© ISO/IEC 2006 — All rights reserved

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2006/ N8129

April 2006, Montreux, CH

Title :

Text of ISO/IEC 14496-20/FPDAM 1
Editors :
Alexandre Cotarmanac'h (France Telecom), Philippe de Cuetos (Expway), Jean-Claude Dufourd (Streamezzo)

DRAFT AMENDMENT

 SET DDOrganization "© ISO/IEC 2006 — All rights reserved" © ISO/IEC 2006 — All rights reserved

 SET LibEnteteISO "ISO/IEC 14496-20:200X/FPDAM 1" ISO/IEC 14496-20:200X/FPDAM 1

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF), AMENDMENT 1: Extensions to support SVGT1.2" Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF), AMENDMENT 1: Extensions to support SVGT1.2

 SET DDTITLE3 "Information technology — Coding of audio-visual objects" Information technology — Coding of audio-visual objects

 SET DDTITLE2 "Élément introductif — Élément central — Partie 20: Titre de la partie" Élément introductif — Élément central — Partie 20: Titre de la partie

 SET DDTITLE1 "Information technology — Coding of audio-visual objects — Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF), AMENDMENT 1: Extensions to support SVGT1.2" Information technology — Coding of audio-visual objects — Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF), AMENDMENT 1: Extensions to support SVGT1.2

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2006-05-08" 2006-05-08

 SET DDDocStage "(40) Enquiry" (40) Enquiry

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR "200X" 200X

 SET DDAmno "1" 1

 SET DDDocSubType "Amendment" Amendment

 SET DDDocType "International Standard" International Standard

 SET DDWorkDocNo """"

 SET DDpubYear "2006" 2006

 SET DDRefNoPart "ISO/IEC 14496" ISO/IEC 14496

 SET DDRefGen "ISO/IEC 14496‑20" ISO/IEC 14496‑20

 SET DDRefNum "ISO/IEC 14496-20/FPDAM 1" ISO/IEC 14496-20/FPDAM 1

 SET DDSCSecr ""

 SET DDSecr ""

 SET DDSCTitle "Coding of Audio, Picture, Multimedia and Hypermedia Information" Coding of Audio, Picture, Multimedia and Hypermedia Information

 SET DDTCTitle "Information Technology" Information Technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "Heading 2;h2;H2;H21;Œ©_o‚µ 2;?c_o??E 2;?c;Œ©1;Œ©�o‚µ 2;?c�o??E 2;뙥2;?c1;?c�o?ƒÊ 2;?2;Œ1;Œ2;Œ©2;...;título 2;DO NOT USE_h2" Heading 2;h2;H2;H21;Œ©_o‚µ 2;?c_o??E 2;?c;Œ©1;Œ©�o‚µ 2;?c�o??E 2;뙥2;?c1;?c�o?ƒÊ 2;?2;Œ1;Œ2;Œ©2;...;título 2;DO NOT USE_h2

 SET libH1NAME "Heading 1;h1;Heading U;H1;H11;Œ©_o‚µ 1;?c_o??E 1;Œ;Œ©;Œ©�o‚µ 1;?c�o??E 1;뙥;?c�o?ƒÊ 1;?;Titre Partie" Heading 1;h1;Heading U;H1;H11;Œ©_o‚µ 1;?c_o??E 1;Œ;Œ©;Œ©�o‚µ 1;?c�o??E 1;뙥;?c�o?ƒÊ 1;?;Titre Partie

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer ""

 SET CENSubVer ""

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1" STD Version 2.1

 SET LIBStageCode "40" 40

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4

 SET LIBEnFileName "G:\Cl00guest\29f778\w8129 - LASeR&SAF FPDAM1.doc" G:\Cl00guest\29f778\w8129 - LASeR&SAF FPDAM1.doc

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD "" ISO/IEC JTC 1/SC 29 REF DDWorkDocNo * CHARFORMAT
Date: 2006-05-08
ISO/IEC 14496-20:200X/FPDAM 1
ISO/IEC JTC 1/SC 29/WG 11
Secretariat: REF DDSecr * CHARFORMAT
Information technology — Coding of audio-visual objects — Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF), AMENDMENT 1: Extensions to support SVGT1.2
Élément introductif — Élément central — Partie 20: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 (CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to ISO/IEC 14496‑20:200X was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology, Subcommittee SC 29, Coding of Audio, Picture, Multimedia and Hypermedia Information.

Information technology — Coding of audio-visual objects — Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF), AMENDMENT 1: Extensions to support SVGT1.2
EDIT 1: add to section 6.8

1.1.1. StreamSource
1.1.1.1. Semantics
The purpose of StreamSource is to first make available at the scene level information about the state of media chains (e.g. buffering, availaibility fir rendering …) and secondly to give hints for potential resource optimization like, for instance, usage of a single hardware decoder, smooth transition during rendering without silence or black screens, ads display during channel switching.
The ‘streamSource’ element manages a set of streams, it does not actually have any display/rendering functionality. Instead, it keeps available an up-to-date pixel or audio buffer that can be used, and thus displayed by one or more video elements. As such, streamSource makes a pixel/audio buffer available to video/audio elements.

