Doc# OMA-MAE-2006-0121-CR-RME-Technology-Landscape-MORE-Sec-7.doc[image: image4.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-MAE-2006-0121-CR-RME-Technology-Landscape-MORE-Sec-7.doc[image: image5.png]

Change Request

Change Request

	Title:
	CR RME-Technology-Landscape-MORE-Sec-7
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-MAE

	Doc to Change:
	OMA-WP-Rich-Media-Environment-20060127-D

	Submission Date:
	25 Mar 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Nokia (Suresh.Chitturi@nokia.com)

	Replaces:
	n/a

1 Reason for Change

This document proposes a CR to the RME Landscape document Section 7. The CR adds the MORE candidate proposal to the technology landscape document.

It is based on the current MORE proposal OMA-MAE-2006-0042R02-RME-MORE-Detailed-Proposal.

This document replaces change 3 of OMA-MAE-2005-0361R01-CR-RME-Landscape-MORE.

The CR takes into account documents OMA-MAE-2006-0020-Q-A-RMEWP-MORE and OMA-MAE-2006-0022-Ikivo-Comments-to-MORE

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We request BAC-MAE to review and incorporate the following CR to the RME Technology Landscape master document and consider MORE proposal as the candidate technology for the RME specification.
6 Detailed Change Proposal

Change 1: Evaluation of MORE technology against requirements (Section 7.2)

7.2 The Mobile Open Rich-media Environment (MORE)
7.2.1 Overview

[image: image1.emf]Rich Media Server

Rich Media

Content (SVG

scenes and scene

updates, discrete

and continuous

media)

Container

Format

Transport Mechanisms

Remote Interaction Mechanisms

Forward Transmission

(Unicast and Multicast/Broadcast

Download and Streaming Protocols)

Rich Media Client

SVG Based Local

Interaction

Mechanisms

Rich Media Player

Is the player’s request

remote in nature?

Send request

No

Yes

Figure 1: GENERAL ARCHITECTURE OF THE RICH MEDIA SYSTEM

The rich media system can be perceived as client-server architecture, comprising 3 main components: The rich media server, transport mechanisms and the rich media client. Figure 1 illustrates the general architecture. The server takes as input, rich media content comprised of SVG, discrete (e.g. images) and continuous (e.g. audio, video) media. SVG content is represented as scenes and can be dynamically updated through scene updates. The rich media content can be encapsulated into a container format, containing additional information such as media synchronization, metadata, and hint tracks for packetization. The system then utilizes various transport mechanisms for 1-to-1 and 1-to-many protocols for download, progressive download and streaming scenarios as described in the transport section. The content is played on the client, allowing for local and remote interactivity of feedback and data requests. The MORE system is based on a non monolithic architecture emphasizing on a strong separation of interfaces and layers. This allows the flexibility of choosing the best of breed approach for a particular use case, and to change over time if necessary. It also minimizes the dependency on services in one layer to achieve performance in a higher layer.

7.2.2 Scene and Scene Updates

One of the motivations for rich media services is the ability to receive rich media content with minimal latency. In order to do so, the content or ‘scene’ on the client must be able to be dynamically updated with small changes rather than a completely new document being re-sent every time. Although SVG Mobile 1.2 supports prefetching for progressive downloading, during real-time streaming, a scene may change through animations and changes in scene states. This sequence of scene description and its spatial/temporal modifications needs to be streamed from the server to the players on the client device.

7.2.2.1 Scene

Scene describes the spatial organization of scene elements, the temporal organization of scene elements, synchronization information, and interaction among the elements. The scene presentation format and the rendering model are based on the Scalable Vector Graphics (SVG) format, a W3C Recommendation for representing two-dimensional graphics in XML language. Besides representation of graphics, SVG also supports a rich interaction based on DOM Level 3 Events and a complex animation model borrowed from SMIL specification.

