virus database version information.

	CSF-5
	CSFConfigSet
	Sets scan engine configuration variable.

	CSF-6
	CSFConfigGet
	Retrieves scan engine configuration variable.

	CSF-7
	CSFGetLastError
	Retrieves last error set by the scan engine.

Table 1: Interfaces of Client Side Content Screening Framework
5.1 Content Scanning Interface
5.1.1 CSF-1
5.2.1.1 Name

CSFScanData
5.2.1.2 Description
This interface is used by enabler related to end-user content delivery and/or processing for content scanning. Upon invocation, scan engine performs scanning of the forwarded content and returns the result to the calling enabler. The caller screens the content if it was determined to be malicious based on the result from the scan engine. When content is determined to be malicious, it SHALL be screened in order to protect the end-user and/or end-user’s terminal. This screening action MAY be in the form of simple warning message, confirmation of deletion, notification of deletion, or even silent deletion without any notification whatsoever. Exact detail is implementation dependent and would vary according to severity level reported, recommended behaviour level, I/O capability of mobile terminal, user preferences, etc. Note that severity level specifies the level of the threat posed by the content, clarifying whether it poses a threat to the terminal or to the end-user. Behavior level specifies recommended screening actions for use by the calling enabler. Behavior level SHOULD be consulted when result of the scan indicates that the content was found to be malicious.

5.2.1.2.1 Input

Content to scan SHALL be provided by the invoking enabler as input to the interface.
Type of the content MAY be provided by the invoking enabler as input to the interface (see Table 2)
.
	Document type
	Meaning
	Description

	CSF_DTYPE _HTML
	HTML
	Scan for malicious content in HTML.

	CSF_DTYPE_URL
	URL address
	Scan for URL with malicious content.

	CSF_DTYPE_EMAIL
	Email address
	Scan for email-address with malicious intent.

	CSF_DTYPE_PHONE
	Phone number
	Scan for phone number with malicious intent.

	CSF_DTYPE_TEXT
	Text data
	Scan text data for malicious content.

Table 2: Document types
5.2.1.2.2 Output

5.2.1.3

5.2
5.2.1
5.2.1.4

5.2.1.5

5.2.1.6
Result of the scan SHALL be returned by the scan engine as output of the interface as one of follows:
0 if benign.
1 if malicious.
Result of the operation SHALL be returned by the scan engine as output of the interface.

0 if success.

-1 if failure.
Severity level MAY be returned by the scan engine as output of the interface when the result of the scan is found to be malicious. Severity level indicates the level of threat posed by a content that was found to be malicious and recommended screening behavior for the calling enabler. See table below for exact details.
	Severity level
	Meaning
	Recommended screening behavior
	Note

	0
	Low
	Process with a warning.
	This severity level may be assigned to content previously considered malicious.

	1
	Medium Low
	Prompt the user before processing.
	Ask the user if he/she wants the enabler to process the content.

	2
	Medium
	Do not process the content.
	

	3
	Medium High
	Do not process the content and prompt user for removal.
	Ask the user if he/she wants the enabler to remove the content.

	4
	High
	Do not process the content and automatically remove if stored.
	

Table 3: Severity Level
5.3 Error Retrieval Interface
5.3.1 CSF-7
5.2.1.7 Name

CSFGetLastError
5.2.1.8 Description
This interface returns the last-error code set by the scan engine.
5.2.1.9 Input
None.
5.2.1.10

5.4
5.4.1
5.2.1.11

5.2.1.12

5.2.1.13

5.2.1.14

5.4.2
5.2.1.15

5.2.1.16

5.2.1.17
5.2.1.17.1 Output

5.2.1.18

5.5
The last error code set by the scan engine SHALL be returned as output of the interface. See table 2 for list of platform independent error codes.