If any of the elements (in the source attribute) in the streamSource element is an audiovisual element containing both audio and video, two buffers (for audio and video respectively) shall be made available for all elements referring to the streamSource.

In such case,

· the pixel buffer associated to the streamSource when an audio only stream is active will represent a black buffer, the size of which will be defined by the width and height elements. Children of the streamSource element may define the default buffer in that case.

· the audio buffer associated to the streamSource when an video only stream is active will render as silence. Children of the streamSource element may define a default audio clip in that case.

The 'streamSource' element is able to trigger events such as the availability of the desired stream.

1.1.1.2. Attributes

· id : as per svg:id

· sources : is an array of references to stream sources

· sourceIndex : is the current active video source. On loading of the scene or when changing the sourceIndex, the browser shall connect to the session defined by the url corresponding to sourceIndex, this is source[i]

· width, height : default pixel buffer size

· mode : is one of "replace", "useOld", "keepOld", "playList".

· The value "replace" indicates that the composition buffer associated to the stream should be immediately replaced when sourceIndex is changed.

· The value "useOld" means that the previous stream will be decoded till the stream pointed by sourceIndex is ready which means that data will start to be available for composition for the stream pointed by sourceIndex. This implies that decoding and rendering of the previous stream will occur up to the moment at which the first composition buffer is made available.

· With "keepOld"
 the same behaviour as from "useOld" is expected, furthermore the previous video stream source is kept open.

· The value "playList" indicates that the different sources will be played in sequence. In this case, it is possible to append a "repeat" and/or "shuffle" modes such as "playList, repeat, shuffle". This modes repeat and shuffle allow respectively to cycle through sources and to shuffle the sources.

EDIT 2: add to section 5

1.2. LASeR Systems Decoder Model

1.2.1. Introduction

The purpose of the LASeR Systems decoder model is to provide an abstract view of the behaviour of the terminal complying with ISO/IEC 14496-20. It may be used by the sender to predict how the receiving terminal will behave in terms of buffer management and synchronization when decoding data received in the form of elementary streams. The LASeR systems decoder model includes a timing model and a buffer model. The LASeR systems decoder model specifies:

1. the conceptual interface for accessing data streams (Delivery Layer),

2. decoding buffers for coded data for each elementary stream,

3. the behavior of elementary stream decoders,

4. composition memory for decoded data from each decoder, and

5. the output behavior of composition memory towards the compositor.
These elements are depicted in [ref].
Each elementary stream is attached to one single decoding buffer.

[image: image1.emf]Delivery

Layer

Decoding

Layer

Composition

Layer

DB

DB

DB

SAF

DeMux

Decoder

Decoder

Decoder

RTSP/

RTP

DB

DB

DB

HTTP

Decoder

Decoder

Decoder

Composition

CB

CB

CB

CB

CB

CB

HTTP/SAF

Session

RTSP/RTP

Session

Figure 1 LASeR Systems Decoder Model
The definition in ISO/IEC 14496-1 of Access Unit, Decoding Buffer(DB), elementary stream (ES), Decoder (CU) and Composition Unit apply.
1.1.1 Decoder Model

The decoder model as specified in 14496-1 Section 7.4.1 applies

1.1.1.1 Decoding Buffer
The needed decoding buffer size is known by the sending terminal and conveyed to the receiving terminal as specified in 7.6. The size of the decoding buffer is measured in bytes. The decoding buffer is filled at the rate given by the maximum bit rate for this elementary stream while data is available and with a zero rate otherwise. The maximum bit rate is conveyed by the sending terminal as a part of the decoder configuration information during the set up phase for each elementary stream (see 7.6).
1.1.1.2 Decoder model with grouped streams
This decoder model may be enhanced when used for group of multiple elementary streams.

In such case, only one composition buffer for the group of streams is used for composition.

When such streams are grouped, and when the setup of multiple decoding chains are available, it is possible, although not mandatory, not to decode all streams at a time.

[image: image2.emf]Delivery

Layer

Decoding

Layer

Composition

Layer

DB

DB

DB

Decoder

Decoder

Decoder

Composition

CB

CB

CB

Grouped

Streams

Selection of

active stream

Figure 2: Stream grouping with specified System Decoder Model (multiple decoders)
It is indeed expected that multiple decoders may not be available in lightweight terminals or that some delivery scenarios do not allow for having all streams available at the same time (e.g. in broadcast scenarios, the delivery layer could only tune in to one of the streams). The usage of new information about this grouping enables a smart usage of buffers and decoders.

[image: image3.emf]Delivery

Layer

DB A

DB B

Decoder

CB

DB C

sel 1 sel 2

Figure 3: Broadcast example of streams grouping, showing a potential optimization using a single decoder.