A scene is typically first sent to the client to initialize the presentation layout. A scene can either be a complete SVG document or the content enclosed within <g></g> tags where the g element rendering will start when the g closing tag has been parsed and processed and when all internal and external resources required by the scene have been resolved. Further, a scene may use elements (<use>) previously defined in the <defs></defs> block. This is similar to the prefetch functionality provided by SVG for progressive download.

7.2.2.2 Scene Updates

Scene updates refer to one or more incremental updates to the SVG Document Object Model (DOM) that get sent to the client device during streaming. These updates include element addition; element deletion; element replacement and element attribute update operations. Note that the updates can also be a combination of one or more of these operations depending on the desire of content provider. The client could potentially choose to update the SVG uDOM with this content update information without destroying and recreating the SVG uDOM for every streamed packet of information. Also, note that a scene update can comprise of a complete scene for example in the case of refreshing the client with a completely new scene.
7.2.2.2.1 Scene Update syntax
The scene update syntax in MORE will follow the REX (Remote Events for XML) initiative in W3C that is spear-headed by SVG WG in an effort to meet the requirements of RME/DIMS specification. This is evident with the creation of a new Task Force (TF) in conjunction with Web Apps API WG to fast track this activity to meet the DIMS/RME requirements. The current draft specification is available at http://www.w3.org/TR/rex/ . The update syntax is compatible to the SVG and uDOM (SVG DOM subset) APIs as defined by SVG Mobile 1.2 specification.

The proposed XML update specification is be based on a set of requirements that are intended to maintain compatibility with DOM events, declarative in nature, and integrates well with the WWW architecture. The current charter of the Web Applications API will be responsible for maintaining this specification. Note that the syntax for update mechanism is not limited only to SVG but also extensible to other mark-ups, besides being very efficient and light weight for platforms that are already capable of supporting mobile SVG standard.
The following figure demonstrates the flow of delivering the scene and scene updates from the Rich Media server to the client, and the visual representation of the transmitted content at the client terminal.
[image: image6.png]

Figure 2: Illustration of Scene and Scene Updates delivery and realization.
7.2.2.3 Temporal Management of Scenes and Scene Updates

Every scene and scene update sample is associated with a timestamp relative to the overall rich media presentation start time (Tpres) of the client. If the corresponding timestamp of the first scene is TS0, this is rendered at Tpres + T S0. Similarly if a succeeding scene update sample has a time stamp of T SU1, it is rendered at Tpres + T SU1. However, if any scene or scene update sample arrives at the receiver at a time greater than its timestamp, it may be ignored or retained for error concealment depending on the client’s implementation capability. The retained sample can be utilized for the following scenarios:

1) Scene content playback. For e.g. the content at the client is required to playback based on user interaction from time zero of the presentation time.
2) Can be utilized for repairing the uDOM structure.
3) Error concealment based on client’s needs.

As SVG is non-frame based, the timestamps associated with the scenes and scene updates as well as the presentation start time, are specified by the content creator, and then subsequently used by the streaming server.
7.2.3 SVG and Associated Media

SVG supports media elements similar to Synchronized Multimedia Integration Language (SMIL) media elements. Continuous or real time media elements define their own timelines within their time container. All SVG media elements support the SVG timing attributes and run time synchronization.
7.2.3.1 Media Types

The media elements are audio, video and animation. However, particular platforms may have restrictions on the number of audio voices or channels that can be mixed, or the number of video streams that may be presented concurrently. Since these vary, the SVG language itself does not impose any such limits on audio or video.

7.2.3.2 Referencing Media

The real time media elements are audio and video, and are referenced as follows in SVG:

<audio xlink:href=”1.wav” volume=”0.7” type=”audio/vorbis” begin=”mybutton.click” repeatCount=”3” />

<video xlink:href=”ski.avi” volume=”.8” type=”video/x-msvideo” x=”10” y=”170”/>

Discrete media such as images are referenced in SVG using the ‘image’ element, such as:

<image x="200" y="200" width="100px" height="100px" xlink:href="myimage.png">

Furthermore, SVG can also reference other SVG documents, which in turn can reference yet more SVG documents through nesting. The referenced media elements can be linked through internal or external URLs in the SVG content. Here, internal URLs may refer to files internal to the SVG file or inline the host document, or within the container format. This applies to external URLs in a similar fashion.

