Doc# OMA-MAE-2006-0121R01-CR-RME-Technology-Landscape-MORE-Sec-7.doc[image: image5.jpg]
Change Request

Doc# OMA-MAE-2006-0121R01-CR-RME-Technology-Landscape-MORE-Sec-7.doc[image: image6.png]
Change Request

Change Request

	Title:
	CR RME-Technology-Landscape-MORE-Sec-7
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-MAE

	Doc to Change:
	OMA-WP-Rich-Media-Environment-20060328-D

	Submission Date:
	05 Apr 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Nokia (Suresh.Chitturi@nokia.com)

	Replaces:
	n/a

1 Reason for Change

This document proposes a CR to the RME Landscape document Section 7. The CR adds the MORE candidate proposal to the technology landscape document.

It is based on the current MORE proposal OMA-MAE-2006-0042R03-RME-MORE-Detailed-Proposal.

This document replaces change 3 of OMA-MAE-2005-0361R01-CR-RME-Landscape-MORE.

The CR takes into account documents OMA-MAE-2006-0020-Q-A-RMEWP-MORE and OMA-MAE-2006-0022-Ikivo-Comments-to-MORE

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We request BAC-MAE to review and incorporate the following CR to the RME Technology Landscape master document and consider MORE proposal as the candidate technology for the RME specification.
6 Detailed Change Proposal

Change 1: Evaluation of MORE technology against requirements (Section 7.2)

7.2 The Mobile Open Rich-media Environment (MORE)
7.2.1 Overview

[image: image1.emf]Rich Media Server

Rich Media

Content (SVG

scenes and scene

updates, discrete

and continuous

media)

Container

Format

Transport Mechanisms

Remote Interaction Mechanisms

Forward Transmission

(Unicast and Multicast/Broadcast

Download and Streaming Protocols)

Rich Media Client

SVG Based Local

Interaction

Mechanisms

Rich Media Player

Is the player’s request

remote in nature?

Send request

No

Yes

Figure 1: GENERAL ARCHITECTURE OF THE RICH MEDIA SYSTEM

The rich media system can be perceived as client-server architecture, comprising of 3 main components: The rich media server, transport mechanisms and the rich media client. Figure 1 illustrates the general architecture. The server takes as input, rich media content comprised of SVG, discrete (e.g. images) and continuous (e.g. audio, video) media. SVG content is represented as scenes and can be dynamically updated through scene updates. The rich media content can be encapsulated into a container format, containing additional information such as media synchronization, metadata, and hint tracks for packetization. The system then utilizes various transport mechanisms for 1-to-1 and 1-to-many protocols for download, progressive download and streaming scenarios as described in Section 9. The content is played on the client, allowing for local and remote interactivity of feedback and data requests. The MORE system is based on a non monolithic architecture emphasizing on a strong separation of interfaces and layers. This allows the flexibility of choosing the best of breed approach for a particular use case, and to change over time if necessary. It also minimizes the dependency on services in one layer to achieve performance in a higher layer.
7.2.2 Scene and Scene Updates

One of the motivations for rich media services is the ability to receive rich media content with minimal latency. In order to do so, the content or ‘scene’ on the client must be able to be dynamically updated with small changes rather than a completely new document being re-sent every time. Although SVG Mobile 1.2 supports prefetching for progressive downloading, during real-time streaming, a scene may change through animations and changes in scene states. This sequence of scene description and its spatial/temporal modifications needs to be streamed from the server to the players on the client device.

7.2.2.1 Scene

Scene describes the spatial organization of scene elements, the temporal organization of scene elements, synchronization information, and interaction among the elements. The scene presentation format and the rendering model are based on the Scalable Vector Graphics (SVG) format, a W3C Recommendation for representing two-dimensional graphics in XML language. Besides representation of graphics, SVG also supports a rich interaction based on DOM Level 3 Events and a complex animation model borrowed from SMIL specification.

A scene is typically first sent to the client to initialize the presentation layout. A scene can either be a complete SVG document or the content enclosed within <g></g> tags where the g element rendering will start when the g closing tag has been parsed and processed and when all internal and external resources required by the scene have been resolved. However, it is important to note that the initial scene delivered to the client to initialize the presentation and layout must be a complete and conforming SVG document. This helps the client to compute the initialization parameters such as ‘viewport’, ‘viewbox’, and ‘aspectRatio’ of the rich media presentation. Further, a scene may use elements (<use>) previously defined in the <defs></defs> block or other objects within the scene that are not discarded by the client. This is similar to the prefetch functionality provided by SVG for progressive download.
7.2.2.2 Scene Updates