When only a subset of the group of streams can be accessed at a time (e.g. broadcast scenario depicted above), the selection of the active stream corresponds to a request for the corresponding streams. Nevertheless, the buffer model for stream grouping does not assume immediate reception of data after such request and therefore the active decoding buffer may continue to be used by the decoder up to the moment at which data is available for the newly available stream. In this case the decoding buffer associated to the newly connected stream can be associated with the decoder. At this point the terminal may discard any remaining access units in the previous decoding buffer.

EDIT 3: replace section 6.5 with

1.2. Events

1.2.2. Purposes of events

As in SVG, LASeR defines events following the XML Event specification [ref]. The events defined in LASeR relate to the management of the network session and decoding chains (including decoding buffers). The events defined in the following subclauses can be used by elements in the scene such as script elements being associated, through the listener element, in order to respond to such events.

Note : For instance, in a progressive download scenario, the "buffering" event could be listened by a script in order to trigger a text indicating that content will be played shortly.

	…
<ev:listener handler="#myscript" event="LASeRBuffering">
<script id="myscript">
 <lsr:Replace ref="#text" attributeName="visibility" value="visible">
</script>
<text id="text" visibility="hidden">Content is being buffered</text>
…

In the previous example, the LASeRBuffering event is being listened to by a script "myscript". When the event is launched by the browser, the visibility attribute of the text element is set to "visible".

These events are launched by the LASeR browser either at the "Network" Layer of the browser in which case, the scope of these events is the session or at the decoding chain level, in which case the events are at the stream level.

Note : a session is identified by a unique url and streams are identified by a streamID.

1.2.3. Events imported from SVG Tiny

The list of supported events with their properties is given in Table 1.
	Event name
	Namespace
	Description
	Bubble
	Canc.

	“focusin”
or “DOMFocusIn”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	No

	“focusout”
or “DOMFocusOut”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	No

	“activate” or “DOMActivate”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	Yes

	“click”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	Yes

	“mousedown”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	Yes

	“mouseup”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	Yes

	“mouseover”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	Yes

	“mouseout”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	Yes

	“mousemove”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	No

	“load”
(or deprecated “SVGLoad”)
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	No
	No

	“resize”
(or deprecated “SVGResize”)
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	No

	“scroll”
(or deprecated “SVGScroll”)
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	No

	“zoom”
(or deprecated “SVGZoom”)
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	No

	“beginEvent”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	No

	“endEvent”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	No

	“repeatEvent”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	Yes
	No

	“keyup”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	No
	No

	“keydown”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	No
	No

	“textInput”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	No
	No

	“mouseWheel”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	No
	No

	“timer”
	http://www.w3.org/2001/xml-events
	As defined in section 13.2 of [02].
	No
	No

	“preload”
	http://www.w3.org/2000/svg
	As defined in section 13.2 of [02].
	No
	No

	“loadProgress”
	http://www.w3.org/2000/svg
	As defined in section 13.2 of [02].
	No
	No

	“postLoad”
	http://www.w3.org/2000/svg
	As defined in section 13.2 of [02].
	No
	No

	“connectionConnected”
	http://www.w3.org/2000/svg
	As defined in section 13.2 of [02].
	No
	No

	“connectionClosed”
	http://www.w3.org/2000/svg
	As defined in section 13.2 of [02].
	No
	No

	“connectionError”
	http://www.w3.org/2000/svg
	As defined in section 13.2 of [02].
	No
	No

	“connectionDataSent”
	http://www.w3.org/2000/svg
	As defined in section 13.2 of [02].
	No
	No

	“connectionDataReceived”
	http://www.w3.org/2000/svg
	As defined in section 13.2 of [02].
	No
	No

	“accessKey(keyCode)”
	urn:mpeg:mpeg4:laser:2005
	The key keyCode has been pressed, as defined in section 10.3.1 of [08]
	No
	No

	“longAccessKey(keyCode)”
	urn:mpeg:mpeg4:laser:2005
	Similar to accessKey but for the fact that the event is only triggered if the key has been pressed for a longer time, the definition of “longer” being left to the appreciation of the browser implementation.
	No
	No

	“pause”
	urn:mpeg:mpeg4:laser:2005
	Freezes the clock of the timed object they are sent to, and have no effect on non timed objects.
	No
	No

	“resume”
	urn:mpeg:mpeg4:laser:2005
	Restarts the clock of the timed object they are sent to, and have no effect on non timed objects.
	No
	No

Table 1: List of supported events

1.2.4. LASeR Events
LASeR defines the following new events:
	Event
	Semantics
	Layer
	Level

	LASeRConnecting
	This indicates that the request for the media has been made.

In a unicast scenario this means that the request for content has been made

Otherwise this means that the terminal is tuning in into the media.
	NETWORK
	Session

	LASeRBuffering
	This indicates that media data is being received. The decoding buffer is being filled.

