Doc# OMA-MAE-2005-0363R4-CR_RME_WP evaluation of MPEG4part20 against the requirements.doc[image: image10.jpg]
Change Request

Doc# OMA-MAE-2005-0363R4-CR_RME_WP evaluation of MPEG4part20 against the requirements.doc
Change Request

Change Request

	Title:
	CR RME WP evaluation of MPEG4 part 20 against the requirements
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	MAE

	Doc to Change:
	OMA-WP-RME-20051004-d or latest version

	Submission Date:
	4th December 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Alcatel, Bouygues, ETRI, KPN, Orange, Streamezzo, Telefonica movile, 3
gaelle.martin-cocher@streamezzo.com

	Replaces:
	n/a

1 Reason for Change

 This change request proposes more text for the WP technology landscape and explains how MPEG4 part 20 answers to the RME requirements and how it integrated in the mobile environment along with other technologies to provide a complete DIMS/RME solution.
2 Impact on Backward Compatibility

 None
3 Impact on Other Specifications

 None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

MAE to consider and include these changes to the baseline document
6 Detailed Change Proposal

Change 1: Chapter Evaluation of the technologies against the requirements
 Provide the description for section 7.1
7.1 MPEG4 part 20
This section provides an evaluation of an MPEG4 part 20 based solution against the RME requirements and includes additional technologies to meet the need of a complete Rich-Media Enabler
7.1.1 Alignment of LASeR with SVG Tiny 1.1 and 1.2

There is a clear consensus that the RME/DIMS enabler will be based on the SVG Tiny 1.2 specification.

LASeR is an MPEG encoding of the W3C SVG Tiny specification and a full compliancy with the rendering model is provided as described in the figure below:

[image: image1]
Figure 1: LASeR engine components and normative parts (from section 6.4 of the LASeR specification)
LASeR v1 extends the feature set of SVGT1.1, including features of SVG1.1 Full and SMIL2 which will be present in SVGT1.2. LASeR does not mandate nor prevent the XML parser and the gzip compression to be used as define in the SVGT1.1 specification.
LASeR first amendment (called LASeR v2 in this document) will be a superset of SVGT1.2 and will complete the alignment with the not-yet-stable features of SVGT1.2.
LASeR v1 is already able to encode and transmit SVGT1.2 (and other XML data, e.g.: proprietary extension, CDF) content due to its generic, extensible binary encoding scheme.

The non-v1 part of the SVGTiny 1.2 or LASeR v2 content will be skipped by a LASeR v1 decoder, will be rendered by a LASeR v2 decoder. It can also be transmitted to an SVGTiny 1.2 player depending on the implementation choice specify by OMA.
In this document when LASeR is mentioned, it refers to features that are relevant in LASeR v1 and v2. When features are only relevant for one version, it will be explicitly mentioned.

7.1.1.1 LASeR scene extensions
The LASeR scene extensions cover:
· The management of any input device to ease the content adaptation to any particular MMI and terminal.
· The association of a precise timing model to any attribute.
· The clipping by a pixel-aligned rectangle with horizontal and vertical borders, which is crucial to create UI widgets.
· The possible use of any font system, including OpenType.

· A fullscreen mode for videos and images.

· A means to stop non-rendered animations to optimize CPU usage.

· The use of the SMIL mediaClipping module to allow VCR-like control of media.

· A simple way to underline text.

The overview of the components of a LASeR client and of the global architecture using MPEG4 part 20 for an application is as follows:

[image: image2.emf]SVG SceneTree

LASeR

Commands

BinaryEncoding

LASeR

Extensions

SAF

AudioVideoFontImage…

Application

Network

Transport

Figure 2: Architecture of LASeR and SAF
7.1.1.2 Font
LASeR does not mandate any font system but recommends the usage of Open Type fonts. So the preferred way of sending font information with LASeR is as a companion font stream using the OpenType format. However, there are other options: SVG Tiny fonts can be sent separately in a companion stream (encoded as OpenType or in XML form), or in the LASeR scene, encoded with the anyXML encoding (non-schema encoding of any XML data).
When a requested font is not present, LASeR provides the same fallback to system/device fonts as SVG Tiny 1.2.
About compatibility of SVG Tiny Fonts and OpenType: the subset of SVG fonts mandated by SVGT1.1 and SVGT1.2 is a subset of OpenType. An existing open source tool can extract SVG font information from OpenType fonts. It is also possible to translate SVG Tiny fonts to OpenType format.
7.1.2 RME Dynamic updates requirements
One key additional feature provided by LASeR over the SVG Tiny 1.2 specification is the ability for dynamic modification of the scene.

