Doc# OMA-MAE-2006-0032R01- QA-RMEWP-LASeR-Ikivo-Answers.doc
Input Contribution

Doc# OMA-MAE-2006-0032R01- QA-RMEWP-LASeR-Ikivo-Answers [image: image1.jpg]"sOMaQa

Open Mobile Alliance

.doc
Input Contribution

Input Contribution

	Title:
	Rich Media Environment. Q&A-RME-landscape-LASeR-R01 Ikivo comments
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-BAC-MAE

	Submission Date:
	29 Jan 2006

	Source:
	Elin Röös, elin.roos@ikivo.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Comments and answers to the R01:

Answers to comments on the MPEG4 part 20 question in the RME technological landscape section 6 and section 7.2
2 Summary of Contribution

Comments and answers to the R01:

Answers to comments on the MPEG4 part 20 question in the RME technological landscape.

3 Detailed Proposal

Red text indicates the answers and comments added by Ikivo 2006-01-24.

Please consider the following responses to questions on the MPEG4 part20 part of the RME landscape document.

Ikivo: A comment on how we think the RME work should be carried out: the landscape document should contain each of the RME requirements and how each of the requirements is addressed (and fulfilled) by the examined format (in this case LASeR). By doing this for each technology that is candidate for inclusion in RME we will be able to see how many requirements the examined format covers ‘as is’ and how much additional specification work is needed to be carried out in OMA.

Therefore it is important to be very clear in specifying which version/profile of the format that covers which requirement.

General comments:

In the attached documents discussing LASeR as RME technology it is stated that LASeR is an extension to SVG Tiny, which is not accurate. Further, the documents do not evaluate the RME requirements against the LASeR specification in a clean and consistent manner, since for several requirements the documents point to current and future LASeR implementations instead of requirements in the LASeR specification.

This is a very strong statement. I would be glad to understand what you are considering as “future LASeR implementation” versus “future LASeR specification”.

Ikivo: Take the requirement below as an example:

	RME-SEA-001
The RM Enabler SHALL be able to launch the browser
	Yes
	LASeR engines can launch external applications, including the browser. Nothing in the LASeR specification precludes it and existing implementations have already implemented this feature.

An implementation of some specification can of course always choose to implement more features than those mandated in the specification but that is not relevant to mention, since in order to secure interoperability across implementations the specification must mandate and fully specify a specific feature.

The LASeR specification defines extensions over the SVG Tiny specification. This is a fact. Then some of the RME requirements are constraints on the specification (such as compatibility with SVGT) and some are constraints that cannot be checked on the specification but can only be checked on implementations (code size, can call the SMS editor, …). Thus it is valid to bring implementations in the discussion somewhere.

Ikivo: It might be relevant to bring up the discussion of implementations when it comes to code size but not when it comes to interfacing with for example the browser. It is very important for RME to specify how to interface with other applications on the device and not leave this to the implementation.

In addition, it is not always clear whether the explanations are pointing to the current version of the LASeR specification or future versions, and it is not always clear whether the explanations are pointing to the Full profile of LASeR or the Mini profile of LASeR. It is important that the entire LASeR based contribution be updated to add clarity and specify without any doubt the following regarding the application of the LASeR specification upon the RME requirements:

This comment has been answered on the MAE mailing list, and we agree that every proposal should refer to the good version of a specification, an update will be done on this point in the MPEG4 part 20 CR.

Ikivo: Sorry, since I missed this discussion, could you please explain to me what the good version of a specification is?

I think a lot of your comments come from the fact that there are different ways of working in the various standardisation bodies.

The W3C intend to have specification that decides of implementation points.

In MPEG specification does not cover implementation points but only the core of the specification. For instance the binary format can be played by an adhoc decoder, or by a BiM decoder, the binary syntax is specified, the implementation is left to the choice of the implementer! The rendering model is not specified in LASeR because the LASeR specification explicitly refers to the SVG Tiny1.2 rendering model. Regarding the scene, codecs (AV, font etc…) are left to the choice of implementation and LASeR only recommends the usage of OpenType font.

The process in OMA is time to time to refer to a specification (e.g.: SMIL) but often to develop a specification. In the second case, standards coming from other standardisation bodies can be part of the OMA specification (for instance XHTML-MP versus XHTML, BCAST versus MBMS and DVB, mandatory features in the SVG WID etc…).

I don’t see an issue here, if OMA decides that RME will be composed of multiple components taken from the W3C, from MPEG and also develops in MAE (for instance the dual implementation of an SVG/LASeR player).

Ikivo: Our issue here is that we are concerned about how LASeR could secure interoperability since it only specifies the core and leaves a lot to the implementation (like the things you have listed above). Of course, OMA could fill these gaps, but then it is VERY important to very clearly list when the LASeR specification as is does not specify a feature.

When it comes to different ways of working in different SDOs, MPEG has a notion of normative “reference implementation” to complete the specification, which OMA does not have. OMA only make specifications and these specifications needs to be detailed enough to guarantee interoperability between multiple implementers of the specification.

The planning for RME both in OMA and 3GPP should be finalised for Q3/Q4 2006 which will give time to W3C to finalise the SVG Tiny1.2 and which is also aligned with the planning of LASeR V2 in MPEG. So if concerns are not addressed by LASeR V1, they can be resolved by LASeR V2 that will be FCD in march, so at a mature stage for a specification in OMA and 3GPP (equivalent of CR in W3C)

1. Satisfaction of requirement through implementation vs. satisfaction through specification requirement

2. Satisfaction of requirement through current version of LASeR vs. future version of LASeR

3. Satisfaction of requirement through the Full LASeR profile vs. the Mini LASeR profile

I reiterate that we have not proposed LASeR mini. I would be glad that you could point out what you consider achieved ONLY by LASeR mini instead of LASeR Full in our proposal.

Ikivo: As there is no reference to either mini or full in the proposal, there is no way of knowing what profile is being discussed. If the entire proposal is based on the LASeR full profile, please add such information in the proposal.

The same method of clear specification must be applied to all comments or other clarification in the LASeR contribution as a whole.

Below are a few general issues that we see as very important, please see comments in the two attached documents as well.

LASeR v1 is described as being an extension to SVG Tiny 1.1 and that is not accurate. An extension of some structure is another structure that contains the original structure. LASeR v1 contains parts of both SVG Tiny 1.1 and SVG Full 1.1 and SMIL 2, but excludes required parts from both SVG specifications. Some very important parts of SVG Tiny 1.1 missing in LASeR v1 include, for example: client-side XML parsing, SVG Fonts and error handling mechanism. Therefore, LASeR v1 is not an extension to SVG Tiny 1.1. LASeR does not, for example, require the client to handle SVG Tiny 1.1-files in text format or gzipped format.

Again, do not confuse the LASeRv1 specification which extends SVGTiny 1.1 and LASeR profiles which may not include a mandatory feature of SVGT1.1. (same for v2)

RME is not SVG Tiny 1.2. A dedicated WID on SVGTiny1.2 exists. RME is indeed SVGTiny1.2 based in particular if we refer to the SA4 DIMS requirement: SHALL be compliant with the RENDERING MODEL of SVGT1.2.(requirement that we do not have in MAE) It is clear and it appears in all proposal that RME will specify more than SVGT1.2.

As a consequence:

Gzip and Client side XML parsing are not part of the rendering model and is not part of the requirements of RME. This could be part of the decision and specification in OMA.

Error handling mechanism is not part of the rendering model. On this point, the error handling mechanism in LASeR was defined before the error handling mechanism was modified in SVGT1.2. Then the two standards are identical and the section in the LASeR specification regarding error handling mechanism should be replace by “same as in SVGT1.2”. This is only a small detail in the specification. So, I’m glad to state that YES on this point LASeR and SVG Tiny 1.2 are aligned. In addition, LASeR defines also an error handling mechanism for the updates.
A LASeR V1 implementation is a partial implementation of SVGTiny1.2 (because SVGT1.2 is not finalised yet)

A LASeR V2 implementation will be a complete implementation of SVGTiny1.2 including uDOM and remaining features that were not stable. The liaison to be send from OMA following the Athens meeting asks LASeR to handle Binary and txtual streams, datas, then the group will consider it and answer this point.