This indicates that composition for this media is not happening.
	DECODING
	Stream

	LASeREndStream
	This indicates that the stream is finished.

No new data will be received in the decoding buffer
	DECODING
	Stream

	LASeRPlayable
	This indicates that the composition of media data is possible.

In a progressive download case, this event indicates that play out could start.

Not defined/generated in other cases.
	NETWORK
	Session

Figure 4 describes the decoding chain states, transitions and events sent upon transitions by the decoding chain (in addition to the events issued by the timed elements such as beginEvent and endEvent).

[image: image4.emf]Stopped

Connecting

Not playing

Playing

begin of

timed element

connected

buffer ready or resume

pause or buffer

underflow

progress

end of stream

en

d of

timed e

lement

LASeRPlayable

progress

LASeREndStream

LASeRConnecting

LASeRBuffering

LASeRBuffering

end of

timed eleme

nt

Figure 4 Event State and Transition Chart

1.2.4.1. General IDL definition of LASeR events.

interface LASeREvent : events::Event {};

All LASeR specific events are prefixed with LASeR.

1.2.4.2. IDL Events definitions

1.2.4.3. LASeRConnecting Event

interface LASeRConnecting : LASeREvent {

 const unsigned short LASeR_No_Error

= 0;

 const unsigned short LASER_Content_NotFound_Error
= 1;

 readonly attribute unsigned short

error;

 readonly attribute DOMString

url; //content url

}

error : this attribute signals whether a connection error has happened in which case the value is different from 0. If the value is 1, the error is due to the content being not found.

url : this attribute identifies the session the LASeR browser is (or tries to) connect to.

1.2.4.4. LASeRBuffering

interface LASeRBuffering : LASeREvent {

readonly attribute DOMString

url;

//content url

readonly attribute unsigned short

streamID;

//ID of the stream

readonly attribute signed short

progressBuffering; //percent of buffering

readonly attribute signed int

bufferTime;

//duration of the buffer

}
url : this attribute identifies the session.

streamID : this attribute identifies the ID of the stream.

progressBuffering : this attribute provides the buffering ratio for this stream. This value may be negative in which case, the progress of buffering is undefined.

bufferTime : this attributes expresses in ms the duration of data.

1.2.4.5. LASeREndStream

interface LASeREndStream : LASeREvent {

readonly attribute DOMString

url;

//content url

readonly attribute unsigned short

streamID;

//ID of the stream

}
url : this attribute identifies the session.

streamID : this attribute identifies the ID of the stream.

1.2.4.6. LASeRPlayable

interface LASeRPlayable : LASeREvent {

readonly attribute DOMString

url;

//content url

readonly attribute signed short

progressDownload; // percent of download

}

url : this attribute identifies the session.

progressDownload : this attribute provides the downloaded ratio of the content. This value may be negative in which case, the progress download is undefined.

EDIT 4: add to section 12.1
1.2.1. Local/global IDs

LASeR defines two types of IDs (i.e. binary identifiers):

· one type of ID is purely local to a scene segment (initial scene or appended component). The same local ID can be used in two or more scene segments without collision of identifiers. The player shall discriminate between similar local IDs from different segments.

· another type of ID is global over a scene: such IDs can be declared specifically and need to be shared by all components of a scene. Reuse of a global ID means no clash, but a reference to something declared by another component.

LASeR also defines two modes: one mode where all IDs are global, and where no signalling nor initialization is necessary; one mode where an ID is local by default and each access unit starts with an association table for the global IDs (of elements and streams) of past segments which are going to be used in the current access unit. In the absence of an association table, all IDs are considered global.

When the value of hasStringIDs in the LASeRHeader is true, each ID in the bitstream is carried as a binary number plus a string. This means that every ID is global.

Local IDs are not visible in the DOM, i.e. the attribute id of type DOMstring is null when the id of an element is local.

EDIT 5: replace in section 13.2

class extendedInitialisation {

 bit(1) extension;

 if (extension) {

 //extensionClass c;
 {

 vluimsbf5 len;

 // globalTable: external global ID references

 vluimsbf5 countG;

 for (int i = 0; i < countG; i++) {

 vluimsbf5 localIdForThisGlobal[[i]];

 byteAlignedStringClass globalName[[i]];

 }

 // globalStreamTable: external global streamID references

 vluimsbf5 countGS;

 for (int i = 0; i < count; i++) {

 vluimsbf5 localStreamIdForThisGlobal[[i]];

 byteAlignedStringClass globalName[[i]];

 }

 bit[len2] remainingExtension;

 // len2 is defined implicitly as

 // len – sizeof(globalTable) – sizeof(globalStreamTable)

 }
 }

}

EDIT 6: add to section 6.8

1.2.5. animateScroll
1.2.5.1. Semantics

The purpose of this element is to allow to:
· scroll a piece of text of unknown size, inside a clipping rectangle.