Dynamic updates are a key to efficient representation of server-driven or user-triggered scene changes over time. This feature, present in Macromedia Flash, is necessary to enable:

· The efficient representation of streamable cartoons,

· The partitioning of scenes into small packets that fit in size-limited delivery mechanisms (such as cell broadcast),

· The dynamic creation of answers to a user request, and their integration in the current scene,

· Or the dynamic push of content into an existing scene.

The dynamic update mechanism can be achieved with two complementary technologies: using LASeR Commands and using a scripting mechanism.
7.1.2.1 Using the LASeR command
The LASeR Commands are a declarative way (as opposed to programmatic as in a script) of specifying changes to the scene. The following commands are defined:
7.1.2.1.1 General commands

· Insert: to insert any element in a group, a point in a sequence.

· Delete: to delete any element by id or from a group by index, a point in a sequence.

· Replace: to replace an element by another element (by id or from a group by index), or to replace the value of any attribute of any element.

7.1.2.1.2 Commands specified for streaming and broadcast

· NewScene: to create a new scene.

· RefreshScene: to repeat the current state of the scene, for use as a random access point into the LASeR stream or as a means to recover from packet loss.

7.1.2.1.3 Commands defined in LASeR for additional requirements

· Add: similar to replace, but with the notion of adding to the value rather than replacing it.

· Save, Restore and Clean: to save, reload or remove persistent scene information in the form of the value of a list of attributes. Other commands have no influence on persistent scene information.

· SendEvent: to send an event to any element in the scene.
7.1.2.1.4 Extensibility and genericity
LASeR includes a mechanism to extend the LASeR Commands to add other functionality.

LASeR Commands are not specific to LASeR, but can be used on any XML document with minimal extensions. ISO/IEC 15938-1 defines a similar mechanism as the group of commands in 7.1.2.1.1, with slightly different requirements, proving the applicability of the concept to any XML document. One possible application of XML document update commands generalized from LASeR Commands is to Compound Document Format (CDF), and more specifically to Web Interactive Compound Documents (WICD) which are based on a mix of xHTML and SVG Tiny 1.2.
The LASeR specification defines an XML syntax (LAseRML) for use in authoring or other applications of XML versions of the LASeR scenes. LASeRML is a superset of the SVG Tiny (XML) syntax. LASeR Commands, as part of the LASeR specification, also have an equivalent XML syntax, which is immediately applicable to SVG Tiny 1.1 and 1.2 documents.
7.1.2.1.5 Timing model
A timing model is associated to the LASeR commands, allowing the player to provide a very tight synchronization, with an accuracy specified by the content creator wishes (frame accurate synchronization, synchronization on a user interaction, on a time basis, etc…). This timing model defines the link between the time stamps used by transport layers and the scene time or composition time and is the key to any streaming and/or synchronization of scene information with other media. See § 6.4 in the ISO/IEC 14496-20:2006 specification
7.1.2.1.6 Compatibility Issues
LASeR scenes and updates are defined as complete and well-formed packet. The first LASeR packet contains a complete, well-formed SVG Tiny scene (with end tag) which represents the first state of the content. The next LASeR packets are sets of commands (with end tag) to build the next states of the content. After each packet is received and each update command is executed, the scene in the browser is a valid, well-formed SVG scene.
In the LASeR v1 specification, an informative ECMA-Script/DOM equivalent of the LASeR Commands is provided. Using this equivalent code, LASeR Commands can be implemented at minimal cost on SVG Tiny 1.2 implementations including a DOM interface and an ECMA-Script interpreter. This informative equivalent also serves as an indication of the complexity of the implementation in compiled languages on top of an SVGTiny1.2+DOM player, as the total complexity of the group of commands in 7.1.2.1.1 is less than 100 lines of code.
LASeR extends the feature set of SVG Tiny, and as such, reuses DOM Level 3 Events, also known as the XML Events specification in order to provide a generic extensible
The usage of uDOM in LASeR v1 is possible, but not mandated. LASeR v2 will specify the usage of uDOM and its extensions to the (few) LASeR scene tree extensions.