	Error Code
	Description

	CSF_ERR_SUCCESS
	success; not an error

	CSF_ERR_CANCELLED
	operation cancelled; not an error

	CSF_ERR_BAD_FILE_MODE
	invalid file mode

	CSF_ERR_FILE_OPEN
	failed to open

	CSF_ERR_FILE_WRITE
	failed to write to a file

	CSF_ERR_BAD_SEEK_MODE
	invalid seek mode

	CSF_ERR_SEEK_OOB
	invalid seek location

	CSF_ERR_FILE_SEEK
	failed to seek to a specific file location

	CSF_ERR_FILE_READ
	failed to read

	CSF_ERR_FILE_WRITE_MODE
	invalid write mode access

	CSF_ERR_SIZE_OOB
	invalid file size; failed to change file size

	CSF_ERR_SEM_CREATE
	semaphore creation failed

	CSF_ERR_SEM_OPEN
	semaphore open failed

	CSF_ERR_SEM_WAIT
	wait on semaphore failed

	CSF_ERR_HTTP_OK
	“200 ok”; not an error

	CSF_ERR_HTTP_NO_CONTENT
	“204 no content”; not an error

	CSF_ERR_HTTP_FORBIDDEN
	“403 forbidden”; forbidden URL

	CSF_ERR_HTTP_NOT_FOUND
	“404 not found”; invalid URL

	CSF_ERR_HTTP_REQ_TIMEOUT
	“408 request timeout”; GET/PUT request time out

	CSF_ERR_HTTP_GW_TIMEOUT
	“504 gateway timeout”; failed to receive info from gateway

Table 4: Error codes
6. Supporting Interfaces
(Informative)
This section specifies informative interfaces of the client side content screening framework that are usually required in client terminals for supporting normative interfaces defined in the previous section. They are provided for guidance only.
6.1 Scan Engine Initialization Interface

6.1.1 CSF-2
5.2.1.19 Name

CSFSystemInit
5.2.1.20 Description
This interface performs initialization of the scan engine and is invoked (e.g. during boot-time) before other CSF interfaces. Specifically, validation and environment initialization of data kept at persistent storage locations of a mobile terminal are performed. These data are commonly virus database, configuration settings, and synchronization objects used by the scan engine. The exact data are implementation dependent.

5.2.1.21 Input
None.
5.2.1.22 Output

Return value:

0 if success.

-1 if failure.
6.2 Virus Database Update Interface
6.2.1 CSF-3
5.2.1.23 Name

CSFScanUpdate

5.2.1.24 Description
This interface triggers the scan engine to perform update of its virus database.
5.2.1.25 Input
None.
5.2.1.26 Output
Return value:

0 if success.

-1 if failure.
6.2.2 CSF-4
5.2.1.27 Name

CSFScanVersion

5.2.1.28 Description
This interface obtains version information of the virus database.

5.2.1.29 Input
None.
5.2.1.30 Output

Virus database version information.

Scan engine version information.
Return value:

0 if success.

-1 if failure.
6.3 Scan Engine Configuration Interface
6.3.1 CSF-5
5.2.1.31 Name

CSFConfigSet
5.2.1.32 Description
This interface sets a value for the specified scan engine configuration variable (e.g. to turn on or off the scanner).
5.2.1.33
5.2.1.33.1
5.2.1.34 Input
Name of the scan engine configuration variable.
5.2.1.34.1
5.2.1.35 Output
New configuration setting/value for the variable specified.
5.2.1.36 Return
value:

0 if success.

-1 if failure.
6.3.2 CSF-6
5.2.1.37 Name

CSFConfigGet
5.2.1.38 Description
This interface retrieves a value for the specified scan engine configuration variable.

5.2.1.39
5.2.1.39.1
5.2.1.40 Input
Name of the scan engine configuration variable.
5.2.1.40.1
5.2.1.41 Output
Value of the specified scan engine configuration variable.
5.2.1.42 Return
value:

0 if success.

-1
6.4
6.4.1
5.2.1.43

5.2.1.44

5.2.1.45

5.2.1.46
if failure.
7. Scan Interface Invocation Time
(Informative)

	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	

	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	

	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Client side content screening framework provides identification of malicious content before a client enabler processes or renders a given content. The scanning of the content is transparent to the user until the scan engine detects a malicious content. Table 2 specifies recommended scanning time according to type of content and client enablers.
	Recommended CSFScanData (CSF-1) Invocation Time
	Content Type
	Enablers