· define the speed of the scrolling in terms of clip size, not in terms of the text size (the speed would vary depending on the screen size)

· define the bounds of scrolling precisely, according to the actual size of the text

· define the beginning and ending conditions (screen full or empty of text)

· define automatic and manual scrolling (continuous scrolling, page advance on action…), and allow a combination of automatic and manual

· define scroll stops (for manual scrolling) by page (size of viewport) or by text markers

The animateScroll element is designed in a manner similar to SMIL/SVG animate* elements. It works in combination with a clipping region (lsr:rectClip element). Scrolling can be automatic or manual (e.g. triggered by key events). Multiple scrolling instructions can be combined with the sub-element scrollStop.

Each frame where it is active, animateScroll does:

· if the element or one of its attributes has changed, recompute the element size

· depending on the parameters, compute the new offset of the element inside its textArea (this is an extension from the plain textArea in the sense that the initial text position can be driven by the animateScroll)

animateScroll shall not be rotated, nor the element which it points to.

Example 1: Plain vanilla
<lsr :rectClip id="t1" size="120 20">

 <text…>Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.</text>

</lsr:rectClip>

<animateScroll xlink:href="#t1" direction="left" speed="2"

 delayAtStart="1" delayAtEnd="1" begin="3"

 repeatDur="indefinite"/>

[image: image5.emf]Que j’aime àfaire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Startingviewport Endingviewport

Figure 5: Start and end states of Example 1
Example 2: Start and end conditions

<lsr:rectClip id="t1" size="120 20">
 <text…>Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.</text>
</lsr:rectClip>

<animateScroll xlink:href="#t1" direction="left" speed="2"
 delayAtStart="1" delayAtEnd="1" begin="3"
 repeatDur="indefinite" from="100 0" to="100 0"/>

[image: image6.emf]Que j’aime àfaire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Startingviewport Endingviewport

Figure 6: Start and end states of Example 2
The units of the from and to attributes are percents of the clip size. from=”100 0” means that the text is initially 100% of clip with to the right of the clip, which means right outside of the clip. to=”100 0” means that the text is, at the end of the animation, one clip width further to the left than the default top left of the clipping zone.
Example 3: Manual mode

<lsr:rectClip id="t1" size="120 20">

 <text…>Que j’aime à faire apprendre ce nombre utile au sage. <tspan id="t2"/>Immortel Archimède, toi de qui Syracuse garde encore la mémoire.</text>
</lsr:rectClip>

<animateScroll xlink:href="#t1">

 <scrollStop by="100 0" mode="manual">

 <ev:listener event="accessKey(RIGHT)"/>

 </scrollStop>

 <scrollStop by="-100 0" mode="manual">

 <ev:listener event="accessKey(LEFT)"/>

 </scrollStop>

 <scrollStop to="#t2" direction=”left” mode="manual">

 <ev:listener event="accessKey(2)"/>

 </scrollStop>
</animateScroll>

[image: image7.emf]Que j’aime àfaire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Starting viewport After clicking 2

After clicking RIGHT

Figure 7: Start, interactive and end states of Example 3
Example 4: Mixed mode

<lsr:rectClip id="t1" size="120 20">

 <text…>Que j’aime à faire apprendre ce nombre utile au sage. <tspan id="t2">Immortel Archimède,</tspan> toi de qui Syracuse garde encore la mémoire.</text>

</lsr:rectClip>

<animateScroll xlink:href="#t1">

 <scrollStop begin="0" repeatDur="indefinite"

 direction="left" speed="3" delayAtStart="1"

 delayAtEnd="1">

 <ev:listener event="accessKey(RIGHT)" attribute=”end”/>

 <ev:listener event="accessKey(LEFT)" attribute=”end”/>

 <ev:listener event="accessKey(2)" attribute=”end”/>

 <ev:listener event="accessKey(0)"/>

 </scrollStop>
 <scrollStop by="100 0" mode="manual">

 <ev:listener event="accessKey(RIGHT)"/>

 </scrollStop>

 <scrollStop by="-100 0" mode="manual">

 <ev:listener event="accessKey(LEFT)"/>

 </scrollStop>

 <scrollStop to="#t2" direction=”left” mode="manual">

 <ev:listener event="accessKey(2)"/>

 </scrollStop>

</animateScroll>

The above sample has one scrolling to the left in 3 seconds per clip width with 1s waiting at each end, and looping indefinitely, unless the user presses a key. Pressing RIGHT or LEFT move the text by one page (one clip width) left or right. Pressing 2 goes to “Immortel”. Pressing 0 resumes the automatic scrolling.

1.2.6. Attributes
· xlink:href: this attribute specifies the ID of the scrolled element. The scrolled element shall be a lsr:rectClip element.
In the absence of this attribute, this element does not have any effect.

Animatable: no. Inheritable: no.
· by: this attribute specifies the translation in the case of manual scrolling and consists in 2 values, expressed in percents of the clip size. The default value is 0 0.