7.1.2.2 Updates through Scripting
In addition or in parallel to the LASeR command, the use of scripting and DOM Network API and an ad-hoc protocol to communicate scene modification from the server to the client can be used. Note: the extra cost incurred by defining an alternate protocol in script and the requirement of an ad-hoc server makes this solution only worthwhile in very specific services.
7.1.3 Combination of updates

LASeR Commands are used in two contexts :

· in a timed context

· in an interactive context

LASeR Commands are used in a timed context when they are part of a LASeR Access Unit. The LASeR Access Unit has a presentation time which is the time at which the LASeR Commands in it shall be executed. LASeR Commands from a LASeR Access Unit are executed in step 3 of the LASeR execution model (section 6.4 of ISO/IEC 14496-20). Such LASeR Commands can never interfere with scripts with another scriptContentType, since these are executed as part of step 4.
LASeR Commands are also used in a non-timed, interactive context when they are contained in a script element. Upon activation of the script element, e.g. through an event channelled to the script element by a listener element, the LASeR Commands are executed as if their presentation time was the current scene time. LASeR Commands from a script element are executed in step 4 of the LASeR execution model (section 6.4 of ISO/IEC 14496-20). Interaction between the execution of LASeR Commands in a script and the execution of DOM calls by a script with another scriptContentType is resolved by the processing order of the events which trigger the scripts’ execution.
Since the execution of the two flavours of LASeR Commands are clearly specified to happen in different steps of the LASeR execution model, there can be no unforeseen interference between the two. The author can precisely predict what will happen. For two script executions happening within the same rendering cycle, the same rule shall be applied to order any mix of LASeR Command script and script with other scriptContentType.
7.1.4 Streaming and reliability requirements
The LASeR format allows streaming over reliable and non reliable network. As SVG Tiny 1.2 specification LASeR supports the following scenarii:

· The first option is the classical “download and play” mode. The user waits until the end of the download to start viewing the content.

· The second option is the progressive rendering mode. This mode is an improved version of the previous one enabling visualization while downloading the content. But the downloaded content only adds new content to the existing one, making it difficult to manage long-running documents.
In addition to this, LASeR supports true streaming, allowing long-running documents with a high-rate of updates, such as cartoons or vector graphics commercials, as well as the synchronization of streamed scene information with other media.
7.1.4.1 Progressive download and rendering

7.1.4.1.1 In SVGT 1.2

SVGT1.2 introduces progressive rendering, and a mode where the scene time can begin to progress and rendering can start before the end tag is received. Thus, players cannot rely anymore on the reception of the end tag to make integrity checks. If any packet is lost, the SVG decoder will reject the content and stop rendering.

In order to allow rendering before the end of the download, SVG constraints on well-formedness have to be dropped. Once the end tag has been received, nothing else can ever be sent any more, so the end tag is only received when the scene is at end. In the case of an interactive scene, in order to leave to the user the opportunity to interact, the scene needs to be left open, so the end tag is never received. As a result, a streamed SVG scene is never well-formed. The SVGT1.2 specification works around this problem by defining the well-formedness of SVG fragments.

7.1.4.1.2 In LASeR

LASeR scenes can be modeled as a series of SVGTiny scenes. The first frame consist of the initial SVGTiny scene, the next frames contain the differences, i.e. the set of scene updates required to transform the previous scene into the next scene.

[image: image3.emf]LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

What the author wants the user to see:

The LASeR stream:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

time

SVG

scene 1

scene 2

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

The fact that the scenes are equidistant is a simplification

What the browser contains after updates execution:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

Figure 3: updates construction

The first LASeR packet contains a complete, well-formed SVGTiny scene (with end tag) which represents the first state of the content. The next LASeR packets are sets of commands to build the next states of the content. Each packet is complete and well-formed. After each packet is received and each update command is executed, the scene in the browser is a valid, well-formed SVGT scene.
7.1.4.2 Streaming
7.1.4.2.1 In SVGT1.2

Progressive rendering is not streaming. Let us model the reception of an SVGT1.2 scene as a series of packets. Let us further assume for simplicity that each packet contains a single top element (with children): this is not necessary but simplifies explanations. Each packet/top element is received at a certain time, which depends on the network, and is executed ASAP. This is impossible to synchronize, because there is no way to associate a time stamp with a scene time. If the packet is conveyed in RTP, there is no way to translate the RTP time stamp information into scene time, in order to possibly wait before the insertion of the element in the packet. From the other end, the author has no means to specify: this element shall be inserted in the scene at time T.