Scene updates refer to one or more incremental updates to the SVG Micro Document Object Model (uDOM) that get sent to the client device during streaming. These updates include element addition; element deletion; element replacement, element attribute updates and new scene operations. The new scene operation can be performed by replacing the entire SVG document or the logical scene that the user is visually engaged at that point in time i.e. typically the content enclosed with <g></g> tags as explained above.
 Note that the updates can also be a combination of one or more of these operations depending on the desire of content provider. The client could potentially choose to update the SVG uDOM with this content update information without destroying and recreating the SVG uDOM for every streamed packet of information.
7.2.2.2.1 Scene Update syntax
The scene update syntax in MORE will follow the REX (Remote Events for XML) initiative in W3C that is spear-headed by SVG WG in an effort to meet the requirements of RME/DIMS specification. This is evident with the creation of a new Task Force (TF) in conjunction with Web Apps API WG to fast track this activity to meet the DIMS/RME requirements. The current draft specification is available at http://www.w3.org/TR/rex/ . The update syntax is compatible to the SVG and uDOM APIs as defined by SVG Mobile 1.2 specification.

The proposed XML update specification is be based on a set of requirements that are intended to maintain compatibility with DOM events, declarative in nature, and integrates well with the WWW architecture. The current charter of the Web Applications API will be responsible for maintaining this specification. Note that the syntax for update mechanism is not limited only to SVG but also extensible to other mark-ups, besides being very efficient and light weight for platforms that are already capable of supporting mobile SVG standard.
The following figure demonstrates the flow of delivering the scene and scene updates from the Rich Media server to the client, and the visual representation of the transmitted content at the client terminal.
[image: image7.png]
Figure 2: Illustration of Scene and Scene Updates delivery and realization.
7.2.2.3 Temporal Management of Scenes and Scene Updates

For temporal management, there is a need for an absolute rich media presentation start time denoted by TpresStart. Every scene and scene update sample is associated with a timestamp relative to this overall rich media presentation start time (TpresSart). This relative scene/scene update timestamp refers to the actual rendering time or the time at which the scene/scene update is rendered on the client.

For example, if the corresponding timestamp of the first scene is TS1, this is rendered at TpresStart + T S1. Similarly if a succeeding scene update sample has a time stamp of T SU1, it is rendered at TpresStart + T SU1. However, if any scene or scene update sample arrives at the receiver at a time greater than it’s rendering time, it may be ignored, simply rendered (in case of static objects) or retained for error concealment depending on the client’s implementation capability. The retained sample can be utilized for the following scenarios:

1) Scene content playback. For e.g. the content at the client is required to playback based on user interaction from time zero of the presentation time.

2) Can be utilized for repairing the uDOM structure.

3) Error concealment based on client’s needs.

[image: image2]
7.2.3 SVG and Associated Media

SVG supports media elements similar to Synchronized Multimedia Integration Language (SMIL) media elements. Continuous or real time media elements define their own timelines within their time container. All SVG media elements support the SVG timing attributes and run time synchronization.
7.2.3.1 Media Types

The media elements are audio, video and animation. However, particular platforms may have restrictions on the number of audio voices or channels that can be mixed, or the number of video streams that may be presented concurrently. Since these vary, the SVG language itself does not impose any such limits on audio or video.

7.2.3.2 Referencing Media

The real time media elements are audio and video, and are referenced as follows in SVG:

<xlink:href="example1.3gp" volume=".8" type="video/H264" x="10" y="170">

<xlink:href="example2.3gp”volume="0.7" type="audio/AMR-WB+" begin="mybutton.click" repeatCount="3">

Discrete media such as images are referenced in SVG using the ‘image’ element, such as:

<image x="200" y="200" width="100px" height="100px" xlink:href="myimage.png">

Furthermore, SVG can also reference other SVG documents, which in turn can reference yet more SVG documents through nesting. The referenced media elements can be linked through internal or external URLs in the SVG content. Here, internal URLs may refer to files internal to the SVG file or inline the host document, or within the container format. This applies to external URLs in a similar fashion.

The animation element specifies an external referenced SVG document or an SVG document fragment providing synchronized animated vector graphics. Like the video element, the animation element is a graphical object with size determined by its x, y, width and height attributes. For example:

<animation begin="1" dur="3" repeatCount="1.5" fill="freeze" x="100" y="100" xlink:href="myIcon.svg"/>

Also, SVG is capable of embedding media, like using Base64 encoding to embed images in the SVG file.
7.2.4 MORE Client Architecture

The MORE client is a lightweight entity present on the mobile terminal (Figure 4). This is substantiated due to the fact that it builds on top of existing application enablers such as SVG Mobile 1.2, ESMP, and XHTML-basic and thereby re-uses their associated underlying components such as the XML parser, rendering libraries, media decoders, and compression techniques. The client uses media packet depacketizers to obtain the different media that constitute the scene and scene updates in the case of real time streaming. In the case of download, the media is embedded media is internally (locally) or externally referenced. The synchronization module helps synchronize the frame rate and timing of continuous media with that of the non-frame based SVG content. The SVG engine in turn takes the different media and timing information as input to compose the dynamically rich multimedia presentation. The client is also responsible for transmitting any feedback occurring during interaction.