Animatable: no. Inheritable: no.

· from: this attribute specifies the starting position for the scrolling and consists in either 2 values, expressed in percents of the clip size, or in an element ID. The default value is 0 0, for the top left of the clipping zone. When from is an ID, it shall be the ID of a <tspan> present in the text content; the scrolling shall start with the beginning of the <tspan> text content matching the beginning of the clip, according to the scrolling direction. from defines the minimum position of the clip.

Animatable: no. Inheritable: no.

· to: this attribute specifies the end of scrolling position and consists in either 2 values, expressed in percents of the clip size, or in an element ID. The default value is 0 0, for the top left of the clipping zone. When to is an ID, it shall be the ID of a <tspan> present in the text content; the scrolling shall end with the end of the <tspan> text content matching the end of the clip, according to the scrolling direction. to defines the maximum position of the clip. .

Animatable: no. Inheritable: no.

· delayAtStart: this attribute specifies the delay between the start of a cycle and the beginning of the movement. The default value is 0 for no delay.

Animatable: no. Inheritable: no.

· delayAtEnd: this attribute specifies the delay between the end of the movement and the end of the cycle (and the restart of the cycle if the animation is looping). The default value is 0 for no delay.

Animatable: no. Inheritable: no.

· direction: this enumeration specifies the scrolling direction: up, down, left, right. For example, “up” means that the automatic scrolling move the text toward the negative Ys. The default value is right.

Animatable: no. Inheritable: no.

· speed: this attribute expresses the time to scroll one page (or size of clipping zone) of text. It is exclusive from dur/end. The default value is 0 for no scrolling at all.

Animatable: no. Inheritable: no.

· begin: this attribute specifies the beginning of the animation, in a similar manner as for the other animate* elements. The default value is indefinite.

Animatable: no. Inheritable: no.

· dur: this attribute specifies the duration of the animation, including possible values of delay*. The default value is 0 for no scrolling.

Animatable: no. Inheritable: no.

· end: the difference between the value of begin and end specifies the duration of the animation, including possible values of delay*. The default value is indefinite.

Animatable: no. Inheritable: no.

· restart: this attribute specifies the restartability of the animation, in a similar manner as for the other animate* elements. The default value is always.

Animatable: no. Inheritable: no.

· repeatCount: this attribute specifies the repeatability of the animation, in a similar manner as for the other animate* elements. The default value is 0 for no repetition.

Animatable: no. Inheritable: no.

· repeatDur: this attribute specifies the repeatability of the animation, in a similar manner as for the other animate* elements. The default value is 0 for no repetition.

Animatable: no. Inheritable: no.

· fill: this attribute specifies whether the text returns to its initial position before the animation (remove) or keeps its last position (freeze). The default value is freeze.

Animatable: no. Inheritable: no.

· mode: auto, manual, default is auto

· AUTO : the scrolling starts automatically if the element is active and begin is valid. The scrolling speed is given by the attributes speed or dur or end.

· MANUAL : if the element is activated by setting the begin, a fraction of scrolling equivalent to the specified "by" is done on the targeted node. In this mode, the increments are done only one time: each time the increment is realized, the node inactivates itself automatically by setting begin=’-1’. In this mode, the attributes delay* and repeat* are ignored. If speed or dur or end are specified, smooth scrolling is rendered, otherwise, the scrolling happens immediately. duration of the animation, including possible values of delay*.
Animatable: no. Inheritable: no.
1.2.7. scrollStop

1.2.7.1. Semantics

The scrollStop element is a child of animateScroll. The scrollStop element allows the combination of multiple scrolls on the same text. The contribution of each active scrollStop is added in the document order.
1.2.7.2. Attributes

The scrollStop element shares all the following attributes with the animateScroll: begin, by, dur, end, from, id, repeatCount, repeatDur, restart, to, delayAtStart, delayAtEnd, direction, speed, mode, fill.

EDIT 7: add at the end of the semantics clause of lsr:selector
In the following, N is the number of children of the selector element. The choice attribute determines the actual rendering mode:

1. choice >= 0 & choice < N: only the child of index choice is displayed, i.e. is “on” while the other children are “off”. The “off” children are neither composed nor rendered. animate* elements and conditionals in the tree below “off” children are inactive.

2. choice == none | choice >= N: nothing is displayed. All children are “off”, i.e. neither composed nor rendered. animate* elements and conditionals in the tree below “off” children are inactive.

3. in all other cases: all the children are displayed at (0,0) of the local coordinate system without clipping.

In case 1. and 2., when a child changes from “off” to “on”, its children with begin attributes get activated; when a child changes from “on” to “off”, its children with end attributes get stopped.
EDIT 8: add to section 13.1
Compatibility with LASeR v1 binary syntax

The configuration of an ISO/IEC 15938-1 decoder able to decode LASeR bitstreams, as specified in 14496-20 version 1, will be updated synchronously with updates/extensions of LASeR schemas and data type codecs. The resulting configuration, specified by a default v2 decoderInit should be made compatible with the default configuration specified in 14496-20 version 1, so that a LASeR v1 bitstream is still decodable.