Ikivo: The paragraph above talks about what could be done in a specific implementation again, which is not relevant. The interesting question is: will the LASeR v2 specification mandate the complete SVG Tiny 1,2 specification, including the normative chapter on interoperable clients? If not you could not state that LASeR v2 is an extension to SVG Tiny 1.2.

See previous comment for the error handling

Hence, we propose that all text indicating that LASeR versions are extensions to or supersets of versions of SVG Tiny is removed. Further we ask Streamezzo to clarify which version and profile of LASeR, v1, v2, Mini or Full, they are referring to when claiming to cover a specific RME requirement.

See previous comments

In general, we would like to ask Streamezzo to clarify when the actual LASeR v1 specification requires features demanded in the RME RD. In case of referring to future LASeR v2 requirements, this should also be made very clear. In order to secure interoperability, it is important that when evaluating the different technologies against the RME requirements that the evaluation is based on what is required in the specifications and not what existing or future implementations can or could do.

See previous comments. I would also ask IKIVO to NOT point to a company in particular but to the group.

Ikivo: Sorry about that.

Streamezzo proposes a dual player handling both LASeR and SVG Tiny. The interface between these needs to be specified in order for this to work. Neither specification handles this, and since LASeR does not handle interfacing with other XML-technologies this is not possible given the current specification.

This is one of the multiple proposals in our contribution. The specification of the interface for a dual svg/laser player will have to be done in MAE if the group choose this way as the better solution. See my conclusion.

Again I would be glad that you elaborate your comments “interfacing with other XML-technologies is not possible”, given that any XML can be encoded together with LASeR content and that LASeR can be interface easily within a browser.

Ikivo: We still do not understand how LASeR v1 or v2 could interface with other XML based applications on the client, for example the browser, since there is no mandated XML interface in LASeR v1 at least. LASeR v1 only mandates handling of binary encoded data. If LASeR v2 will mandate handling of textual XML data where will encoding/decoding of XML into the binary LASeR format take place? Which API will be used?

Given the very widespread use of HTML (and future CDF), one very important feature going forward for an RM enabler is the ability to interface with XML-based media. The LASeR v1 specification does not require that, which we see as a major limitation with LASeR.

I would be glad if you could explain “interface with XML-Based media” and what are the limitation you see in LASeR V1 on this. Our views are that:

· LASeR content can be used interchangeably with SVG content as a CDF component

· Any XML content can be encoded and carried together with LASeR content, thus making LASeR an appropriate carrier of CDF documents

Ikivo: How will the LASeR client communicate with the CDF client? Through which API? Where will encoding/decoding of binary data take place?

A general concern with LASeR is that it neglects to require important features. It claims to fulfill RME requirements by stating that a certain feature is possible to implement in LASeR. This is not relevant. In order to secure interoperability, features need to be mandated and fully specified.

RME is not LASeR, as it is not SVG. Both LASeR and SVG require additional technologies to fully answer RME requirements, and we think it is important to signal compatibility with a requirement even if it is not answered directly.

Ikivo: We think such indication should be avoided and instead it should be clearly specified whether a feature is fully specified in a specific specification, in this case LASeR, or whether OMA needs to do work in that area.

RME will be specified in OMA (or and 3GPP) not in W3C, not in MPEG.

That’s the reason why we have a work item and I agree that there is some work to be done in MAE.

Comments in section 6:

	ID
	Section 6
	Proposal
	Question
	Answer

	001
	General requirement for the mediatype

RME FUNC 001

The RM enabler SHALL support methods to minimize the latency perceived by the end user.

	LASeR provides multiples features to achieve this goal, in particular:

 1 - a binary format allowing a fast parsing speed, a fast delivery of highly compressed content,

2 - a very efficient dynamic update mechanism to have always modifications on the end-user screen and to replace the page by page navigation provided by XML based technology.

3 – means to play content while waiting feedback from a request, while buffering data or while waiting for a new scene.
	
2 - Most XML-based technologies, and certainly SVG, provides dynamic update mechanisms and page by page navigation. Both are important. Dynamic updates in SVG Tiny 1.2 (reference ?) are handled via the uDOM api

Ikivo contribution 2005-387

3 - What’s feedback from a request? From whom?
Vodafone (document by E-mail 2005.12.14)
	Could you clarify what is the question and the relation with the proposal ? The first sentence is inaccurate: e.g. SVGT1.1 does not provide DOM nor scripting nor any kind of updates. Note: we want to avoid page by page navigation.

Ikivo: When reading the following sentence:

“…to replace the page by page navigation provided by XML based technology.”

you get the expression that all XML based technologies only offer page by page navigation which is not true, which we wanted to clarify.

“while waiting for feedback from a request” == in a client-server scenario, when a request has been sent to the server and the terminal is waiting for the server answer

	002
	General requirement for the mediatype

RME FUNC 002

It SHALL be possible to present multiple RM data sources within a single scene.
	The design of the LASeR engine supports the integration within one scene of data and streams coming from various origins, e.g. different HTTP servers, DVBH + 3G, HTTP + RTP, etc.
	What is LASeR engine? Whole server/client combination? Or just client?

It looks like that the comments are based on specific application implementation and not LASeR spec itself. As we’re defining enabler, it might be better if we do not rely any discussion on specific implementation.
Vodafone (document by E-mail 2005.12.14)
	LASeR engine means LASeR user agent.

The only way to prove that an architecture (here LASeR) is compatible with a feature (here multiple origins) is to implement the architecture and show that the feature is present.

Ikivo: The specification of a format must be detailed enough to clearly show that a feature is a required part of the format. Not doing this inevitably leads to interoperability issues between implementations. It is important to remember that the RME effort is about developing a specification, not an implementation.

	003
	General requirement for the mediatype

RME FUNC 003

The RM enabler SHALL be able to render, within one scene, data and updates received from different sources (eg:networks and delivery mechanisms, content provider). Note: the service provider should be the same
	The design of the LASeR engine supports the integration within one scene of data and streams coming from various bearers. E.g.: DVB-H + 3G networks

	Same as above.
Vodafone (document by E-mail 2005.12.14)
	Same as above.

	004
	General requirement for the mediatype

RME-FUNC-015

The RM enabler navigation and interaction SHALL be agnostic to the type of MMI provided (eg using any input device)
	The LASeR design is MMI agnostic and provides the management of any input device within the scene description.

In particular LASeR allows the emulation of a pointing device (stylus or mouse) through the use of a keyboard, thus allowing content to be designed in an input-device independent manner.
	Are you talking about authoring environment? I do not think this is a LASeR specific. This is an authoirng application matter.
Vodafone (document by E-mail 2005.12.14)
	The LASeR specification provides specific tools to ease the authoring of services which are independent from the type of MMI on the phones.

	005
	General requirement for the mediatype

RME-FUNC-025

The RM enabler SHALL allow an end to end optimizations to be applied (eg: compression, preparsing, data preconditionning)
	LASeR provides both an highly efficient compression mechanism a preconditioning mechanism and a packaging of data by using SAF

A LASeR content is always provided as a complete and well formed fragment/packet whatever are the transmission modes, for checking, reliable and optimisations purposes.
	What do you mean by “a complete and well formed fragment/packet”? In what sense?
Vodafone (document by E-mail 2005.12.14)

Does this mean that there is a requirement on a server component to only form “well formed fragments/packets”? Where is this assertion enforced? Does the client do any checking or does it always assume wholeness in every “packet”? Please explain.