	1. After receiving
	XHTML

Email message

SMS message

MMS message

Instruction code

Multimedia data
	Browser

Message Handler

File installer

HTTP protocol handler

Data exchange

	2. Before storing
	XHTML

Email message

SMS message

MMS message

Instruction code

Multimedia data
	Browser

Message Handler

Phone

File installer

HTTP protocol handler

Data exchange

	3. Before rendering (or execution)
	XHTML

Email message

SMS message

MMS message

Instruction code

Multimedia data
	Browser

Message Handler

	4. Before forwarding to other enablers
	Instruction code

Multimedia data
URL address
	Browser

Message Handler

File installer

HTTP protocol handler

Data exchange

	5. Before requesting
	URL address

Email address

Phone number

	Browser

Message Handler

File installer

HTTP protocol handler

Data exchange

Phone

Table 5: CSFScanData (CSF-1) Invocation Priority

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Appendix A. Implementer’s Note
(Informative)

This section is provided as informative purpose to assist implementors of client side content screening framework by describing the framework interfaces in particular execution environments.
A.1 Framework Interfaces in C

A.1.1 Content Scanning Interface

A.1.1.1 CSFScanData
Description

This interface is used by enabler related to end-user content delivery and/or processing for content scanning. Upon invocation, scan engine performs scanning of the fowarded content and returns the result to the calling enabler. The caller screens the content if it was determined to be malicious based on the result from the scan engine. The caller specifies scanner action, scan target data type(s), a set I/O functions to access the data, and an optional callback function for information retrieval. The result of the scan is returned in a caller provided data structure.
Prototype

int CSFScanData(CSFSCAN_HANDLE hScan,

 SScanParamxe "SScanParam"* pParam,

 SScanResultxe "SScanResult"* pResult);

Parameters

hScan

· [in] Scan engine handle obtained from a call to the CSFScanOpen() function.

pParam

· [in] Pointer to a structure containing data scan parameters.

pResult

· [out] Pointer to a structure containing data scan results.
Return Value

0 if successful, -1 otherwise.

A.1.2 Error Retrieval Interface
A.1.2.1 CSFGetLastError
Description

This interface is used for retrieving error information when a CSF interface fails.
Prototype

CSFErrorCode CSFGetLastError(CSFLIB_HANDLE hLib);

Parameter

hLib

[in] CSF library handled returned by CSFLibraryOpen.

Return Value

[out] 32-bit error code value.
Table 6 lists a set of error codes to be reported using the CSFGetLastError interface which returns a 32-bit value formed by combining a component code with an error code (see Figure 2). The last error set by the scan engine when an interface fails is retrieved using CSFGetLastError interface, and an appropriate action is to be taken by the invoking enablers.
	Component
	Error
	Description

	Code
	Value

	Code
	Value

	

	N/A
	00h
	CSF_ERR_SUCCESS
	000000h
	success; not an error

	N/A
	00h
	CSF_ERR_CANCELLED
	000001h
	operation cancelled; not an error

	SYS_MODULE XE "AL_SYS_MODULE"
	01h
	CSF_ERR_BAD_FILE_MODE
	100001h
	invalid file mode

	
	
	CSF_ERR_FILE_OPEN
	100002h
	failed to open

	
	
	CSF_ERR_FILE_WRITE
	100003h
	failed to write to a file

	
	
	CSF_ERR_BAD_SEEK_MODE
	100004h
	invalid seek mode

	
	
	CSF_ERR_SEEK_OOB
	100005h
	invalid seek location

	
	
	CSF_ERR_FILE_SEEK
	100006h
	failed to seek to a specific file location

	
	
	CSF_ERR_FILE_READ
	100007h
	failed to read

	
	
	CSF_ERR_FILE_WRITE_MODE
	100008h
	invalid write mode access

	
	
	CSF_ERR_SIZE_OOB
	100009h
	invalid file size; failed to change file size

	
	
	CSF_ERR_SEM_CREATE
	10000Ah
	semaphore creation failed

	
	
	CSF_ERR_SEM_OPEN
	10000Bh
	semaphore open failed

	
	
	CSF_ERR_SEM_WAIT
	10000Ch
	wait on semaphore failed

	HTTP_MODULE XE "AL_HTTP_MODULE"
(1000h-1FFFh)
	11h
	CSF_ERR_HTTP_OK
	200001h
	“200 ok”; not an error

	
	
	CSF_ERR_HTTP_NO_CONTENT
	200002h
	“204 no content”; not an error

	
	
	CSF_ERR_HTTP_FORBIDDEN
	200003h
	“403 forbidden”; forbidden URL

	
	