.
7.1.4.2.2 In LASeR

LASeR content is always a stream. LASeR introduces the scene updates mechanism, in order to transpose to scenes the well-known structure of video streams: intra-coded frames followed by predictive-coded frames.

In a LASeR stream, the first packet contains the initial (SVGTiny) scene. As a result, at the end of the first packet, an end tag is received, allowing well-formedness checking and other optimizations.

The next packets contain update instructions. The instructions themselves can be expressed in XML or binary, but in both cases are well-formed and complete. The result of the execution of the update instructions is a complete and well-formed SVGTiny scene.
Each LASeR packet has a specific time stamp. This time stamp may need to be adapted to the underlying transport, but the LASeR specification defines precisely how to recover the scene time information from the transport time stamp. The author needs to specify the scene time at which each update will be executed. As a result, precise synchronization of scene updates with media is feasible.

Within the browser, between packets, the content is complete, well-formed SVG content.

LASeR stream can be packetised over RTP using the RFC 3640 payload, other packetisations can be considered.

[image: image4.emf]LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

The LASeR stream as transmitted:

time

SVG

scene 1

scene 2

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

What the browser contains after updates execution:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

Complete

well-

formed

SVG

scene

Each is a complete well-formed SVG scene

Well-formed differences between two SVG

scenes expressed as a list of insert, delete and

replace commands

Figure 4: Overview of a LASeR stream

Tuning in into the middle of a scene stream is possible through the use of RefreshScene commands. RefreshScene commands contain a copy of the current state of the scene which can be skipped by all LASeR players but the ones currently trying to tune in. Not all LASeR streams have to contain RefreshScene commands, as many delivery scenarios do not require error recovery (for example, TCP/IP uses packet retransmission to ensure error-free delivery). It is the content author’s or provider’s choice to include RefreshScene commands into the scene stream.
RefreshScene prove useful both in streaming and in broadcast scenarios.
7.1.4.3 Reliability

The use of non reliable delivery mechanisms (such as RTP) implies potential packet loss. In order to provide error-resilient playerq to be implemented for streamed application, LASeR specifies how to:

· Handle packet loss gracefully: after a packet loss, LASeR commands which have become meaningless are ignored.

· errors located in packets containing transient information can be recovered naturally

· errors which cause more significant damage to the scene will cause a refresh request by the user.

· Recover from packet loss:

· through the use of RefreshScene commands, a player after a packet loss is in a state similar to the “tune in” state.

· RefreshScene commands are ignored by the players as redundant.

7.1.5 Caching and private data management

LASeR specifies means to achieve data management on both client and server sides. This is achieved partially by the scene format and partially by the packaging format.

In the scene format, LASeR and SAF specify interfaces to:

· local caching of RM data on the end-user device and updating of cached RM data,

· secure temporary storage of a large amount of persistent information for content cache and offline navigation,

· content storing mechanisms and storing priority according to the rich-media service logic,
· private data permanent storage in a memory area reserved by the RM enabler.

In order to protect end-user data privacy, LASeR specifies a cookies-like mechanism to limit the above functionality. LASeR uses signaling similar to the one defined in RFC 2965, which defines a state management mechanism for Rich Media presentations.
7.1.6 Synchronization

LASeR extends the SVG/SMIL timing model, to make it compatible with the MPEG timing model and thus optimize its interfaces with MPEG media decoders.
In addition, together with SAF, LASeR offers a platform for efficient and frame-accurate synchronization of media and scene: both SVG-like scenes with SMIL animations and Flash-like scene with sequences of frames can be synchronized with the best achievable precision.

The next table summarizes the respective synchronization features of LASeR and SVG Tiny 1.2. Note: both require the support from an adequate transport layer to synchronize, such as SAF.

	Feature
	SVGT1.2
	LASeR

	Specification of the synchronization of streams
	Yes
	Yes

	Ability to synchronize of events and static animations
based on scene time with other media
	Yes
	Yes

	Ability to synchronize scene modifications with other media
	No
	Yes

7.1.7 Efficiency

One of the key underlying requirement when designing LASeR was the global efficiency that need to be provided. To fulfill this objective, LASeR provides:

· the dynamic update mechanism,

· an efficient data caching management,
· a binary format, necessary for a fast parsing and a fast, bit-efficient transmission of data,