Ikivo contribution 2005-387

	One key issue in the SVG Tiny1.2 progressive download mechanism is that it forces the processing of incomplete, non-well-formed documents. Indeed, the SVG Tiny1.2 user agent is forced to try to render whatever it received at a certain time. LASeR access units are complete and well-formed, thus not requiring the processing of incomplete, non-well-formed documents.

Ikivo: Why is this an issue? Progressive download has been part of the SVG specification since version 1.0 and has multiple, widely-used implementations. We fail to see why this is a “key issue”.
No. It is a consequence of the design of LASeR that access units are well-formed and the LASeR user agent is not required to be able to render incomplete elements.

Well-formedness is enforced at the level of access units.

No, the user agent does not need to check for well-formedness. It is given, unless the packet transmission went wrong.

	006
	General requirement for the media type

RME-FUNC-026

RME-USA-001

The RM enabler functionality SHOULD be scalable from constrained terminals to unconstrained terminals.
	LASeR allows implementations from medium-range J2ME devices (MIDP1/2) to higher-end PDA-like devices.
	Can constrained terminals be “mid-range”?
Vodafone (document by E-mail 2005.12.14)

We can see nearly 100 SVG Tiny enabled handsets on the market today of which the vast majority are mid-level feature phones. Please explain if LASeR implementations have been proven to work within the constraints of the mid-level ARM7 based feature phones.

Ikivo contribution 2005-387

	Yes.

Which SVG Tiny are you talking about ? 1.1 ? If so, SVGT1.1 does not satisfy the requirements of the RME.

Ikivo: Both SVG Tiny 1.1 and 1.2. Neither SVGT1.x nor LASeR v.x satisfy RME as is.
What is the relationship between your statement and the proposal ?

 This is purely a product consideration and has nothing to do in the context of standardisation.

Ikivo: As you mention in the second paragraph above some RME requirements must be checked against actual implementations. This is one of the few RME requirements where this is actually relevant, why our comment is motivated.

	007
	General requirement for the media type

RME-FUNC-028

Personalisation by the end-user of content, delivered within the service SHALL be possible.
	LASeR can do this through LASeR Commands Save, Restore and Clean and do not require to reload or re download a complete content / application.

The LASeR update mechanism is generic, can apply to any XML data and can be implemented easily on top of uDOM.
	In all discussion, I see implicit notion of “application implementation matter”. This RME shall be enabler and not an application.

How does LASeR resolves security/privacy issue on Save, Restore and Clean?
Vodafone (document by E-mail 2005.12.14)
	The LASeR Commands are dully specify.

What in your opinion refers to an implementation mater in this proposal ?

Saved data access is restricted according to the same rules as HTTP 1.1 cookies.

	008
	General requirement for the media type
RME-FUNC-029

Text scrolling and slideshow SHALL be provided
	LASeR inherits this feature from SVG Tiny 1.2.

LASeR V2 will propose a more complete solution for text scrolling.

	What do you mean by complete solution? Are you saying that SVG Tiny 1.2 text scrolling is not complete solution, or LASeR v1 text scrolloing is not complete SVG Tiny 1.2 text scrolling?
Vodafone (document by E-mail 2005.12.14)

LASeR points to SVG Tiny (which one?) features in a feature by feature manner and does not inherit the full SVG Tiny (which one?) specification or large portions of the specification. The use of the word “inherit” may be misleading in this context and should be clarified.

Ikivo contribution 2005-387

	LASeR V1 has the same functionality for text scrolling as SVGT1.2

LASeR V2 will specify in addition another tool to achieve more functionality for text scrolling e.g. management of dynamically changing text, unknown font size...

This comment confuses the LASeR specification and the LASeR profiles.

Ikivo: I don’t understand how we are confused. The LASeR specification contains the general specification of LASeR in chapters 1-7. Chapter 8 describes the profiles. In section 6.2.2 of the LASeR specification it says: “SVG elements related to font description are not supported by LASeR.” This is one example (of several) that the LASeR specification is not an extension to SVGT (1.1 or 1.2)..
The LASeR specification extends the whole of SVG Tiny (1.1 for LASeR v1). However no LASeR profile mandates the SVG fonts or any font systems

Ikivo: You can not say that LASeR v1 extends SVG Tiny 1.1 if it does not include each and every part of the SVG Tiny 1.1 specification

	009
	requirement for the media type
RME-FUNC-030

The RM enabler SHALL allow best effort font management regardless of screen size language and fontstyle.
	The design of the LASeR client does not mandate any font systems and is not limited to the SVG font system which does not provide a convenient hinting of characters. For any language and in particular for Arabic or Asian langage, LASeR can be used with Opentype font or with a system font.
	Does not mandate? How do you guarantee consistent user experience? Shouldn’t at least device font or SVG font shall be mandated?
Vodafone (document by E-mail 2005.12.14)

The SVG font system is a powerful mechanism that assures interoperability. It consists of

1. SVG-Fonts: a way of embedding font data into the content that is fully transformable and renders with the svg engine (no external font engine required). SVG Fonts are non-hinted since the added quality hinting adds on a mobile device is not enough to motivate the increase in complexity and data size

2. System Fonts: SVG (which one ?) also allows for using system (or platform) fonts. This way content can take advantage of fonts already in place (and optimized) for the target platform. This can be dangerous since it implies platform specific content. To address that, SVG (which one) contains declarative test features to enable content to check if a certain system font is available, if not a fallback solution can be provided.

Ikivo contribution 2005-387

	LASeR recommends the usage of OpenType fonts. Font are seen as codec, and then left to the OMA and 3GPP choice or to the implementation choice.

Ikivo: Good. Here it is clear that OMA needs to do additional specifications. It would be very valuable if you could clearly specify for each requirement if it is fully specified in LASeR or if additional OMA specification work is needed.
I think MPEG and W3C have the same policy there, they refer to their own standard, W3C to SVG Font, MPEG to OpenType font. The difference is that SVG mandate it and MPEG recommends it in order to let industry decide in the end.

Could you clarify the relationship between this statement and the proposal ? What is the question ?

Ikivo: We added this statement in order to explain to you the advantage with SVG fonts since your proposal incorrectly indicates that SVG fonts are of limited use. We propose that you refrain from adding opinions about svg in the proposals. Just list if and how LASeR fulfils the requirements.

One answer to your statement would be that phone manufacturers use OpenType fonts (I guess on market request) and complexity seems to be acceptable by the market place compare to the necessity to have hinting for particular language or even for a better readability. In particular, SVG font is not suitable for Kanji.

Furthermore LASeR specifies that font can be transported as separate streams including SVG font encoded as opentype.

 As far as we have been told, there are few providers of SVG fonts on the market (if any) and most SVG fonts today have been obtained by a process that infringes the copyright of the original fonts.

Could you clarify the relationship between this statement and the proposal ? What is the point of your comment, given that LASeR also allows the use of System Fonts and as the same fallback mechanism with switch ?

	010
	requirement for the media type
RME-USA-002

The RM Enabler SHOULD use a very small footprint and require very limited performance when using the smaller sets of features.
	By using a binary format for the rich-media data, LASeR allows smaller and faster implementations with a smaller memory footprint. For information the LASeR Reference Software in Java MIDP2, non optimised, is around 100kBytes
	Does this also include HTTP/HTTPS stack for communication with server?
If this is JAR file, please note.
Vodafone (document by E-mail 2005.12.14)

Faster then what? Smaller than what?

Ikivo contribution 2005-387

Please explain what this does and does not contain. For example, most likely this is the client side LASeR reference implementation and does not include an XML parser, integration with codecs or font resources, uDOM, etc. Please elaborate.

Ikivo contribution 2005-387

	Network stacks are provided as part of the J2ME implementation.

It is JAR file. The document will be updated.

Faster and smaller than a textual LASeRML or SVGTiny1.2 implementation.