[image: image3.emf]Application Layer

Rich Media Enabled User AgentRich Media Enabled Browser

Services Layer

Rich Media Client API

SVG Mobile 1.2 Engine

Synchronization

Module

Audio/Video

Module

Remote

Interaction

Transport Layer

Media Depacketizers

Unicast and Broadcast Transport Protocols

Figure 3: MORE Client Architecture

7.2.4.1 Synchronization Module

A rich media session comprises several media streams, and in the case of RTP, each is transported via a separate RTP session. Synchronization is first performed on the transport level (using RTP and NTP timestamps) and used as input to synchronization at the application level (SMIL based synchronization). At the application level, MORE utilizes the run-time synchronization functionality that SVG Mobile 1.2 inherits from SMIL 2.0 [13]. These attributes are syncBehavior, syncTolerance and syncMaster attributes, specified on the 'audio', 'video' and 'animation' elements, and syncBehaviorDefault and syncToleranceDefault attributes specified on the SVG element. For more information, please refer to Annex B.
Delivering media streams separately and resynchronizing them at the receiver, rather than being delivered bundled together has several inherent advantages: This model better reflects the preferences of the server or receiver. For example, in a video conference application, participants often prefer audio to video. In addition, different media can be assigned priority levels for differing levels of error correction. In the case of bundled transport, all receivers would receive all media, which often is an issue for multiparty sessions using multicast distribution.

Annex C provides a detailed explanation of the synchronization process.

7.2.4.2 Resynchronization and Tune-In
During a rich media service, it is important for the clients to be able to connect and access the current streamed content, i.e. tune-in with minimal latency and data inaccuracy. MORE has several mechanisms to aid this purpose:

Random access points: An SVG SCENE or SCENE UPDATE for a new scene operation, can function as a random access point. Element add, delete, replace, and attribute update operations cannot function as random access points as they depend on previous content. A given SVG scene sample can be identified by the client to be a random access point by the random access bit (`A’) set to 1 in the RTP payload header (section 7.2.6) or from the sync sample box (Section 7.2.5). Random access points are similar to INTRA frames in video. When tuning into a broadcast channel, the client can wait for the next random access point.

Time Synchronization: Packets of data received by the client are associated with timestamps relative to the overall presentation time container. Further, the sequence numbers associated with the packets determine the relative ordering. This information helps the client to decode and sample the data correctly and using discretion (e.g. ignoring late packets) regarding packets arriving later than the scheduled sample time.
7.2.4.3 Remote Interaction

During a rich media presentation, the client can request more information, update the content, or even send information back to the server. SVG provides local interaction through declarative animation and scripting. SVG Mobile 1.2 supports remote interaction via the Connection interface API [14] for socket-level communication. The API can be used for unicast based feedback over the HTTP/TCP protocol. Note that the Connection API in conjunction with uDOM support can also offer AJAX-like functionality.

Rather than advocating a particular transport mechanism for feedback, the MORE system focuses on a broader set of solutions particularly for remote interaction and mechanism for mapping local interactivity into remote commands for feedback and forward transmission. In the subsections below, details of the user events during interaction of rich media have been identified. These events are processed either locally or remotely, and be sent with either high delay or low delay, depending on the demand of application.

7.2.4.3.1 Locally and Remotely Processed Events

Application scripts used to process user interaction can be saved either on the client/UE side or on the server side, with the choice being application-specific.

Locally processed events are application scripts first processed on the client-side and if needed are transmitted to the server from the UE. For certain applications, scripts may be saved on the UE side. This can greatly reduce the burden of the server and facilitates the local interaction. For example, in interactive TV, manipulation of the user interface can be realized immediately at the UE side, and then some form of data can be sent to the server. In this case, the user may choose a channel; a script will process this event and send a PLAY request to the server. This request contains the information about the selected channel. Based on such information, the server may start a new broadcasting or downloading session to transmit the requested media data.

Remotely processed events are application scripts processed on the server side directly. In such a case, the user events are directly sent from the UE to the server without any initial processing. One possible reason for processing the data on the server side could be the security issue. The server in this case hides all details from the end user, so that the client only needs to report something like ‘which button has been clicked by the user’ or ‘which text has been input by the user’, and so on.
7.2.4.3.2 Generic Feedback Format

The SVG based feedback information is in the form of a text payload. The payload has two parts. The first part contains the MSG_ID, ELEMENT_ID and the EVENT, where the MSG_ID is a unique identifier to identify the feedback message from the client, ELEMENT_ID is the ID of the source element in the SVG DOM that triggers the event, and EVENT is an SVG event or a user defined event.

The actual feedback data is stored after the first part as a series of octets. This data may contain attributes of the SVG event itself [9].

 For example the X and Y positions where the button was clicked may be directly transmitted to the server and the server can process the feedback remotely.