· an append mode providing means to create fluid, dynamic services, free of the one-new-page-per-request client/server paradigm, as well as making it possible to prepare in advance multiple possible responses to user requests.
· and together with the SAF aggregation format, a means to reduce the number of necessary http connections and the round trip delay.
7.1.7.1 Binary Format
The binary format specified in LASeR allows the encoding of SVG Tiny content. It uses a compact representation for the structure of the SVG elements and uses specific coding algorithms to encode the attribute values of the SVG elements. Because the mobile platforms usually lack hardware float processing, the compression of these attribute values has to be simpler than on other target platforms (PC). Complex computations that would improve the compression ratio by a small amount at the cost of doubling the decoding time have been rejected during the standardization process. Thus, the binary encoding of LASeR is straightforward, and its quality resides in the complexity/efficiency balance. Special care was taken for the encoding of values for some attribute types, like list of float coordinates, vector graphics paths or transformation matrices.

The LASeR binary syntax is extensible, so that private extensions can be mixed among normal LASeR elements and attributes, to be ignored by decoders that do not know how to process them. One possible extension is the encoding of CDF documents with LASeR, which allows the encoding of xHTML and other XML components in the fast-to-parse any-XML encoding extension of LASeR.
As with SVG, small media such as images and short A/V clips can be packaged with the scene. The following should be noted:
· such embedding usually incurs, in SVG Tiny, the 33% compression efficiency penalty inherent to Base64 encoding required for the embedding,

· the same embedding is done in LASeR at no extra cost in compression efficiency,

· as such usage does not follow the MPEG terminal model, it is recommended to avoid this mechanism in favor of the more powerful SAF mechanism.
7.1.7.2 Server side efficiency: the append mode
Many Rich Media services rely on a key feature of LASeR: incremental scenes, made possible by the LASeR append mode. The append mode is the possibility to create a LASeR stream containing not an independent scene, but an addition to another existing scene.

There are two typical use cases of incremental scenes:

· Streaming style: the scene is designed as a sequence of frames, and there is a continuous stream of updates to change the current frame into the next frame. Bandwidth usage is varying but never drops to 0. The incremental scenes of this kind are usually best transported over streaming protocols like RTP. A typical use case is a cartoon-like animation.

· Interactive style: the scene is interactive and user requests are processed by the server. The response to user request is a change to the existing scene, not a new scene. Such scenario also requires continuous updates to the scene, but the statistics of the transmission are totally different from the previous style: bandwidth is heavily used for a short time after a user request, and then drops to 0 until the next user request. Given the variety of usages of mobiles, the next user request could come a few seconds or a few hours later.

From a server-side point of view, the interactive transmissions can be considered as a series of separate connections, as opposed to the continuous connection of the streaming style. It is typically implemented using separate HTTP connections, since each data burst results from a user request. However, from a LASeR viewer point of view, it is the same scene/service that is modified. Hence the requirement for the server to be capable of signaling an append mode: “this stream does not contain a totally new scene, but an improvement to the scene the viewer is currently processing”.

The append mode also allows the creation in advance of multiple responses to possible user requests. If the service is modeled as a state machine, each transition of the state machine represents a change to the current scene and may be implemented as an append component. Careful authoring and scope management is required, in particular to avoid clashes of id between elements added by different append components. Still, this functionality opens the way to servers caching most of the responses to users, therefore dramatically improving the service’s performance.

7.1.8 Packaging
In MPEG-4 part 20, the Simple Aggregation Format (SAF) is defined with the following features:

· Simple aggregation of any type of stream, file or fragment.

· Dynamic addition of new streams/files after the start of the delivery.

· Media interleaving.
· Precise synchronization mechanisms support.

· Signalling of MPEG and non-MPEG streams.
· Optimized packet headers for bandwidth-limited networks to guarantee a very low overhead.
· Easy mapping to popular streaming formats.
· Enhanced support for progressive download.

· Real time transmission/delivery.

· Cache management capability.

· Extensibility such as adding new packet types or new stream types.

7.1.8.1 SAF Elements
The SAF specification defines the binary representation of a compound data stream composed of different elementary streams such as LASeR, xHTML, CDF, SVG, SMIL, CMF/CMX, video, audio, image, font and metadata. Data from these various elementary streams results in one SAF stream by multiplexing them for simple, efficient and synchronous delivery. A SAF stream is made of SAF Access Units (AU) of the following classes:

· AUs carrying configuration information for the media or DIMS/RME decoder to be initialized.

· AUs carrying configuration information for elementary streams not carried inside this SAF stream. Streams that need to be carried separately include streams which are started interactively, or are delivered through another protocol.