Ikivo: Please provide benchmark results and specify which SVG Tiny 1.2 implementation this is benchmarked against.

 A reference to the § 7.2.1 will be added in an updated document.

XML parsing and uDOM are not mandated in LASeR v1. Transport of font is not part of the reference software, integration with existing fonts and codecs are included.

	011
	Interaction requirements

RME-FUNC-013

It SHALL be possible for the RM enabler to Interact with the source of the rich-media content

	The backchannel is the same with SVG Tiny 1.2 and LASeR, but the server response is much more efficient when binary encoded LASeR Commands are used to answer the user request.

	Does this mean LASeR allows user response to the server be HTTP/HTTPS? What protocol is mandated in LASeR?
Vodafone (document by E-mail 2005.12.14)

Much more efficient? Please provide an example showing why this statement should be true.

Ikivo contribution 2005-387

	LASeR does not mandate any protocol. Efficiency of the server response is provided by the append mode, the usage of the LASeR commands and the binary format.

See § 7.1.6.2

Binary parsing does not require string tokenization, for example.

	012
	Interaction requirements

RME-FUNC-016

The RM enabler SHALL be able to discard RM data when it has been identified as no longer useful in the service.
	The discard of data is possible with any kind of service logic: on a frame-accurate basis, on a relative time, on end-user action, on end-user navigation, on an absolute time, etc.

	Does this mean that LASeR have requirements for SVG to be frame accurate.
Vodafone (document by E-mail 2005.12.14)
	Yes, LASeR has a requirement to allow frame-accurate synchronisation of scene and scene updates with animations and media.

See 7.1.2.1.5 and 7.1.5

	013
	Interaction requirements

RME-USA-003.1

The author SHOULD have the choice of specifying what should happen between the request and the arrival of the content or during buffering. Eg: continue to play the current scene, play a specific pre-buffered animation or transition, or do nothing.
	The LASeR design allows the rendering of either the current content, or an other content while waiting for requesting content. The latency is masked by this capability.

	Does this mean that you have to have 2 DOM tree at any point of the time? 1 for constructing and another for rendering?

If so, it is vital to maintain any changes that has been made from SVG renderer part and any update from the transport layer shall be in sync. If this is the case, then it is not possible for regular SVG render works under LASeR environment without any modification.
Vodafone (document by E-mail 2005.12.14)

Elsewhere it is stated that LASeR uses and is compatible with the Rendering Model defined in the SVG Tiny (which one ?)specification. Please explain how the behaviour explained here is compatible with the SVG Tiny (which one ?)Rendering Model.

Ikivo contribution 2005-387

	No, it does not. Where do you read such a constraint ?

Please see in 7.1.1 figure 1

The behaviour explained in the proposed text is an important CDF requirement.

Ikivo: So in order to fulfil a CDF requirement you break the SVG rendering model? If so, you should not claim compatibility with the SVG rendering model.

	14
	Timing and synchronisation requirements for the media-type

RME-FUNC-006

RM data rendering time and synchronisation SHALL be controllable by the RM enabler.

	MPEG4 part 20 provides tools to manage time-based services. In the LASeR scene format the rendering time is controllable in conformance with content creator wishes. If a content is designed for 15 frames per second and the devices support a 10 frames per second display: the choice of the rendering policy belongs to the content provider: either to have a long experience but all frame are displayed, or a timed experience, and frame are dropped. Synchronisation between time-based media and static media or between multiple time-based media is possible.
	Is this for SVG part or MPEG part?
How does LASeR server will know how client consume data. I.e. if the client consume the data slowly due to its constraint and not ready to receive the next content, how server manages the stream? Do you have any underlying feedback mechanism?
Vodafone (document by E-mail 2005.12.14)

Mobile devices have a wide difference in allowed frame rate, both between devices and on the same devices given on other applications on the device. Content designed for 20fps will not look good on 10fps. But designing all content for the worst-performing device is not a good idea either. The solution is to use a timed-based approach instead of a frame based. A time-based approach is used by SVG and is scalable over the full range of devices. Please explain how this frame based approach is specified in the LASeR specification and how it can be motivated taking into account the increased footprint and added complexity for the content creator.

 Ikivo: Additionally, explain how the LASeR behaviour is compatible with the SVG Tiny (which one) Rendering Model. The SVG Tiny (which one) Rendering Model does not support frame based animations and as such the LASeR support for frame based rendering is not backward compatible with the SVG Tiny (wich one) Rendering Model.

Ikivo contribution 2005-387
	This is the MPEG part.

By specifying the timing information, the server controls precisely what happens in the terminal. There is no need of a feedback mechanism.

This statement is very nice in theory, but practice and most content on the web disprove its usefulness.

The size of the Flash community and the amount of frame-based Flash content makes me ask the opposite question: what is the point of forcing a time-based approach if no one is using it in practice. And why incur the additional complexity of time-based authoring ?

We never say or propose that LASeR content will be backward compatible with SVG Tiny user agent. LASeR user agents play LASeR content as well as SVG Tiny content if they are encoded or if an XML parser is available. SVG Tiny user agents play SVG

 Tiny content but no LASeR content.

	15
	Timing and synchronisation requirements for the media-type

RME-FUNC-008

Progressive rendering of RM data SHALL be provided

	LASeR inherits progressive rendering from SVG, but also offers significantly improved means to achieve streamability, through the use of LASeR Commands.

	Please be more specific.
Vodafone (document by E-mail 2005.12.14)
	A reference to § 7.2.4.1 will be added.

	16
	Timing and synchronisation requirements for the media-type

RME-FUNC-009

RM content SHALL be dynamically updatable in real time by the RM enabler
	The update mechanism provided by LASeR is an “object based” mechanism. The update mechanism is very fast and do not rely on scripting and parsing of updated data.

	Synchronization between updates and renderer’s uDOM tree, if you use SVG renderer in LASeR as you say, is needed in some manner. It is still unclear how you would resolve this issue.
Vodafone (document by E-mail 2005.12.14)

Does LASeR support text based XML? On the client? If not, then there is a compatibility problem and an interoperability problem with SVG Tiny solutions. If so, then the parsing must be done somewhere so it must be included when measuring speed (of course the parsing could be pre-parsed on a server component).

Ikivo contribution 2005-387
	The LASeR specification, section on Execution Model, adequately explains this issue.

See laser specification § 6.4

Could you explain what is the relationship between your question and the proposal ?

Ikivo: You use subjective, non-relevant wording like “very fast” that is not possible to verify. Our question basically request that you provide necessary information so that it is possible to understand what you base your statement on or remove the wording.

We do not understand how updates could be done without parsing if LASeR v2 is to handle text based XML.

	17
	Timing and synchronisation requirements for the media-type

RME-FUNC-012

The service provider SHALL be able to create links between RM content at arbitrary times or places in the scene
	Any pixel can be addressed as an interactive point within the scene.

 In addition to the means to create links inherited from SVG Tiny 1.2, LASeR allows the creation of frame-based content, and provides means to establish interactive links from/to any frame, based on a timed logic.

	Is it appropriate if you have variable screen size to address pixel?
Are you saying that to address arbitrary times, the content shall be authored in frame-base manner? That is not regular SVG model, rather Flash model.
Vodafone (document by E-mail 2005.12.14)

SVG Tiny 1.2 allows interactive links in both time and space. Linking to a specific time in an animation is certainly possible.

Ikivo contribution 2005-387
	Yes. However, a more appropriate word than “addressed” is “used” in the original sentence.

LASeR combines both the SVG time-based approach and the Flash frame-based approach for optimal descriptive power.

Could you explain what is the question here ?

Ikivo: Your proposal indicates that LASeR contains a richer feature set for linking than SVG Tiny 1.2. This is incorrect which we address in our comment. Please, do not make statements about SVG in you proposal, just indicate how LASeR fulfils the requirements.