MSG_ID=1;ELEMENT_ID=”my-button1”;EVENT=”click”;[OCTET1OCTET2….OCTETN];
The above example consists of an SVG scene with a set of buttons to select a movie. On clicking one of the buttons, the client stores the X and Y positions where the button was clicked. This information is formulated into a remotely processed feedback message to the server. Octets store information such as clickX and clickY in this example. However, the actual feedback data can also contain the processed information like which movie the user selected. In this case the octets may contain information like “movieSelected= Lord of the Rings”. This is an example of a locally processed event. Therefore, on clicking one of the buttons in the scene, a script basically stores this value in a field called movieSelected. This information is formulated into a locally processed feedback message to the server. Note that the information or the stream of octets sent as part of the feedback payload is left to the discretion of the service or application.

Note that there is no particular restriction on the values of the octets in the feedback, but should follow a convention known to the service, i.e. the server and the clients.
7.2.4.4 Events and Event Management

The supported local events and their management in MORE are derived from SVG Mobile 1.2 and DOM Level 3 events model. They include DOM Events (focus, activate, mutation, etc), SVG Events (connection, load, etc.) and general XML events (user events, timing, key, and pointer events). For further information, please refer to Annex A.

7.2.4.5 Browser Interaction

Integration to the browser in MORE will follow and leverage the work of W3C Compound Documents Format (CDF) working group. The group is currently looking at various issues with combining multiple mark-up languages (XHTML+SVG, etc.) such as seamless event propagation, user interaction and rendering. MORE supports embedding SVG Mobile 1.2 content into XHTML document using the <object> tag through browser’s standard plug-in architecture. However, in the long term MORE shall be extensible to support the Compound document profiles, both CDR and CDI.

The Document Object Model (DOM) API supported in MORE is based on SVG DOM subset (uDOM) as defined in the SVG Mobile 1.2 specification. The motivation for uDOM support is to provide an API that allows dynamic manipulation of rich media content including modification of attribute and property values, creation of elements, event listener registration/removal and the ability to start or end media objects including animations, video, and audio. Scripting in MORE is handled via the ‘script’ element that contains executable content either through ESMP source code or compiled code such as Java (JAR archive that is compatible with JSR 226 API).
7.2.5 Container Format

SVG supports media elements similar to Synchronized Multimedia Integration Language (SMIL) media elements. The continuous media elements in particular, contain their own pre-defined frame based timing. The server is responsible for generating and transmitting packets containing rich media data to the clients in a temporally compliant manner with low delay request.

A container format would help in efficiently packaging the different media, providing timing synchronization, and enabling clients to realize, play, or render rich media content. The actual container used for rich media services, would however depend on the type of media (whether it is just SVG and XML based technologies, or contains other time based media such audio, video, etc.) and the nature of the application (download, progressive download, streaming for example).

Multipart MIME (MMIME) have recently taken on an important role in Web applications for HTTP based Unicast services. This MIME type defines how multiple data parts can be included within a single message. These parts can be regular text files, HTML documents, or binary data (such as images), where the multipart specification defines how these messages are combined together, as well as how binary data are encoded within the message. The different parts are placed in a single message, one after the other, separated by a special divider. This divider or boundary is a text string, defined in the MIME multipart content-type header field that precedes the entire message. This format is useful for download, and when time synchronization between media is not required.
ISO defines ISO Base Media File Format as a basis for developing a media container with various usages (download, progressive download and streaming). 3GPP and 3GPP2 derive file formats from the ISO Base File Format with differences being in the types of codecs supported in these formats. In MORE, we define some simple extensions the ISO Base Media File Format, conforming to the box semantics defined in it. This is only one of many choices provided for rich media services when a container format is needed. Provisions could then be explored on possible derivations to 3GPP and 3GPP2 file formats.

As of today, there are no solutions for embedding graphics media (SVG) into 3GPP ISO Base Media File Format, for progressive download or streaming of rich media content. Although previous work for transmitting a multimedia presentation comprising of several media objects within a container exist, the current solutions for vector graphics in 3GPP are only limited to download and play or otherwise known as HTTP streaming. MORE extends the file format’s box hierarchy by adding relevant boxes to incorporate SVG as a new media. By adding an additional media track, leveraging the use of time synchronization along with existing audio and video track information, the solution is relatively simple and is extensible to other media formats if needed.
For more information, please refer to the MORE detailed proposal.

7.2.6 Transport Mechanisms

[image: image4.png]
Figure 4: TRANSPORT SCENARIOS HANDLED BY MORE

7.2.6.1 Overview

The transport mechanisms support rich media delivery in the following modes: Unicast download (HTTP/TCP or MMS protocol), broadcast/multicast download (FLUTE/UDP), unicast streaming and broadcast/multicast streaming (RTP/UDP). For download mode, reliability is guaranteed by existing mechanisms in the transport and network layers, and no error resilience tools need to be designed at the application layer for rich media delivery. However, rich media transport in streaming mode is more challenging with UDP being unreliable. Therefore, the RTP design should provide some error resilience tools to help the media decoder cope up with unreliable transport.