The animation element specifies an external referenced SVG document or an SVG document fragment providing synchronized animated vector graphics. Like the video element, the animation element is a graphical object with size determined by its x, y, width and height attributes. For example:

<animation begin="1" dur="3" repeatCount="1.5" fill="freeze" x="100" y="100" xlink:href="myIcon.svg"/>

Also, SVG is capable of embedding media, like using Base64 encoding to embed images in the SVG file.

7.2.4 MORE Client Architecture

The MORE client is a lightweight entity present on the mobile terminal (Figure 3). This is substantiated due to the fact that it builds on top of existing application enablers such as SVG Mobile 1.2, ESMP, and XHTML-basic and thereby re-uses their associated underlying components such as XML parser, rendering libraries, media decoders, and compression techniques. The client uses media packet de-packetizers to obtain the different media that constitute the scene and scene updates. The synchronization module helps synchronize the frame rate and timing of continuous media with that of the non-frame based SVG content. The SVG engine in turn takes the different media and timing information as input to compose the dynamically rich multimedia presentation. The client is also responsible for transmitting any feedback occurring during interaction.

[image: image2.emf]Application Layer

Rich Media Enabled User Agent Rich Media Enabled Browser

Services Layer

Rich Media Client API

SVG Mobile 1.2 Engine

Synchronization

Module

Audio/Video

Module

Remote

Interaction

Transport Layer

Media Depacketizers

Unicast and Broadcast Transport Protocols

Figure 3: MORE Client Architecture

7.2.4.1 Synchronization Module

A rich media session comprises several media streams, and in the case of RTP, each is transported via a separate RTP session. With delays associated with different encoding formats and the fact that the streams are transported separately across the media, the media tend to have different playout times. To present the media in a synchronized manner, the synchronization module in the receiver helps in the realignment of streams based on information from the transport level (RTP and NTP timestamps), and provides input to synchronization at the application level (SMIL based synchronization). At the application level, MORE utilizes the run-time synchronization functionality that SVG Mobile 1.2 inherits from SMIL 2.0 [13]. These attributes are syncBehavior, syncTolerance and syncMaster attributes, specified on the 'audio', 'video' and 'animation' elements, and syncBehaviorDefault and syncToleranceDefault attributes specified on the SVG element.

Delivering media streams separately and re-synchronizing them at the receiver, rather than being delivered bundled together has several inherent advantages: This model better reflects the preferences of the server or receiver. For example, in a video conference application, participants often prefer audio to video. In addition, different media can be assigned priority levels for differing levels of error correction. In the case of bundled transport, all receivers would receive all media, which often is an issue for multiparty sessions using multicast distribution.

The properties of codecs and playout algorithms differ for each media, making it pertinent to involve some type of synchronization process, even if the media are bundled for delivery. The synchronization process comprises two steps: The server assigns a common reference clock to the streams, and the receiver needs to resynchronize the media considering the possibility of any timing disruption caused by the network.
7.2.4.2 Resynchronization and Tune-In

During a rich media service, it is important for the clients to be able to connect and access the current streamed content, i.e. tune-in with minimal latency and data inaccuracy. MORE has several mechanisms to aid this purpose:

Usage of random access points: As mentioned in section 9.7, an SVG scene can function as a random access point. A given SVG scene sample can be identified by the client to be a random access point by the random access bit (`A’) set to 1 in TYPE 2 RTP Packet (section 10.3.2). When a client connects to the stream, it can receive the latest valid random access point as the first scene. This also helps in buffering while the client receives additional updates, similar to the notion of i-frames in a video stream.

Transmission of Scene content: This method to transmission of active scene content in order for the client to reach a stable state. In other words, at this state the client will be able to synchronize with the content that is inline with the intent of the service provider. There are two ways depending on the underlying service bearer, whether it is a broadcast or multicast/unicast service.