	18
	Timing and synchronisation requirements for the media-type

RME-REL-001.1

The RM enabler SHALL be able to support re synchronisation with an existing active stream.
	LASeR provides means to support carrousseling and means to synchronise scene and rich-media content with time-based media.

	Is this supported by SAF or LASeR?
Vodafone (document by E-mail 2005.12.14)

	Mostly LASeR (through the RefreshScene update) with minor help by a way to use the sequence number in SAF

	19
	Timing and synchronisation requirements for the media-type

RME-REL-001.2

The RM enabler SHALL support arbitrary access points to tune in the middle of content
	LASeR provides the RefreshScene mechanism which is designed to provide tune-in capabilities in a broadcast like environment, as well as error recovery in a lossy streaming environment.

	Same as above. Is this supported by SAF or LASeR?
Vodafone (document by E-mail 2005.12.14)
	LASeR with minor help by a way to use the sequence number in SAF

	20
	Timing and synchronisation requirements for the media-type

RME-SEB-003

The RM Enabler SHALL be able to specify multiple synchronisation masters. (E.g.: This is required to deal with situations dealing with multiple synchronized groups of streams, such as video-on-demand.)

	This functionality is provided both for broadcast consideration usage (e.g.: mosaic menu) than for multiple timed media management within one scene.
	I can’t understand this comment.
Vodafone (document by E-mail 2005.12.14)
	Correct text is:

This functionality is provided both for broadcast (e.g.: mosaic menu) and for situations with multiple interactively triggered media within one scene.

	21
	Reliability requirements for the media-type

RME –REL-001

The RM enabler SHALL support graceful handling of packet loss.
	SAF provides a way to detect packet loss and LASeR is designed to handle gracefully incomplete scenes, whereas SVG user agents are required to stop rendering on errors.
	Please be more specific. This statement implies that LASeR has different rendering model.
Vodafone (document by E-mail 2005.12.14)

Not accurate. SVG Tiny 1.1 had this requirement: “The document shall be rendered up to, but not including, the first element which has an error.”. This is not the case for SVG Tiny 1.2. SVG Tiny 1.2 has a more user friendly approach where the erroneous parts (e.g. caused by lost packets) can be ignored. The user agent displays an informative message regarding the loss but the rest of the document will be displayed.

Ikivo contribution 2005-387
	The SVG Tiny 1.1 error handling is very brutal. The SVG Tiny 1.2 error handling has been relaxed considerably very recently (between LC2 and LC3) which removes any difference.

You are right. Thanks to the evolution of the error handling model in SVGT1.2, LASeR is now defacto compliant with SVGT1.2 error handling model. Further more LASeR specify an error handling process for the updates. An update will be provided.

	22
	Reliability requirements for the media-type

RME-IOP-001

Newer versions of the RM enabler SHALL be backward compatible

	LASeR inherits from SVG Tiny a provision for versioning so that LASeR V2 players can play LASeR V1 content like LASeR V1 players.

The LASeR binary encoding is generic and extensible, it is also backward and forward compatible.
	Re forward compatibiltiy, do you mean that LASeR v2 content can be understood by LASeR v1 client? Or do you mean that v1 client can ignore v2 specifc part appropriately?
Vodafone (document by E-mail 2005.12.14)

Does this mean that LASeR v2 is backward compatible with LASeR v1. Please explain

Ikivo contribution 2005-387
	LASeR does it the same way as SVGTiny (1.1 and 1.2) does. LASeR V2 client is able to render LASeR V1 content.

Backward compatible is the requirement in the row below.

	23
	Reliability requirements for the media-type

RME-IOP-002

Old versions of the RM enabler SHALL be forward compatible

	LASeR inherits from SVG Tiny a provision for versioning so that LASeR V1 players can play LASeR V2 content to the extent possible

The LASeR binary encoding is also backward and forward compatible.
	Same as above.
Vodafone (document by E-mail 2005.12.14)
	This is backward compatibility.

	24
	Caching Storage requirements

RME-FUNC-018

The storage of RM data and the privacy to be applied to the stored information SHALL be possible on the client and/or on the server side

	The use of LASeR does not impact the storage and management of the privacy of data on the server.

LASeR allows to store and manage privacy of data on the client by providing an interface to store information on a device, with cookies-like limitations for security.

	Isn’t this service dependent? Are you saying that server side issue shall be resolved out-side LASeR? If so, I would agree.
If multiple sources are aggregated by the server, is the information accessible by any sources, or limited to the source who stored information?
Vodafone (document by E-mail 2005.12.14)
	Yes, LASeR only solves the client-side storage issue.

The access control mechanism is based on the service URL. It is the responsibility of the server providing the aggregation to solve access control issues with respect to its own sources.

	25
	Caching Storage requirements

RME-FUNC-021

RME-SEC-001

The RM enabler SHALL NOT allow to share private data from one service to an other (e.g.: allocation of data to a dedicated service based on cookies-like functionality)
	LASeR uses a "cookies" mechanism which provides exactly this

	See the comment on RME-FUNC-018.
Vodafone (document by E-mail 2005.12.14)

Does this mean LASeR “requires” or just LASeR “uses”?

Ikivo contribution 2005-387
	The access control mechanism is based on the service URL. It is based on HTTP1.1 cookies.

LASeR specifies the use of the HTTP 1.1 cookies security mechanism.

	26
	Caching Storage requirements

RME-SEC-001.2

The RM Enabler SHOULD be able to securily store temporary a large amount of persistent information for content cache process and offline navigation.
	SAF provides suitable caching hints to achieve such functionality on a best-effort basis (i.e. if memory is available on the device to achieve the caching).

LASeR provide an interface to store information on the device
	How does security domain be protected? In other word, how is security been assured.

I think we need little bit more than just storage functionality.
Vodafone (document by E-mail 2005.12.14)
	Section 6.6.2.1 of the LASeR v1 specification defines the use of the HTTP1.1 cookies security mechanism.

	27
	Integration in the mobile environment requirements

RME-SYS-001

The RM enabler SHOULD be able to interface with other resident clients on the phone.
	LASeR engines can be interfaced with other applications such as SMS and MMS clients, A/V clients, etc.
	Just curiousity, but is there anything that LASeR engine should have done to support this? I see this as an application implementation issue.
Vodafone (document by E-mail 2005.12.14)
	In a large part, yes. However, interfacing with e.g. simple A/V players required the addition of overlay = ”top” attribute of the video element in both SVGTiny 1.2 and LASeR. LASeR additionally defines overlay = ”fullscreen” to improve on the interface capability.

	28
	Integration in the mobile environment requirements

RME - System Element A (browser)

The RM Enabler SHOULD be able to interface with browser client
	LASeR engines can be packaged as plugins to existing browsers.
	Would any interaction between browser and LASeR plug-ins possible? e.g. XML event bubbling or control by script from browser. Is there any actual interface?
Vodafone (document by E-mail 2005.12.14)
	Yes, any CDF-like interaction such as you describe is possible between the browser and a LASeR plugin, including DOM access across the boundary.

	
	Integration in the mobile environment requirements

RME-SEA-001
The RM Enabler SHALL be able to launch the browser
	LASeR engines can launch external applications, including the browser. Nothing in the LASeR specification precludes it and existing implementations have already implemented this feature.
	Is this feature part of the LASeR apis or not? If an api does not have feature X but say nothing about feature X (i.e. does not preclude it) does not mean the api supports feature X.

 If existing LASeR implementations have implemented a feature not part of the specification they’re going down the slippery path of interoperability.

Ikivo contribution 2005-387
	We do not understand your point. We are making a statement about compatibility of LASeR with this requirement. We are not claiming that LASeR fulfils this requirement itself.

What is the relation between this statement and the subject of this landscape document ?

Isn’t it a market consideration valuable for ANY technology ?