SVG is traditionally considered to be a discrete media and hence no RTP payload format has been defined. It has been transported only in download and progressive download mode. With increasing richness and dynamism in the SVG presentations, it can now be considered as a continuous media. Consequently, we define an RTP payload format for SVG. Rich media is a combination of continuous media and discrete media, so rich media streaming should uses relevant transport mechanisms for these two media types. Rich media streaming is thus naturally realized by (a) streaming continuous media like SVG, video and audio (b) downloading the discrete media like images
The following sub-sections provide for a transport mechanism for supporting the download of SVG over FLUTE or the User Datagram Protocol (UDP). They also provide a specification of an RTP payload format that enables live streaming and the streaming of rich media content. Here, rich media content is encapsulated in RTP packets based upon the payload format at the sender.
For more information, please refer to the MORE detailed proposal.

7.2.7 Compression

The use of compression and content specific encoding techniques are economically driven decisions. Rich media content consists of SVG scenes and scene updates along with other referenced media. For streaming purposes, existing compression methods can be used for referenced media. However, compressing small sized SVG does not yield high benefits with the available bandwidth in today’s networks. For large content, MORE recommends using Gzip as it results in high compression ratio. Hence, there is no specific need for introducing a new compression mechanism for rich media. Note however, that MORE does not preclude application of a specific encoding scheme that is widely adopted in the industry. This approach may be modified depending upon the outcome of the W3C work on XML compression as it tries to address compression for arbitrary XML data and not schema specific. In any case, it is important to view any encoding and compression decisions as orthogonal and separable from any base design decisions.
7.2.8 Conclusion

We present solutions that address various technology components needed for providing mobile real-time, interactive and streaming services. The solutions include dynamically delivering and updating scene content, a storage format for SVG content based on the ISO Base Media File Format including media synchronization, transport mechanisms and packetization for SVG and its discrete/continuous referenced media, and user interaction.

Annex A: SVG EVENTS
This section contains the list the supported events as specified in the SVG Mobile 1.2 draft specification: http://www.w3.org/TR/SVGMobile12/interact.html#SVGEvents.

	Event Identifier

{event-namespace, event-localname}
	Description
	DOM3 event category
	Animation event name
	uDOM interface

	{"http://www.w3.org/2001/xml-events", "DOMFocusIn"}

SVG 1.2 alias: {"http://www.w3.org/2001/xml-events", "focusin"} (see Notes below).
	Occurs when an element receives focus.
	UIEvent
	focusin
	UIEvent

	{"http://www.w3.org/2001/xml-events", "DOMFocusOut"}

SVG 1.2 alias: {"http://www.w3.org/2001/xml-events", "focusout"} (see Notes below).
	Occurs when an element loses focus.
	UIEvent
	focusout
	UIEvent

	{"http://www.w3.org/2001/xml-events", "DOMActivate"}

SVG 1.2 alias: {"http://www.w3.org/2001/xml-events", "activate"} (see Notes below).
	Occurs when an element is activated, for instance, thru a mouse click or a keypress
	UIEvent
	activate
	UIEvent

	{"http://www.w3.org/2001/xml-events", "click"}
	Occurs when the pointing device button is clicked over an element. A click is defined as a mousedown and mouseup over the same screen location. The sequence of these events is: mousedown, mouseup, click.
	MouseEvent
	click
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mousedown"}
	Occurs when the pointing device button is pressed over an element.
	MouseEvent
	mousedown
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mouseup"}
	Occurs when the pointing device button is released over an element.
	MouseEvent
	mouseup
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mouseover"}
	Occurs when the pointing device is moved onto an element.
	MouseEvent
	mouseover
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mousemove"}
	Occurs when the pointing device is moved while it is over an element.
	MouseEvent
	mousemove
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "mouseout"}
	Occurs when the pointing device is moved away from an element.
	MouseEvent
	mouseout
	MouseEvent

	{"http://www.w3.org/2001/xml-events", "textInput"}
	One or more characters have been entered.
	TextEvent
	none
	TextEvent

	{"http://www.w3.org/2001/xml-events", "keydown"}
	A key is pressed down. (The normative definition of this event is the description in the DOM3 Events specification.)
	KeyboardEvent
	none
	KeyboardEvent

	{"http://www.w3.org/2001/xml-events", "keyup"}
	A key is released. (The normative definition of this event is the description in the DOM3 Events specification.)
	KeyboardEvent
	none
	KeyboardEvent

	{"http://www.w3.org/2001/xml-events", "load"}

Deprecated backwards-compatibility alias: {"http://www.w3.org/2001/xml-events", "SVGLoad"} (see Notes below).
	The event is triggered at the point at which the user agent has fully parsed the element and its descendants and is ready to act appropriately upon that element, such as being ready to render the element to the target device. Referenced external resources that are required must be loaded, parsed and ready to render before the event is triggered. Optional external resources are not required to be ready for the event to be triggered.
	HTMLEvent
	load
	Event