· Broadcast: Unlike typical media such as audio and video, the accuracy of the SVG Mobile 1.2 content on the client relies on its underlying uDOM construction. When a client joins the stream, it is useful if it is aware of all the currently active SVG elements. This information is used to repair/cross-check the uDOM if needed so that subsequent updates to the uDOM are executed correctly. For this purpose, a current list of active SVG elements are transmitted as a TYPE 4 RTP Packet (section 10.3.4) once for a group of scene and scene updates.

· Unicast/Multicast: In case of a unicast/multicast service, the scene content can be sent over the unicast channel to facilitate the client to join/re-join the stream. This will help aid stable client state so that upcoming content updates can be correctly decoded and played.

Time Synchronization: Packets of data received by the client are associated with timestamps relative to the overall presentation time container. Further, the sequence numbers associated with the packets determine the relative ordering. This information helps the client to decode and sample the data correctly and using discretion (e.g. ignoring late packets) regarding packets arriving later than the scheduled sample time.

7.2.4.3 Remote Interaction

During a rich media presentation, the client can often request for more information, update the content, or even send some information back to the server. SVG provides local interaction through declarative animation and scripting. SVG Mobile 1.2 supports remote interaction via the Connection interface API [14] for socket-level communication which is simple and works well for most feedback use cases. The API can be used for Unicast based feedback over the HTTP/TCP protocol.

Rather than advocating a particular transport mechanism for feedback, the MORE system focuses on a broader set of solutions particularly for remote interaction and mechanism for mapping local interactivity into remote commands for feedback and forward transmission. In the subsections below, details of the user events during interaction of rich media have been identified. These events are processed either locally or remotely, and be sent with either high delay or low delay, depending on the demand of application.

7.2.4.3.1 Locally and Remotely Processed Events

During the interaction, the application scripts used to process the user interaction can be saved either on the client/UE side or on the server side, with the choice being application-specific.

Locally processed events are application scripts first processed on the client-side and if needed are transmitted to the server from the UE. For certain applications, scripts may be saved on the UE side. This can greatly reduce the burden of the server and facilitates the local interaction. For example, in the iTV interaction, the manipulation to the user interface can be realized immediately at the UE side, and then some form of data can be sent to the server. In this case, the user may choose a channel; the script will process this event and send a PLAY request to the server. This request contains the information about the selected channel. Based on such information, the server may start a new broadcasting or downloading session to transmit the requested media data.

Remotely processed events are application scripts processed on the server side directly. In such a case, the user events are directly sent from the UE to the server without any initial processing. One possible reason of saving it in the server side could be the security issue. The server hide every details from the end user, so that the client only need to report something like ‘which button has been the clicked by the user’ or ‘which text has been input by the user’, and so on.

7.2.4.3.2 Generic Feedback Format

We can represent the SVG based feedback information in the form of a text payload. This payload has two parts. The first part contains the EVENT_ID, ELEMENT_ID and the EVENT, where the MSG_ID is a unique identifier to identify the feedback message from the client, ELEMENT_ID is the ID of the source element in the SVG DOM that triggers the event, and EVENT is an SVG event or a user defined event.

The actual feedback data is stored after the first part as a series of octets. This data may contain attributes of the SVG event itself.

 For example the X and Y positions where the button was clicked may be directly transmitted to the server and the server can process the feedback remotely.

<meta-information>;

 MSG_ID=1;ELEMENT_ID=”my-button1”;EVENT=”click”;[OCTET1OCTET2….OCTETN];

The above example consists of an SVG scene with a set of buttons to select a movie. On clicking one of the buttons, the client stores the X and Y positions where the button was clicked. This information is formulated into a remotely processed feedback message to the server. Octets store information such as clickX and clickY in this example. However, the actual feedback data can also contain the processed information like which movie the user selected. In this case the octets may contain information like “movieSelected= Lord of the Rings”. This would be an example for a locally processed event. Therefore, on clicking one of the buttons in the scene, a script basically stores this value in a field called movieSelected. This information is formulated into a locally processed feedback message to the server. Note that the information or the stream of octets sent as part of the feedback payload is left to the discretion of the service or application.