Ikivo: Because the purpose of this document is to indicate how LASeR fulfils the RME requirements. To say that a requirement is fulfilled because the LASeR specification doesn’t preclude it is irrelevant.

	29
	Integration in the mobile environment requirements

RME-SEA-004

The RM Enabler SHALL expose the uDOM API to the browser
	LASeR V1specification leaves to the implementation the integration of UDOM within the browser.

LASeR V2 specification will integrate the uDOM and extend it to the LASeR scene tree extensions.

The LASeR dynamic update mechanism can be implemented easily above uDOM. An informative mapping is provided in the LASeR specification.

	As the uDOM tree is updated from the transport layer and renderer, you need graceful way of handling mutex or synchronization of updates.

Therefore, if you take regular SVG (which one ?) renderer to implement LASeR, it is not possible to support it without extension in rendering model.
Vodafone (document by E-mail 2005.12.14)

This is not what the requirement asks for. If LASeR v1 does not implement the udom it cannot fulfil this requirement. A browser shall not implement the uDOM. A browser shall have access to the uDOM api of the RM Enabler.

Ikivo contribution 2005-387

LASeR v1 relies on a binary transmission format of data. It does not require textual client-side parsing of SVG (which one ?)(XML). This means that LASeR v1 is not a conforming SVG (which one ?) viewer, nor should it be viewed upon as a superset of SVG (which one ?). It is missing many crucial parts of SVG (which one ?)(SVG Fonts, uDOM, error handling mechanism). The fact that it has borrowed some terminology and ideas from SVG (which one ?) does not make it SVG (which one ?) compatible.

The motivation of using a binary (pre-compiled) format is that it is smaller and faster. This is true in some special cases but in general it is just as fast and effective to use gzip-compressed SVG (which one ?).

It is true that a binary format will have a smaller parser since the XML-parsing part can be omitted. But, in today’s mobile devices you already have XML-parsers (for HTML content) and they are often shared between multiple XML-formats (like SVG (wich one ?) and HTML). In this real-world scenario, the requirement for a new binary format parser is therefore causing an unnecessary overhead in code size. (In addition, using general compression mechanisms instead of encoding specific languages is inline with the OMA compression strategy.)

Since LASeR v2 will support uDOM it will require parsing of XML (textual SVG which one ?). uDOM contains many methods that require XML, most notably the ‘parseXML’ function.

Ikivo contribution 2005-387
	The implementation of LASeR commands inside a regular SVGT1.2 player through the use of uDOM can use the regular SVG Tiny1.2 mechanisms used, e.g. for the progressive rendering. Passing of data between the transport and the SVG Tiny1.2 user agent for progressive rendering already requires some kind of mutex.

A specification does not “implement” anything. Please do not confuse a specification which does not mandate a feature with the implementations which can provide that feature. We are stating that it is possible to implement both LASeR and the uDOM specifications in the same user agent.

Ikivo: Again, the specification must require it or you must clearly indicate if it is not required, in which case it needs to be specified by OMA. Leaving it to implementations to decide leads to interoperability.
LASeR optimised SVG with a very efficient binary encoding, that’s right.

LASeR mandates the binary decoder, then implementors can choose to use directly the binary format or to decode data and provide them to the XML parser. This is implementation matter.

Ikivo: All features not fully specified are serious interoperability risks.

For sure, LASeR does not intend to be play by an SVGTiny player.

This statement is completely unsupported. XML parsing of a fixed vocabulary is already slower than binary parsing of the same vocabulary. If you add gzip decoding, how can it be as fast and effective.

This will be an overhead, around 5Kilo.

Could you explain which OMA compression strategy your are referring to ?

Could you clarify if there is a question there ?

	30
	Integration in the mobile environment requirements

RME-SEA-005

The RM Enabler MAY provide other API to the browser
	LASeR engines can provide other APIs to the browsers. Care has been taken to allow the inclusion of LASeR engines into CDF-compliant applications.

	What do you mean by ‘can’?
Vodafone (document by E-mail 2005.12.14)

Sidan: 3

This is good. To have LASeR being used by a CDF framework is a nice feature. This is actually how LASeR should be used, as one of many media types, LASeR, video, raster images, audio, flash, etc. It is not considered as a technology suitable for the actual CDF framework. Such a framework needs to be XML, it must be able to share resources with other XML formats on the devices, to use the same suite of tools etc. The same goes for the RME Enabler, it would be very unwise both in the short and long term perspective to not have the RME Enabler based on standard XML.

Ikivo contribution 2005-387
	It means that other API can be define over the laser engine such as netscape API

Is there a question there ?

Ikivo: No question. We’re just explaining why LASeR v1 is not suitable as a framework for CDF, please change your proposal to say LASeR v2 (if it eventually will fulfil the requirement).

	
	Integration in the mobile environment requirements

RME - System Element B (AV codec)

The RM Enabler SHALL be able to address and to provide a tight integration with AV codec.
	LASeR is designed with a tight integration into the MPEG terminal model in mind, which allows efficient interfacing with any kind of media.
	Unfortunately MPEG doesn’t allow efficient interfacing with XML-based media. Given the widespread use of HTML (and future CDF) it is very important to be able to interface with them.

Ikivo contribution 2005-387
	What is the relationship with this statement and the requirement for AV codec ?

Ikivo: This statement addresses the LASeR proposal/motivation, not the requirement.

	31
	Integration in the mobile environment requirements

RME-SYS-002.1

The RM enabler capabilities SHALL be advertisable by the browser or by the rich-media enabler depending on the usage scenario
	LASeR engines can advertise their capabilities in a variety of ways, including the use of HTTP Accept Headers and Media Queries.
	It is not clear, but is the assumption be that both LASeR engine and if you have browser, then they will implement their own HTTP UA?
Vodafone (document by E-mail 2005.12.14)
	The assumption is that if the browser is responsible for advertising the RME capabilities, the browser will be “aware” of the LASeR user agent capabilities and will take them into account in its advertisement of the terminal capability.

	32
	Integration in the mobile environment requirements

RME-FUNC-023

The service provider SHOULD be able to protect the RM content.

	LASeR engines can be easily interfaced with DRM tools in order to provide appropriate protection to RM content.
	How does LASeR communicate with DRM then? Will you use DRM between SAF and presentation layer? or before SAF?
Vodafone (document by E-mail 2005.12.14)
	It is difficult to be specific in the wide domain of DRM tools. We have successfully interfaced LASeR implementations with existing DRM tools.

DIMS table:

	ID
	Section 6
	Proposal
	Question
	Answer

	001
	Ref: S4-050800 section 4.1 Number 2
	LASeR inherits its rendering model from SVG Tiny 1.2, thus achieving compatibility by equality.
	Sidan: 3

LASeR does not require the full SVG Tiny (which one ?)Rendering Model and in fact extends it in a manner that will require fundamental changes to existing SVG Tiny (which one ?) implementations. Therefore, LASeR is not compatible with the SVG Tiny (which one ?)Rendering Model and as such this statement is not correct.

Ikivo contribution 2005-387
	The LASeR specification explicitly reuses the SVG Tiny 1.2 rendering model..

	
	Ref: S4-050800 section 4.1 Number 14
	LASeR does not mandate the usage of a particular font system and then allows to use any font solution (native, device capability, SVG font, Opentype font, other)
	This is dangerous as there is no way to guarantee interoperability. LASeR should include a default fall back mechanism for font support in addition to the system font.

Ikivo contribution 2005-387
	See previous answer.

What is the point of this comment with respect to LASeR and DIMS req 14 ? SVG has the exact same “problem” of not mandating system fonts.

	
	Ref: S4-050800 section 4.2 Number 7
	LASeR commands can be used in parallel with a scripting language using a uDOM interface. As the LASeR scene tree is an SVG Tiny 1.2 scene tree, a uDOM interface can be implemented within a LASeR v1 client.