	{"http://www.w3.org/2001/xml-events", "resize"}

Deprecated backwards-compatibility alias: {"http://www.w3.org/2001/xml-events", "SVGResize"} (see Notes below).
	Occurs when a document view is being resized. This event is only applicable to 'svg' elements and is dispatched after the resize operation has taken place. The target of the event is the 'svg' element.
	HTMLEvent
	resize
	Event

	{"http://www.w3.org/2001/xml-events", "scroll"}

Deprecated backwards-compatibility alias: {"http://www.w3.org/2001/xml-events", "SVGScroll"} (see Notes below).
	Occurs when a document view is being shifted along the X or Y or both axis, either through a direct user interaction or any change on the 'currentTranslate' property available on SVGSVGElement interface. This event is only applicable to 'svg' elements and is dispatched after the shift modification has taken place. The target of the event is the 'svg' element.
	HTMLEvent
	scroll
	Event

	{"http://www.w3.org/2001/xml-events", "zoom"}

Deprecated backwards-compatibility alias: {"http://www.w3.org/2001/xml-events", "SVGZoom"} (see Notes below).
	Occurs when the zoom level of a document view is being changed, either through a direct user interaction or any change to the 'currentScale' property available on SVGSVGElement interface. This event is only applicable to 'svg' elements and is dispatched after the zoom level modification has taken place. The target of the event is the 'svg' element.
	DOM3's SVG Events
	zoom
	Event

	{"http://www.w3.org/2001/xml-events", "beginEvent"}
	Occurs when an animation element begins. For details, see the description of the Events and event model in SMIL 2.0.
	DOM3's Timing Events
	beginEvent
	TimeEvent

	{"http://www.w3.org/2001/xml-events", "endEvent"}.
	Occurs when an animation element ends. For details, see the description of the Events and event model in SMIL 2.0.
	DOM3's Timing Events
	endEvent
	TimeEvent

	{"http://www.w3.org/2001/xml-events", "repeatEvent"}
	Occurs when an animation element repeats. It is raised each time the element repeats, after the first iteration. For details, see the description of the Events and event model in SMIL 2.0.
	DOM3's Timing Events
	repeat
	TimeEvent

	{"http://www.w3.org/2001/xml-events", "wheel"}
	Occurs when a rotational input device has been activated.
	UIEvent
	none
	WheelEvent

	{"http://www.w3.org/2000/svg", "preload"}
	A load operation has begun.
	none
	none
	ProgressEvent

	{"http://www.w3.org/2000/svg", "loadProgress"}
	Progress has occurred in loading a given resource.
	none
	none
	ProgressEvent

	{"http://www.w3.org/2000/svg", "postload"}
	A load operation has completed.
	none
	none
	ProgressEvent

	{"http://www.w3.org/2001/xml-events", "timer"}
	Occurs when the specified timer interval has elapsed for a timer. This event is triggered only by 'enabled' timers in the current global execution context of the SVG document (i.e. for timers which have been instantiated via the SVGGlobal interface and started via the start() method of the SVGTimer interface).
	none
	none
	Event

	{"http://www.w3.org/2000/svg", "connectionConnected"}
	Occurs when a connection has been established. No context information is available.
	none
	none
	ConnectionEvent

	{"http://www.w3.org/2000/svg", "connectionClosed"}
	Occurs when a connection has been closed. No context information is available
	none
	none
	ConnectionEvent

	{"http://www.w3.org/2000/svg", "connectionError"}
	Occurs when an error happens during the lifetime of a connection. Additional context information is available in the errorCode field.
	none
	none
	ConnectionEvent

	{"http://www.w3.org/2000/svg", "connectionDataSent"}
	Occurs when data has been successfully transmitted. No context information is available.
	none
	none
	ConnectionEvent

	{"http://www.w3.org/2000/svg", "connectionDataReceived"}
	Occurs when data has been received on the connection. Additional context information is available on the receivedData field.
	none
	none
	ConnectionEvent

Annex B: APPLICATION LEVEL SYNCHRONIZATION
The follow section describes the application level synchronization as specified by the run-time synchronization. http://www.w3.org/TR/SVGMobile12/multimedia.html#Smil2Sync .

(a) syncBehavior = (canSlip | locked | independent | default)

Defines the runtime synchronization behavior for an element.

Legal values are:

canSlip: Allows the associated element to slip with respect to the parent time container. When this value is used, any syncTolerance attribute is ignored.

Locked: Forces the associated element to maintain sync with respect to the parent time container. This can be eased with the use of the syncTolerance attribute.

Independent: Declares an independent timeline that is scheduled with the timegraph, but will ignore any seek operations on the parent.

Default: The runtime synchronization behavior for the element is determined by the value of the syncBehaviorDefault attribute. This is the default value.