EDIT 9: add to section 13.5
The LASeRHeader can embed a BiM decoderInit, which allows signaling the ISO/IEC 15938-1 encoding of private data from additional namespaces.

…

bit(4) extensionIDBits;

bit(1) hasDecoderInit;

if (hasDecoderInit) {

 vluimsbf5 len;

 byte[len] decoderInit;

}
…
When decoding the LASeR bitstream with an ISO/IEC 23001-1 decoder, the extensionIDbits correspond to the number of bits that shall be used for coding the total number of schemas.

EDIT 10: add to section 13.4
Decoding of private data

Private XML data encoded with ISO/IEC 23001-1 will be enclosed in the ISO reserved byte array in classes privateElementContainer and privateAttributeContainer specified in 14496-20 version 1.
…

class privateElementContainer{

 bit(2) privateDataType;

 vluimsbf5 len;

 if (privateDataType == 0) { // private data of type "anyXML"

 aligned privateChildren pc;

 } else if (privateDataType == 1) {

 aligned uint(nameSpaceIndexBits) nameSpaceIndex;

 aligned byte[len - ((nameSpaceIndexBits+7)>>3)] data;

 } else {

 aligned byte[len] reserved;// ISO reserved

 }

}…

EDIT 11: replace section 13.6 by
14.6 Decoding Process
This section specifies how the XML document obtained after decoding encoded binary data can be transformed for conformance to the LASeR validation schema specified in clause 11.

[image: image8]
Figure 8 - ISO_15938_1 decoding process
Figure 1 shows the decoding process of a LASeR binary stream with a ISO/IEC 23001-1 decoder. The XML document obtained is called encoding XML. It shall be conformant against the encoding schema (attached to the specification as a separate document). However, the encoding XML can be transformed into a LASeR XML document, i.e. conformant to the validation schema, according to the transformations described in 14496-1 v1.

EDIT 12: change first sentence of section 13

Replace:

“Clause 13 is informative.”
By:

“Clause 13 is normative for decoders compliant with both this specification and ISO/IEC 23001-1, otherwise it is informative.”
EDIT 13: add to section 6.8

1.1.2 SVGT1.2 animation

The SVGT1.2 animation element is specified in section 12.4 of [W3C SVGT1.2]. Neither local IDs nor global IDs are shared between the main scene containing the animation element and the subscene referred by the animation element.
1.1.3 SVGT1.2 discard
The SVGT12 discard element is specified in section 5.4 of [W3C SVGT1.2].
1.1.4 SVGT1.1 font

The SVGT1.1 font element is specified in section 20.3 of [W3C SVG11]
1.1.5 SVGT1.1 font-face

The SVGT1.1 font-face element is specified in section 20.8.3 of [W3C SVG11]
1.1.6 SVGT1.1 font-face-src

The SVGT1.1 font-face-src element is specified in section 20.8.3 of [W3C SVG11]
1.1.7 SVGT1.1 font-face-uri

The SVGT1.1 font-face-uri element is specified in section 20.8.3 of [W3C SVG11]
1.1.8 SVGT1.1 font-face-name

The SVGT1.1 font-face-name element is specified in section 20.8.3 of [W3C SVG11]
1.1.9 SVGT1.1 glyph

The SVGT1.1 glyph element is specified in section 20.4 of [W3C SVG11]
1.1.10 SVGT1.1 missing-glyph

The SVGT1.1 missing-glyph element is specified in section 20.5 of [W3C SVG11]
1.1.11 SVGT1.1 hkern

The SVGT1.1 hkern element is specified in section 20.7 of [W3C SVG11]
1.1.12 SVGT1.2 handler
The SVGT12 handler element is specified in section 15.5 of [W3C SVGT1.2].
1.1.13 SVGT1.2 prefetch
The SVGT12 prefetch element is specified in section 5.9.3 of [W3C SVGT1.2].
1.1.14 SVGT1.2 solidColor
The SVGT12 solidColor element is specified in section 11.13.4 of [W3C SVGT1.2].
1.1.15 SVGT1.2 tBreak
The SVGT12 tBreak element is specified in section 10.11.2 of [W3C SVGT1.2].
1.1.16 SVGT1.2 textArea
The SVGT12 textArea element is specified in section 10.11.3 of [W3C SVGT1.2].
EDIT 14: add attached files as electronic attachments and add at the end of clause 11:

· LASeRML/saf2.xsd: (normative) documents the syntax of an XML equivalent to the SAF binary syntax for use in LASeR conformance and reference software activities

· LASeRML/laser-datatypes2.xsd: (normative) documents all datatypes used in the other schemas