7.2.4.4 Events and Event Management

The supported local events and their management in MORE are derived from SVG Mobile 1.2 and DOM Level 3 events model. They include DOM Events (focus, activate, etc), SVG Events (connection, load, etc.) and general XML events (user events, timing, key, and pointer events).
7.2.4.5 Browser Interaction

Integration to the browser in MORE will follow and leverage the work of W3C Compound Documents Format (CDF) working group. The group is currently looking at various issues with combining multiple mark-up languages (XHTML+SVG, etc.) such as seamless event propagation, user interaction and rendering. MORE supports embedding SVG Mobile 1.2 content into XHTML document using the <object> tag through browser’s standard plug-in architecture. However, in the long term MORE shall be extensible to support the Compound document profiles, both CDR and CDI.

The Document Object Model (DOM) API supported in MORE is based on SVG DOM subset (uDOM) as defined in the SVG Mobile 1.2 specification. The motivation for uDOM support is to provide an API that allows dynamic manipulation of rich media content including modification of attribute and property values, creation of elements, event listener registration/removal and the ability to start or end media objects including animations, video, and audio. Scripting in MORE is handled via the ‘script’ element that contains executable content either through ESMP source code or compiled code such as Java (JAR archive that is compatible with JSR 226 API).
7.2.5 Container Format

SVG supports media elements similar to Synchronized Multimedia Integration Language (SMIL) media elements. The continuous media elements in particular, contain their own pre-defined frame based timing. The server is responsible for generating and transmitting packets containing rich media data to the clients in a temporally compliant manner with low delay request.

A container format would help in efficiently packaging the different media, providing timing synchronization, and enabling clients to realize, play, or render rich media content. The actual container used for rich media services, would however depend on the type of media (whether it is just SVG and XML based technologies, or contains other time based media such audio, video, etc.) and the nature of the application (download, progressive download, streaming for example).

Multipart MIME (MMIME) have recently taken on an important role in Web applications for HTTP based Unicast services. This MIME type defines how multiple data parts can be included within a single message. These parts can be regular text files, HTML documents, or binary data (such as images), where the multipart specification defines how these messages are combined together, as well as how binary data are encoded within the message. The different parts are placed in a single message, one after the other, separated by a special divider. This divider or boundary is a text string, defined in the MIME multipart content-type header field that precedes the entire message. This format is useful for download, and when time synchronization between media is not required.
ISO defines ISO Base Media File Format as a basis for developing a media container with various usages (download, progressive download and streaming). 3GPP and 3GPP2 derive file formats from the ISO Base File Format with differences being in the types of codecs supported in these formats. In MORE, we define some simple extensions the ISO Base Media File Format, conforming to the box semantics defined in it. This is only one of many choices provided for rich media services when a container format is needed. Provisions could then be explored on possible derivations to 3GPP and 3GPP2 file formats.

As of today, there are no solutions for embedding graphics media (SVG) into 3GPP ISO Base Media File Format, for progressive download or streaming of rich media content. Although previous work for transmitting a multimedia presentation comprising of several media objects within a container exist, the current solutions for vector graphics in 3GPP are only limited to download and play or otherwise known as HTTP streaming. MORE extends the file format’s box hierarchy by adding relevant boxes to incorporate SVG as a new media. By adding an additional media track, leveraging the use of time synchronization along with existing audio and video track information, the solution is relatively simple and is extensible to other media formats if needed.
7.2.6 Transport Mechanisms