The argument value independent is equivalent to setting syncBehavior="canSlip" and syncMaster="true" so that the element is scheduled within the timegraph, but is unaffected by any other runtime synchronization issues. Setting syncBehavior="canSlip" and syncMaster="true" declares the element as being the synchronization master clock and that the element may slip against its parent time line
(b) syncTolerance = (Clock-value | default)

This attribute on timed elements and time containers defines the synchronization tolerance for the associated element. The attribute has an effect only if the element's runtime synchronization behavior is "locked". This allows a locked sync relationship to ignore a given amount of slew without forcing resynchronization.

Clock-value: Specifies the synchronization tolerance as a value. Clock values are measured in element simple time.

Default: The synchronization tolerance for the element is determined by the value of the syncToleranceDefault attribute. This is the default value.

(c) syncMaster
Boolean attribute on media elements and time containers that forces other elements in the time container to synchronize their playback to this element. The default value is false. The associated property is read-only, and cannot be set by script.

Controlling the default behavior
Two attributes are defined to specify the default behavior for runtime synchronization:

(d) syncBehaviorDefault = (canSlip | locked | independent | inherit)

Defines the default value for the runtime synchronization behavior for an element. The values "canSlip", "locked" and "independent" specify that the element's runtime synchronization behavior is the respective value.

Inherit: Specifies that the value of this attribute (and the value of the element's runtime synchronization behavior) are inherited from the syncBehaviorDefault value of the parent element. If there is no parent element, the value is implementation dependent. This is the default value.

(e) syncToleranceDefault = (Clock-value | inherit)

Defines the default value for the runtime synchronization tolerance value for an element.
Clock values specify that the element's runtime synchronization tolerance value is the respective value.

Inherit: Specifies that the value of this attribute (and the value of the element's runtime synchronization tolerance value) are inherited from the syncToleranceDefault value of the parent element. If there is no parent element, the value is implementation dependent but should be no greater than two seconds.
This is the default value.

The accumulated synchronization offset

If an element slips synchronization relative to its parent, the amount of this slip at any point is described as the accumulated synchronization offset. This offset is used to account for pause semantics as well as performance or delivery related slip. This value is used to adjust the conversion between element and parent times, as described in Converting between local and global times. The offset is computed as follows:

Let tc(tps) be the computed element active time for an element at the parent simple time tps, according to the defined synchronization relationship for the element.

Let to(tps) be the observed element active time for an element at the parent simple time tps.

The accumulated synchronization offset O is:

O = to(tps) - tc(tps)
This offset is measured in parent simple time.

Thus an accumulated synchronization offset of 1 second corresponds to the element playing 1 second "later" than it was scheduled. An offset of -0.5 seconds corresponds to the element playing a half second "ahead" of where it should be.

Annex C: TRANSPORT LEVEL SYNCHRONIZATION

As explained in the transport section, rich media streaming is realized by (a) streaming continuous media like SVG, video and audio using RTP (b) downloading the discrete media like images over FLUTE.
In both RTP-RTP and RTP-FLUTE synchronization scenarios, one media is played in-sync with the other media. In the case of an RTP-FLUTE combination, the discrete media is generally played in-sync with one of the continuous media, whereas in the RTP-RTP case, both are continuous media and the reference media depends largely on the application.

The RTP-FLUTE case is more straightforward as the discrete media chunks tend to have longer playout times than the continuous media chunks (e.g. 20 ms audio frames or 100 ms video frames). The FLUTE packets are transmitted in advance so that the receiver can make sure it has the entire discrete media chunk reconstructed from the FLUTE packets (some of which might be lost or arrive out of order). Also information is needed to inform the receiver which discrete media chunk has to be rendered in sync with a particular segment of the continuous media. In SVG data, the lifecycle of the discrete media can be defined to aid in this synchronization and also, scripts can be sent in advance to the receiver to provide more synchronization information if needed.

In the RTP-RTP case, the server enables synchronization of media streams at the receiver by running a common presentation based reference clock and periodically announcing through RTCP, the relationship between the reference clock time and the media stream time. As the reference clock runs at a constant rate, correspondence points between the reference clock and the media stream allow the receiver to calculate the relative timing relationship between the media streams.

The correspondence between the reference clock and the media clock is noted when each RTCP packet is generated. An offset is then calculated between the individual media times and reference clock. The common reference clock is the “wall clock” time used by RTCP. It takes the form of an NTP-format timestamp, counting seconds and fractions of a second since midnight UTC (coordinated Universal Time) on January 1, 1900. The server periodically establishes a correspondence between the media clock for each stream and the common reference clock; communicated to receivers via RTCP sender report packets.