· AUs carrying media or Scene AU.

· AUs carrying an end of stream signal, indicating that no more data will be received in an elementary stream.

· AUs carrying an indication that no more data will be received in this SAF session.

· AUs carrying cache units carrying complete scenes to be pre-loaded into the user’s cache to speed up the answering time for future requests.
7.1.8.1.1 SAF Benefits

The main objectives of adding SAF are as follows:

· SAF provides a light mechanism that uses low memory footprint (size of the code).

· SAF provides a light mechanism that uses low run-time memory.

· SAF provides a mechanism that enables the addition of media in real time (i.e., during the dynamic composition/creation of the contents).

· SAF provides a delivery mechanism that ensures minimal latency since the content can be parsed and decoded as soon as it is received.

· SAF provides a delivery mechanism that enables to optimize the response size : the response can be interrupted by the end-user when the progressive delivery is in progress, when the emitter detected the interruption it can stop the addition/encapsulation of media within the response and then reduces the response size according to the end-user interest, while maintaining the continuity of service.

SAF provides a delivery mechanism that enables to reduce the number of response when browsing. Compared to WAP delivery mechanism where the number of requests/responses is equal to (N+1) where N is the number of media included in the page/scene; SAF reduces the number of requests/responses to 1.

In addition, SAF may be used as payload format for streaming (over RTP/RTSP) multimedia presentation aggregating Scene data, Still Pictures, Audio and Video. RFC 3640 may be used as an RTP payload format. The improvements of SAF in this use case are as follows:

· SAF enables to improve the synchronization of media that have been encapsulated in the same SAF streams.

· SAF enables to send over RTP scene description and images (vectors or bitmaps).

· SAF enables to reduce the number of RTP streams by aggregating the media and scene description within the same RTP streams: this should induce a reduction of run-time memory and CPU usage (RTP sockets are CPU and memory demanding).

· SAF enables to add in real-time (i.e., during the delivery and content generation processes) media, graphics elements or scene description modifications according to end-user interactions. The end-user interactions are done using a request/response scheme like WAP/WSP or WEB/HTTP.
7.1.8.1.2 Caching and private data management

The packaging format proposed by SAF provides more features for caching / storing mechanism, based on the MPEG model:
· The cacheUnit allows sending a pair url+scene in advance, such that when that url is requested, there is no need for a request to the server. This content pre-load mechanism can be used to optimize the response time for frequent/predictable user requests.
· Each stream can be declared permanent, which means that if the terminal has enough memory, it should store the stream for a duration specified in the stream header. This allows frequently used streams to be labeled specifically so that the device caching module can give them preference.
7.1.8.1.3 Synchronization

Scene formats require support (at least temporal signalling) from the underlying transport mechanism. When the transport mechanism does not provide that support, as is the case with HTTP, SAF provides the support required by the scene format to create a complete platform for efficient and frame-accurate synchronization of media and scene.
7.1.9 Integration
7.1.9.1 LASeR client
The LASeR client is composed of various independent components

[image: image5.emf]Rendering

SVG Tiny1.2

SGV Tiny 1.2

Scene Tree

LASeRScene Tree

extensions

Decoding

LASER Commands

Demux

Video /

Audio /

Image

Decoders

Font

Decoder

APIs

LASeRdata

LASeR-encoded

SVGTinyData

Private Data

Wrapped in SAF

SpecificLASeRpartCommonwithSVGT1.1+

LASeRSceneTreeextensions

LASeRCommands

LASeRbinarydecoding

Streamdemux

Font decoding

SVG scene treemanagement

SVG renderer

A/V/I decoders

LASeRRenderer

extensions

Figure 5: Component architecture of a LASeR v1 client

The Font decoder is not mandated.

[image: image6.emf]Rendering

SVG Tiny1.2

SGV Tiny 1.2

Scene Tree

LASeRScene Tree

extensions

Decoding

LASER Commands

Demux

uDOM

Video /

Audio /

Image

Decoders

Font

Decoder

APIs

LASeRdata

LASeR-encoded

SVGTinyData

Private Data

Wrapped in SAF

SpecificLASeRpartCommonwithSVGT1.2

LASeRSceneTreeextensions

LASeRCommands

LASeRbinarydecoding

Streamdemux

Font decoding& uDOMextensions

SVG scene treemanagement

SVG renderer

uDOMinterfaces

A/V/I decoders

uDOMextensions

LASeRRenderer

extensions

Figure 6: Component architecture of a LASeR v2 client
7.1.9.2 Integration with the SVGT client

[image: image7.emf]Scene Tree

Management

XML parser

uDOM, JSR226

LASER Demux

And Decoding

Any

fonts systems

Common elements

Different Elements

Rendering SVG

SVG Fonts

LASER

Commands

In SVG

In LASeR

Scene Tree

extensions

Gzip/deflate

Rendering

extensions

Figure 7: Dual SVG Tiny/LASeR Client

To complement the figure above, the SVG Font subsystem can be a common element.