	LASeR commands do not apply to SVG Tiny 1.2. The DIMS Scene update mechanism is implementable in SVG Tiny 1.2 using the uDOM which is not part of LASeR v1.

Ikivo contribution 2005-387
	LASeR v1 Commands apply to LASeR v1 elements, and LASeR v1 elements are SVGT11 or SVGF11 or SMIL2 elements, all of which are SVGT12 elements, hence LASeR v1 Commands apply to SVGT12 elements included in LASeR v1. As a result, your initial statement is inaccurate.

Ikivo: Any SVG renderer is not required to interpret LASeR commands therefore such commands are not applicable to any SVG. An extended SVG renderer might be able to interpret LASeR commands but such a renderer would not be SVG Tiny 1.2 but SVG Tiny 1.3, or LASeR v2, or some other, yet to be defined, media format. (LASeR v1 would not qualify as such a format since it isn’t conforming to any of the SVG specifications)

	
	Ref: S4-050800 section 4.2 Number 10
	The LASeR specification defines an informative mapping of the LASeR Commands to uDOM instructions using ECMA-Script, thus proving their implementability with uDOM.
	
LASeR will need a normative (and complete) mapping and a requirement to support the uDOM in order to fulfil this requirement.

Ikivo contribution 2005-387
	The normativity of the mapping is not a prerequisite of the fulfilment of this requirement. The requirement is only about implementatibility.

	
	Ref: S4-050800 section 4.2 Number 11
	As a LASeR scene tree is an SVG Tiny 1.2 scene tree, LASeR Commands apply equally to LASeR and to SVG Tiny 1.2.
	LASeR commands do not apply to SVG Tiny 1.2. The DIMS Scene update mechanism is implementable in SVG Tiny 1.2 using the uDOM which is not part of LASeR v1.

Ikivo contribution 2005-387
	LASeR v1 Commands apply to LASeR v1 elements, and LASeR v1 elements are SVGT11 or SVGF11 or SMIL2 elements, all of which are SVGT12 elements, hence LASeR v1 Commands apply to SVGT12 elements included in LASeR v1. As a result, your initial statement is inaccurate.

Ikivo: See above.

	
	
	
	
	

Comments in Section 7:

	ID
	Section
	Proposal
	Question
	Answer

	
	7.1.1
	LASeR is an MPEG extension of the W3C SVG Tiny specification and a full compliancy with the rendering model is provided as described in the figure below:

	An extension of some structure is another structure that contains the original structure. LASeR contains parts of both SVG Tiny 1.1 and SVG 1.1 Full but excludes required parts from both SVG specifications. Therefore, LASeR is not an extension to SVG Tiny.

Ikivo contribution 2005-387
	The Binary format of LASeR is an extension. Therefore the XML parser is not necessary in the LASeR specification. However, following the OMA liaison, the mpeg-laser group will consider textual data. OMA for RME can mandate the XML parser along with the laser specification.

Ikivo: Note that XML parsing is just one of several key parts of SVG that are excluded from LASeR v1.

	
	
	LASeR v1 is a superset of SVGT1.1
	LASeR is missing e.g. support for client-side XML parsing which means that SVG Tiny 1.1 files (text nor gzip) will not be handled by a LASeR client. Further, SVG Fonts and SVG error mechanism is missing in LASeR.

Ikivo contribution 2005-387
	LASeR is not “missing”. This is a point of view. I reiterate that RME is a work item and will do a work of specification. On this point if necessary as well as on other point.

Comment on font and error mechanism are already answered.

Ikivo: Specifications shall not be so vague that they allow for different point of views. Of course LASeR v1 can be extended in OMA to be a superset of SVG Tiny 1.1but as is LASeR v1 is not a superset.

	
	
	LASeR v1 is already able to encode and transmit SVGT1.2
	An RME client is not required to encode formats, that a LASeR engine is able to encode SVG doesn't seem relevant.

What is interesting to know about an RM Enabler is the ability to decode formats (and the fact that LASeR isn't able to decode SVG is a major drawback).

Ikivo contribution 2005-387
	This is a point of view and this is wrong

Ikivo: Please explain why this is wrong?

What is the relationship between your statement and the proposal ?
This is again an opinion.

	
	
	The non-v1 part of the SVGT content will be skipped by a LASeR v1 decoder, will be rendered by a LASeR v2 decoder, and could be transmitted to an SVG player depending on the implementation
	 I read this as if the LASeR engine will relay all it’s unsupported SVG Tiny content to an SVG Tiny player.

Is this SVG Tiny player provided as part of the LASeR RM Enabler?

If not who is responsible for the interaction between them.

 If the SVG Tiny content contains scripting/udom logic it will be handled by the SVG Tiny player, what will happen when the script tries to access parts of the model that are kept in the LASeR engine?

Is it a requirement on an LASeR RM Enabler to also contain an SVG Tiny player? If not, how will you have any kind of interoperability between platforms?

Ikivo contribution 2005-387
	The exact wording will be updated as follow:

The non-V1 part of the SVG Tiny1.2 or fo the LASeR V2 content, will be skipped bu a LASeR v1 decoder, will be rendered by a LASeR v2 decoder. It can also be transmitted to an SVG Tiny 1.2 player depending of the implementation choice specify by OMA.

LASeR is NOT the RM Enabler. OMA will decide is LASeR (or part of) will be part of the RME enabler. This is also valid for SVG Tiny .

OMA BAC MAE or 3GPP SA4.

This is totally irrelevant for the proposal. If you want to play SVG content with an SVG player, then it is under specification with the SVG work item.
Ikivo: Transmitting parts of the data to an SVG player and keeping parts of the data within the LASeR decoder means that interaction is needed between the two, separate data models. Therefore this is highly relevant.

Could you clarify what will be “kept in the laser engine “ ?

There is no requirement there. In this document there is proposal for various architecture.

	
	7.1.2
	One key additional feature provided by LASeR over the SVG Tiny 1.2 specification is the ability for dynamic modification of the scene
	This is not accurate. SVG Tiny 1.2 also contains this exact functionality (and already has a number of implementations showing it). By using scripting and the uDOM API an SVGT1.2 document (or scene) can be dynamically and continuously updated over time by uDOM script snippets being pushed over the network.
	The comment is inaccurate too, but it completely misses the point of our assertion. First the functionality is definitely not the same, even though scripting+uDOM can be used to emulate the dynamic updates.

Second declarative dynamic update and scripting can be used in //.
Third, the implementation cost and runtime resource requirements of

scripting+uDOM are much bigger than that of dynamic updates .

The comparison is then not relevant.

In order to avoid such misunderstanding in the future, we propose the rewording:

"One key additional feature provided by LASeR over the SVG Tiny 1.2 specification is the declarative dynamic modification of the scene. This feature is implementable at a small fraction of the cost of a scripting language interpreter + uDOM API pair."

See § 7.1.2 for more details

	
	7.1.2.1.4
	The LASeR specification defines an XML syntax (LAseRML) for use in authoring or other applications of XML versions of the LASeR scenes. LASeRML is a superset of the SVG Tiny (XML) syntax. LASeR Commands, as part of the LASeR specification, also have an equivalent XML syntax, which is immediately applicable to SVG Tiny documents
	There is no requirement in the LASeR specification for LASeR implementations to handle LASeRML or any other XML markup. Although there is a definition mapping the encoded LASeR format to LASeRML there is no requirement for LASeR implementations to handle anything other than the LASeR encoded format.

Unless explicitly required it is not applicable to SVG Tiny. It is important to understand that just because you make a technology xml-formed it doesn’t mean it will apply to xml-based technologies.
	Again MPEG mandates the strict minimum in its specification for interoperability purpose. LASeR ML is provided for authoring tool for instance. Additional information are provided to let the industry decides of additional feature to be mandated (eg, LASeR ML, Binary decoder, Font….)