[image: image3.png]Unicast Broadcast/Multicast
Streaming Download Streaming Download
o Capability Exchange
ideo
Audio SEANEIT Video 3GP file format
Tyt | Presettation Description Binary data
Bitmap Graphics Audio Bitmap Graphics.
Timed Text Text
imed Text sve sve
36P file format
RTP Payload FEC, RTP Payload FLUTE
Formats HTTPTCP Formats o
{with FEC)
RTP/UDP GIInD
P (Unicast) P (Multicast)

Figure 4: TRANSPORT SCENARIOS HANDLED BY MORE

7.2.6.1 Overview

The transport mechanisms support rich media delivery in the following modes: Unicast download (HTTP/TCP or MMS protocol), broadcast/multicast download (FLUTE/UDP), unicast streaming and broadcast/multicast streaming (RTP/UDP). For download mode, reliability is guaranteed by existing mechanisms in the transport and network layers, and no error resilience tools need to be designed at the application layer for rich media delivery. However, rich media transport in streaming mode is more challenging with UDP being unreliable. Therefore, the RTP design should provide some error resilience tools to help the media decoder cope up with unreliable transport.

SVG is traditionally considered to be a discrete media and hence no RTP payload format has been defined. It has been transported only in download and progressive download mode. With increasing richness and dynamism in the SVG presentations, it can now be considered as a continuous media. Consequently, we define an RTP payload format for SVG. Rich media is a combination of continuous media and discrete media, so rich media streaming should uses relevant transport mechanisms for these two media types. Rich media streaming is thus naturally realized by (a) streaming continuous media like SVG, video and audio (b) downloading the discrete media like images. As SVG is often the driving engine for the rich media presentations, the RTP payload format for SVG provides synchronous playback of SVG with other media, tools for packet loss detection and graceful recovery from packet losses.

7.2.7 Compression

The use of compression and content specific encoding techniques are economically driven decisions. Rich media content consists of SVG scenes and scene updates along with other referenced media. For streaming purposes, existing compression methods can be used for referenced media. However, compressing small sized SVG does not yield high benefits with the available bandwidth in today’s networks. For large content, MORE recommends using Gzip as it results in high compression ratio. Hence, there is no specific need for introducing a new compression mechanism for rich media. Note however, that MORE does not preclude application of a specific encoding scheme that is widely adopted in the industry. This approach may be modified depending upon the outcome of the W3C work on XML compression as it tries to address compression for arbitrary XML data and not schema specific. In any case, it is important to view any encoding and compression decisions as orthogonal and separable from any base design decisions.
7.2.8 Conclusion

We present solutions that address various technology components needed for providing mobile real-time, interactive and streaming services. The solutions include dynamically delivering and updating scene content, a storage format for SVG content based on the ISO Base Media File Format including media synchronization, transport mechanisms and packetization for SVG and its discrete/continuous referenced media, and user interaction.

Rich Media Client�Terminal

Rich Media Streaming Server

Transmission of Scene and Scene Update commands.

Transmission of an Initial Scene with a rectangle element.

Transmission of Scene Update with a ‘'DOMAttrModified' operation. The update changes the postion ‘x’ of the rectangle

Transmission of Scene Update delivery with a 'DOMNodeInserted' operation. Here a new circle is added to the current scene.

Transmission of Scene Update delivery with a 'DOMNodeRemoved' operation. Here the rectangle is deleted from the current scene.

Transmission of Scene Update with a ‘replace’ operation. Here the circle is replaced with a new ellipse.

Transmission of Scene Update with a ‘group’ of updates, where a circle is appended and ellipse is removed.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

[image: image7.png]

[image: image8.png]

[image: image9.png]

_1199876066.vsd
Rich Media Server

Rich Media Content (SVG scenes and scene updates, discrete and continuous media)

Container Format

Transport Mechanisms

_1199877580.vsd

Application Layer

Rich Media Enabled User Agent

Rich Media Enabled Browser

Services Layer

SVG Mobile 1.2 Engine

Synchronization Module

Rich Media Client API

Audio/Video Module

Remote Interaction

Transport Layer

Media Depacketizers

Unicast and Broadcast Transport Protocols