We estimate a dual player LASeR/SVG Tiny 1.2 to share more than 60% of the code.

The current footprint of the LASeR v1 reference software, (Jar file) in Java, non optimized, is about 100K (excluding SVG Font, codecs, XML parser and uDOM).

7.1.9.3 Integration with the Browser

Same as an SVG Tiny player, the LASeR client or the dual LASeR/SVG client can be integrated in a browser in multiple ways:

· As a plugin: the choice of interfacing is left to the responsibility of implementations, i.e. providing Netscape API or to particular APIs of specific browsers.

· As a plugin using the uDOM API: the integration is more generic and offers interoperable services.

· Integrated according to CDF/WICD recommendations: the integration is generic, offers interoperable services and compound documents are reliably rendered the same way on all implementations.

[image: image8.emf]uDOM

LASeR

updates

LASeR

scene tree

/ renderer

LASeR binary

SAF / 3GP / Multipart

Script (ECMA or Java)

xHTML DOM

xHTML + CSSA/V

HTTP

LASeR pluginxHTML browserstd components

Figure 8: Architecture of LASeR as a plugin in the browser
The above works for a dual LASeR/SVG Tiny 1.2 player as plugin to a browser, and below as a CDF/WICD application.

[image: image9.emf]LASeR

Updates

uDOM

LASeR

SVGT1.2

Rich Media

Engine

LASeRBinary

SAF / 3GP / RTP / Multipart/ Flute

Server

LASeR/SVG + xHTML

xHTMLDOM

xHTML+ CSS

A/V

Player

Codecs

CDF

Server SideArchitecture

Client SideArchitecture

A/V

Streaming

Server

Script(Ecmaor Java)

Font

other

clients

(CBMS…)

Figure 9: LASeR –CDF Architecture

7.1.9.3.1 Processing Model

Here is a copy of the LASeR execution model :
	The playback algorithm of a compliant LASeR Engine shall produce the same result as the algorithm described below with the following high-level steps for each execution cycle:

1. Compute the new scene time Ts (begin of execution cycle);

2. Decode any LASeR AU with a scene time below or equal to Ts, and not yet presented in earlier execution cycles;

3. Execute LASeR Commands from LASeR AUs decoded at step 2;

4. Process all events (DOM, SVG or LASeR) according to the DOM event model [3] and resolve all begin and end times that can be resolved according to the SMIL Timing Model, in clause 10 of [SMIL2];

5. Determine active media objects by inspecting begin and end times,

6. For each active media object, present the media access unit with the normal play time equal to clipBegin + (Ts – begin time) and clamp it using clipEnd.

7. Render the audio and visual element of the scene tree according to the SVG rendering model as described in Clause 3 of [W3C SVG11] (end of execution cycle).

7.1.9.3.2 As a consequence the laser processing model does not violate and is compliant with the XML processing model and allows a safe integration within the browser. Some examples are provided in Annex 1.
7.1.9.4 Integration in the OMA environment

7.1.9.4.1 OMA DRM
The specification of the RME enabler is orthogonal to the usage of OMA DRM. Encrypting of AV stream or content as well as decrypting process can be managed by the usual DRM client. Interface can be implemented between the RME enabler and the DRM user agent to provide security message within the rich-media scene. (e.g.: you can not access to this content. To access to this stream it will cost you X€)
DRM consideration are orthogonal to the media-type.

DRM considerations may leads to develop additional specification if protection of the Rich-media content itself or part of it will be required.

7.1.9.4.2 BCAST
The BCAST specifications on ESG and Service allow Rich-Media data to be transmitted and used.

During the interim meeting in Tokyo (September 2005) it has been agreed by the BCAST group that the BCAST specification SHALL NOT preclude the usage of MPEG-4 part 20.