Synchronized clocks are required only when media streams generated by different hosts are being synchronized. Also, it is necessary to identify specific media streams/sources that need to be synchronized. RTP provides this information through synchronization source identifiers (SSRC), giving the related sources a shared name to distinguish streams to be synchronized from the independent ones. A mapping from SSRC identifiers to a persistent canonical name (CNAME) is provided by the RTCP source description (SDES) packets. A sender should ensure that RTP sessions to be synchronized on playout have a common CNAME so that receivers know how to align media. The CNAME is determined algorithmically according to the user name and network address of the source host. In the case of multiple hosts, the RTP standard requires each host to use its own IP address as part of the CNAME.

The receiver (rich media client) synchronizes those streams that the sender has given the same CNAME in their RTCP source description packets. The actual synchronization process is triggered by the reception of RTCP sender report packets containing the mapping between the media clock and a reference clock common to all the media. Once this mapping has been determined for the media streams, the receiver has the information needed to synchronize playout.

The first step of synchronization is to determine, for each stream to be synchronized, when the media data corresponding to a particular reference time is to be presented to the user. Due to several reasons including network latency, two streams transmitted at the same time may not be scheduled for presentation at the same time if the playout times are determined independently. Thus, the playout time for one stream has to be adjusted to match the other. This adjustment translates into an offset to be added to the playout buffering delay for one stream, such that the media are played out in time alignment.

The receiver observes the mapping between the media clock and the reference clock as assigned by the sender, for each media stream it is to synchronize. This mapping is conveyed to the receiver in periodic RTCP sender report packets, and because the nominal rate of the media clock is known from the payload format, the receiver can calculate the reference clock capture time for any data packet once it has received an RTCP sender report from that source. When an RTP data packet with media timestamp M is received, the corresponding reference clock capture time at the server, Ts (the RTP timestamp mapped to the reference timeline), can be calculated as follows:

Ts = (Tssr + (M - Msr)) / R

where, Msr is the media (RTP) timestamp in the last RTCP sender report packet, Tssr is the corresponding reference clock (NTP) timestamp and R is the nominal media timestamp clock rate in hertz.

Similarly, the receiver also calculates the playout time for any particular packet, TR according to its local reference clock. This is equal to the RTP timestamp of the packet, mapped to the receiver’s reference clock timeline plus the playout buffering delay.

Once the capture and playout times are known according to the common reference timeline, the receiver can estimate the relative delay between media capture and playout for each stream. If data sampled at time Ts according to the sender’s reference clock is presented at time TR according to the receiver’s reference clock, the delay between them for that given media is Dmedia = Ts - TR.

Once the relative capture-to-playout delay has been estimated for different media streams, a synchronization delay between streams is computed. For example, Dsync = DSVG - Dvideo. If the synchronization delay is zero, then the media streams are synchronized. A non-zero value indicates that on media is played out ahead of the other. For the media stream that is ahead, the synchronization delay (in seconds) is multiplied by the nominal media clock rate, R to convert into media timestamp units, and is then applied as a constant offset to the playout calculation for that media stream, delaying playout to match the other stream.

The choice of media for playout adjustment depends on the application, limit of human perception of error, and the priority of the media. Typically audio is more sensitive to playout adjustment when compared to other media such as SVG and video. In this case, it may be appropriate to delay SVG animations or video to match the audio presentation time.

Transmission of Scene Update with a ‘group’ of updates, where a circle is appended and ellipse is removed.

Transmission of Scene Update with a ‘replace’ operation. Here the circle is replaced with a new ellipse.

Transmission of Scene Update delivery with a 'DOMNodeRemoved' operation. Here the rectangle is deleted from the current scene.

Transmission of Scene Update delivery with a 'DOMNodeInserted' operation. Here a new circle is added to the current scene.

Transmission of Scene Update with a ‘'DOMAttrModified' operation. The update changes the postion ‘x’ of the rectangle

Transmission of an Initial Scene with a rectangle element.

Rich Media Client

Terminal

Rich Media Streaming Server

New document�=> Intialize local time to 0secs

Scene Update (10:31:15)

Scene Update (10:31:30)

Scene�(10:31:00)

Scene Update (10:30:30)

Scene Update (10:30:15)

Scene �(10:30:00)

New document�=> Intialize local time to 0secs

TpresStart+T SU4�Local Time = 30secs

TpresStart+T SU3�Local Time = 15secs

Local time = local rendering time relative to current document timeline ----->

TpresStart+T S2�Local Time = 0secs

TpresStart+T SU2�Local Time = 30secs

TpresStart+T SU1�Local Time = 15secs

TpresStart+T S1�Local Time=0secs

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

[image: image8.png][image: image9.png][image: image10.png]_1199876066.vsd
Rich Media Server

Rich Media Content (SVG scenes and scene updates, discrete and continuous media)

Container Format

Transport Mechanisms

_1199877580.vsd

Application Layer

Rich Media Enabled User Agent

Rich Media Enabled Browser

Services Layer

SVG Mobile 1.2 Engine

Synchronization Module

Rich Media Client API

Audio/Video Module

Remote Interaction

Transport Layer

Media Depacketizers

Unicast and Broadcast Transport Protocols