Ikivo: Again,it needs to be clear whether a specific version of LASeR mandates a specific feature needed to fulfil the RME requirements or whether OMA needs to specify a specific feature.
It is immediately applicable. Could you technically validate your comment ?

Ikivo: SVG Tiny documents are processed by SVG Tiny renderers which have no notion of LASeR commands. Therefore they are not applicable.

	
	7.1.2.1.6
	LASeR scenes and updates are defined as complete and well-formed packet. The first LASeR packet contains a complete, well-formed SVG scene (with end tag) which represents the first state of the content. The next LASeR packets are sets of commands (with end tag) to build the next states of the content. After each packet is received and each update command is executed, the scene in the browser is a valid, well-formed SVG scene
	In a LASeR implementation where is the wholeness of a LASeR packet and SVG scene ensured? Is it checked on the client or does the LASeR client assume wholeness?

If the LASeR client checks and discovers a packet that is not whole what happens?
	See Description in § 7.1.3.1.2

The LASeR encoder only encodes whole, well-formed content, so that part

of the checking is either done during the encoding, off-line or on the

server. The binary format *cannot* represent non-well-formed content.

The checking is done at the encoding. The client can safely assume

wholeness because the binary format *cannot* represent non-well-formed

content.
This can only result from a transmission error, and thus the transport

layer will catch the problem and signal it properly anyway. This is one

of the reasons why the binary parser is smaller than the XML parser. Furthermore, LASeR is paket loss resistant.

	
	
	In the LASeR specification, an informative ECMA-Script/DOM equivalent of the LASeR Commands is provided. Using this equivalent code, LASeR Commands can be implemented at minimal cost on SVG implementations including a DOM interface and an ECMA-Script interpreter
	Please describe what is meant by “minimal cost”.
	About a fifth (1/5) of the average SVG XML parser and a fiftieth (1/50) of the average ECMA script parser.

Ikivo: Please include the code footprint numbers used to calculate these averages

	
	
	The usage of uDOM in LASeR v1 is possible, but not mandated
	This illustrates one of the main issues with LASeR, that it neglects to mandate important features.

Replace LASeR in the following sentence: “The usage of uDOM in LASeR v1 is possible, but not mandated.” with another technology of choice (flash, xaml, …) and it is just as true. The feature needs to be mandated (and fully specified) to insure inoperability.
	This is an opinion.

Ikivo: In our opinion, this is a fundamental base for specification work within OMA to guarantee interoperability.
The following sentence in the document answers to your comments.

Which interoperability are you talking about ?

Ikivo: RM Enabler interoperability.

	
	7.1.3
	As its parent SVG Tiny 1.2 specification LASeR supports the following scenarii
	It is not accurate to refer to SVG Tiny 1.2 as the “parent” specification to LASeR since LASeR v1 (will version v2 require the complete SVG Tiny specifiation?) does not require full conformance to the SVG Tiny 1.2 specification.
	This is accurate.

Ikivo: Again, LASeR v1 is not SVG Tiny 1.1 or an extention to SVG Tiny 1.1. This statement creates confusion and we ask you to remove any such statement.

	
	7.1.3.1.1
	If any packet is lost, the SVG decoder will reject the content and stop rendering
	Not true for SVG Tiny 1.2. An SVG Tiny 1.2 decoder will not stop rendering, it will merely inform the user, ignore the lost/broken parts and continue the playback. This was true in SVG Tiny 1.1 but has been changed in SVG Tiny 1.2.
	As explain before,we accept the comment. The change was done very recently (in the last LC draft), so the error is quite excusable.

	
	
	In order to allow rendering before the end of the download, SVG constraints on well-formedness have to be dropped. Once the end tag has been received, nothing else can ever be sent any more, so the end tag is only received when the scene is at end. In the case of an interactive scene, in order to leave to the user the opportunity to interact, the scene needs to be left open, so the end tag is never received. As a result, a streamed SVG scene is never well-formed. The SVGT1.2 specification works around this problem by defining the well-formedness of SVG fragments
	This deficiency in SVGT is currently being addressed by the W3C.
	This is what we say.

This deficiency is inherent to the principle of the progressive download, which is incompatible with XML basic assumptions.

	
	7.1.3.1.2
	LASeR scenes can be modeled as a series of SVG scenes
	It is not correct to label the boxes as “SVG Scenes” since no full SVG Tiny version is supported by LASeR. Please change to “SVG based LASeR scene” or better simply “LASeR scene”.
	It is correct to label this as SVG scene.

Ikivo: Please provide a reference to such a definition/label in the SVG Tiny 1.2 specification.
It is not correct to state the an SVG decoder will read LASeR content.

Ikivo: Of course not. It was not our intent to indicate that in any way.

	
	7.1.3.2.1
	Furthermore if any packet is lost, the SVGT1.2 decoder will be in error or reject the content and stop rendering
	This is not accurate as described previously.
	Same answer as previously

	
	7.1.3.2.2
	instructions themselves can be expressed in XML or binary
	Does LASeR require the support of XML text on the client?
	As state in the introduction this proposal is MPEG4 part 20 based, with additional technologies, specifications to be added. At this point in the document, what is the question about ? how does it relate with the global proposal ?

Ikivo: Already addressed.

	
	7.1.3.2.2
	Within the browser, between packets, the content is complete, well-formed SVG content
	This is not true if the content includes extensions specified by LASeR. Since this is allowed in LASeR, this statement is not correct and the picture below is not accurate.
	SVG content allows extensions in another namespace, so YES the statement is true, this is complete and well-formed SVG content with valid extensions.

Ikivo: Will the complete LASeR v 2 require the complete SVG Tiny 1.2 specification?

	
	7.1.6.1
	The binary format specified in LASeR allows the encoding of SVG Tiny content
	Is encoding of SVG Tiny content required in LASeR implementations? What about decoding?
	LASeR specifies the decoding and rendering of content. A LASeR user agent decodes content according to the binary format specification and then renders it according to the SVG rendering model, with extensions. LASeR does not mandate that LASeR user agents parse SVG content. However, nothing precludes a LASeR user agent to also be a SVG user agent.

	
	
	such embedding usually incurs, in SVG Tiny, the 33% compression efficiency penalty inherent to Base64 encoding required for the embedding
	This penalty is true for uncompressed SVG but not for gzipped SVG used in transmission. Since the recommendation is to use gzip this will not be the usual case.
	Was there any study of the efficiency of gzip on top of base64 ? Does it really help ?

	
	7.1.6.2
	Streaming style: the scene is designed as a sequence of frames, and there is a continuous stream of updates to change the current frame into the next frame
	How will this mechanism support time based animations such as those defined in SVG Tiny?
	Time based animations are supported with no change, since time based animations are inherited by LASeR from SVGT as is.

	
	
	
	
	

	
	
	
	
	

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We request REQ to add the proposed comments to the RME RDRR.

�PAGE \# "'Sidan: '#'�'" �� Ikivo: Could you please supply the source of this information?

�PAGE \# "'Sidan: '#'�'" ��Ikivo: Could you please supply the source of this information?

�PAGE \# "'Sidan: '#'�'" �� Ikivo: The motivation for having time-based authoring is the one we described here. Frame based content is widely spread, and quite suitable for the desktop environment. Time-based content is widely spread, and very suitable for the mobile environment. Furthermore other standards in use/in future use on mobile devices are time based, like CDF and SMIL.

�PAGE \# "'Sidan: '#'�'" �� Ikivo: A LASeR v1 user agent could not play SVG Tiny 1.1 content since LASeR v1 does not require handling of a raw SVG Tiny 1.1 content

.

�Ikivo: In the proposal you talk about “dynamic modification to the scene” and that is as we explain possible in SVG Tiny 1.2.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 31)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 29 (of 33)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