The specificities of LASeR (updates, binary format and streaming) can be beneficial to a BCAST application without modification of the actual BCAST specifications on the following points:

· Bandwidth saving

· Integration of the auxiliary data within a Rich-media service

· Creation of an interactive stream, possibly accessible from the ESG fragment or service.

7.1.9.4.3 Others OMA enabler (DCD…)
LASeR can be interface with other OMA enabler.
In particular, for DCD, specific features of LASeR such as update, streaming can be beneficial both for the creation of a DCD content and for the rendering of a DCD application.
7.1.9.5 Integration in the 3GPP environment
7.1.9.5.1 LASeR in 3GPP delivery

LASeR content can take two forms:

1. LASeR scenes: The first form is like an SVG scene, with only one access unit, and no stream.

2. LASeR streams: The second form is a video-like stream, with multiple access units. Examples include cartoons.

A variant of the first form is a LASeR scene with few access units. This is in principle like a short video clip, and can be assimilated to form 1.

For MBMS, PSS and MMS, LASeR integration is:

· LASeR scenes with just one access unit, or a few access units, behave exactly like gzipped SVG scenes, and should be treated the same way within MBMS, PSS or MMS.

· LASeR streams behave like audio or video streams, and as such, should be treated the same way as video or audio streams within MBMS or PSS. It does not seem appropriate to send large cartoon streams as part of an MMS.

· LASeR uses the payload format RFC3640 for RTP streaming.

7.1.9.5.2 LASeR in 3GPP Extended File Format

LASeR content can be stored within files compatible with the 3GPP Extended File Format. As a LASeR stream is a timed stream, made of AUs, the storage of LASeR streams in 3GP files is straightforward and similar to the storage of audio or video streams. Each LASeR AU is stored as a sample. All these samples form a LASeR track identified by a four character code. The configuration for the LASeR decoder is stored as an entry the sample description box. In case of a LASeR stream comprising only one AU, it is also possible to store this AU, as it is done in the 3GPP specification for SMIL presentation, i.e. as a primary item of the file, using the Metadata box structure.

7.1.9.5.3 SAF and the 3GPP extended file format

SAF is not a file format but a packaging format. 3GPP extended is actually limited in functionality:

· No streaming

· No possibility to add a stream in a 3GPP Extended File which progressive download has already started

SAF can be combined with the 3GPP extended file format in order to provide additional functionality while keeping backward compatibility.

An extension of the 3GPP file format will be required to:

· to make it efficient in streaming mode when a new stream is added in band

· to limit ‘moov’/’moof’ parsing when it is not required, to reduce memory consumption

7.1.9.6 Integration in 3GPP 2 environment.

CMF components can be embedded in SAF streams to achieve compliance with 3GPP2.
To be continued
7.1.9.7 Conclusion

MPEG-4 part 20 answers to the core of the RME requirements and shall be part of the RME enabler

LASeR Rendering

 Extensions

Normative in SVG

Normative in LASeR

Rendered

Scene

Scene

Tree

Decoded

Access

Units

Scene

Stream

SVGT1.2

Renderer

LASeR

Scene

Tree

Manager

LASeR

decoder

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050824-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050824-I]

_1194515864.ppt

LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

What the author wants the user to see:

The LASeR stream:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

time

SVG

scene 1

scene 2

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

The fact that the scenes are equidistant is a simplification

What the browser contains after updates execution:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

_1194517087.ppt

LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

The LASeR stream as transmitted:

time

SVG

scene 1

scene 2

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

What the browser contains after updates execution:

time

SVG

scene 1

SVG

scene 2

SVG

scene 3

SVG

scene 4

SVG

scene …

Complete well-formed SVG scene

Each is a complete well-formed SVG scene

Well-formed differences between two SVG scenes expressed as a list of insert, delete and

replace commands

_1195105517.ppt

LASeR

Updates

uDOM

LASeR

SVGT1.2

Rich Media

Engine

LASeR Binary

SAF / 3GP / RTP / Multipart / Flute

Server

LASeR/SVG + xHTML

xHTML DOM

xHTML + CSS

A/V

Player

Codecs

CDF

Server Side Architecture

Client Side Architecture

A/V

Streaming

Server

Script (Ecma or Java)

Font

other

clients

(CBMS…)

_1175158129.ppt

SVG Scene Tree

LASeR

Commands

Binary Encoding

LASeR

Extensions

SAF

Audio

Video

Font

Image

…

Application

Network

Transport