	CSF_ERR_HTTP_NOT_FOUND
	200004h
	“404 not found”; invalid URL

	
	
	CSF_ERR_HTTP_REQ_TIMEOUT
	200005h
	“408 request timeout”; GET/PUT request time out

	
	
	CSF_ERR_HTTP_GW_TIMEOUT
	200006h
	“504 gateway timeout”; failed to receive info from gateway

Table 6: Error Codes

[image: image3.wmf]31

component code

0

error code

24

8

16

\

Figure 2: 32-bit error code format

A.1.3 Scan Engine Initialization Interface

A.1.3.1 CSFSystemInit
Description

Verifies and initializes system environment information.

Prototype

int CSFSystemInit(void);

Parameters

None.

Return Value

0 if successful, -1 otherwise.
A.1.4 Virus Database Update Interface
A.1.4.1 CSFScanUpdate
Description

This interface triggers the scan engine to perform update of the virus database.
Prototype

int CSFScanUpdate(CSFSCAN_HANDLE hScan,

SUpdateParam* pParam);

Parameters

hScan
· [in] CSF scan handle obtained using the CSFScanOpen() function.

pParam

· [in] Pointer to an update parameter structure containing a callback function pointer for update cancellation/abort and progress status update.
Return Value

0 if successful, -1 otherwise.
A.1.4.2 CSFScanVersion
Description

This interface obtains version information of the virus database.

Prototype

int CSFScanVersion(CSFSCAN_HANDLE hScan,

SVerInfo* pVer);

Parameter

hScan
· [in] Scan engine handle obtained using the CSFScanOpen() function.

pVer
· [out] Pointer to SVerInfo structure described below. Null-character (‘\0’) terminated strings are stored in the fields of this structure.
	

#define CSF_VERSION_MAX 16

typedef struct

{

char szVer[CSF_VERSION_MAX];
char szEngineVer[CSF_VERSION_MAX];
} SVerInfo;

Table 7: SVerInfo structure
Return Value

0 if successful, -1 otherwise.
A.1.5 Scan Engine Configuration Interface
A.1.5.1 CSFConfigSet
Description

This interface sets a value for the specified scan engine configuration variable (e.g. to turn on or off the scanner).
Prototype

int CSFConfigSet(CSFCONFIG_HANDLE hConfig,
char const* pszName,
char const* pszValue);
Parameters

hConfig
· [in] Configuration handle returned by the CSFConfigOpen() function.

pszName

· [in] NULL terminated configuration variable name.

pszValue

· [int] NULL terminated new configuration setting/value for the variable specified

Return Value

0 if successful, -1 otherwise.
A.1.5.2 CSFConfigGet
Description

This interface retrieves a value for the specified scan engine configuration variable.

Prototype

int CSFConfigGet(CSFCONFIG_HANDLE hConfig

char const* pszName,
char* pBuffer,
unsigned int uSize);

Parameter

hConfig

· [in] Configuration handle returned by the CSFConfigOpen() function.

pszName

· [in] null terminated configuration variable name.

pBuffer

· [out] null terminated configuration setting/value for the variable specified

uSize

· [in] Length of pBuffer in bytes.
Return Value

0 if successful, -1 otherwise.
A.1.6
A.1.6.1

CSF-1 … CSF-7

Name of interfaces offered (following the interface naming convention)

Indicates that enabler uses functions of other enabler outside the framework

Indicates that enabler uses functions of other enabler within the framework that is needed for providing essential functions of the framework.

CSF-2 CSF-3 … CSF-7

User Interface

Content Source

CSF-1

Content Screening Framework

Scan Engine

Indicates that enabler uses functions of other enabler within the framework that is essential to the framework.

Enabler A

CSF-1 … CSF-7

Name of interfaces offered (following the interface naming convention)

Indicates that enabler uses functions of other enabler outside the framework

Indicates that enabler uses functions of other enabler within the framework that is needed for providing essential functions of the framework.

CSF-2 CSF-3 … CSF-7

User Interface

Content Source

CSF-1

Content Screening Framework

Scan Engine

Indicates that enabler uses functions of other enabler within the framework that is essential to the framework.

Enabler A

� component code is an 8-bit value

� error code is a 24-bit value

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 18)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 18)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

_1108455180.vsd