· LASeRML/laser2.xsd: (normative) documents the XML syntax of LASeR Commands for use in LASeR conformance and reference software activities

· LASeRML/svg2.xsd: (normative) documents the XML syntax of the common part between SVG and LASeR; it is not intended to validate SVGT documents; this is for use in LASeR conformance and reference software activities

· intermediateXML/sdl2.txt: (normative) documented in the next subclause
EDIT 15: add SVGT1.2 reference as normative

W3C SVGT12, Scalable Vector Graphics (SVG) Tiny 1.2 Specification [Recommendation],
 http://www.w3.org/TR/SVGMobile12/
EDIT 16: Replace all occurrences of the word “browser” with “LASeR engine” defined in section 6
EDIT 17: Replace in section 13.2
”

· svg1-encoding.xsd: svg encoding schema for use with ISO_15938-1 encoding.

· laser1-encoding.xsd: laser encoding schema for use with the ISO_15938-1 encoding.

· laser-datatypes1-encoding.xsd: data types encoding schema for use with the ISO_15938-1 encoding.

· ev-encoding.xsd: XML events encoding schema for use with the ISO_15938-1 encoding.

“
With:

“

· intermediateXML/svg2.xsd: SVG encoding schema for use when using an ISO/IEC 23001-1 encoder to encode a LASeR stream.

· intermediateXML/laser2.xsd: LASeR encoding schema for use when using an ISO/IEC 23001-1 encoder to encode a LASeR stream.

· intermediateXML/laser-datatypes2.xsd: data types encoding schema for use when using an ISO/IEC 23001-1 encoder to encode a LASeR stream.

· intermediateXML/ev.xsd: XML events encoding schema for use when using an ISO/IEC 23001-1 encoder to encode a LASeR stream.

“
EDIT 18: Add to section 12.1.3

If codePoint 2 is used, then the data is 23001-1 compliant private extensions. Decoders not compliant with the signalled 23001-1 private extension (identified by the namespace) are not mandated to decode this private extension data and may skip it.

The following sentences ONLY apply for decoders compliant with both 23001-1 and 14496-20 :

If no decoderInit signalled in LASeRHeader, then the decoderInit is [ref to DecoderInit for V2]

· If decoderInit signalled then decoderInit is compatible/extension of [ref to DecoderInit for V2]

· The attached 'encoding' schemas shall be used for the configuration of the 23001-1 (encoding schemas are normative)

· The Classification scheme and type codec association described in section 14 shall be used(classificiation schemes and association are normative)

· The transformation process between the validation schema and the encoding schemas are described informatively in clause 13.
EDIT 19: Add to section 7

1.3. GroupingDescriptor

1.3.1. Syntax

class groupingDescriptor {

bit(8) number_of_element;

for (int i=0 ; i<number_of_element ; i++) {

bit(12) streamID;
 }

}
1.3.2. Semantics

number_of_element – number of element in this group

streamID – a streamID of elementary stream grouped into a single decoder
In this decoder model, even though the decoder buffer is not connected to the decoder, the AU will be automatically removed from the decoder buffer when the DTS is arrived.
1.4. SAF Fragment Unit
The fragment unit is a specialized SAF Extended Access Unit. accessUnitLength of this packet shall be zero.
1.4.1. Syntax

class safFU {

bit(4) accessUnitType;

bit(12) streamID;
bit(16) payloadLength;

bit(8) fragmentSeqNum;

byte(8)[payloadLength-1] payload;

}

1.4.2. Semantics
accessUnitType is used with value 9

streamID and payloadLength are used as usual

fragment sequence number on 8 bits, possibly wrapping
1.5. SAF First Fragment Unit
The first fragment unit is a specialized SAF Extended Access Unit. accessUnitLength of this packet must be zero.
1.5.1. Syntax

class safFFU {

bit(4) accessUnitType;

bit(12) streamID;
bit(16) payloadLength;

bit(4) carriedAccessUnitType;

bit(4) reserved;

bit(32) totalLengthOfAccessUnit;
byte(8)[payloadLength-5] payload;

}
1.5.2. Semantics

accessUnitType – this shall be 10
streamID – the reference of the media stream this AU belongs to.
carriedAccessUnitType – an indication about the type of the access unit whose fragment is carried in the payload. Detailed values of accessUnitType and the data corresponding to each type are defined in Table 8.
totalLengthOfAccessUnit – the length of the access unit, which shall be equal to the accumulated length of the fragments.
payload – the data part of the access unit. The size of the payload is signalled by the accessUnitLength field in the packet header as specified in 7.4.
EDIT 20: Replace table 8 in section 7 by
	Value
	Type of access unit payload
	Data in payload

	0x00
	Reserved
	-

	0x01
	TransientStreamHeader
	A SimpleDecoderConfigDescriptor

	0x02
	NonTransientStreamHeader
	A SimpleDecoderConfigDescriptor

	0x03
	EndofStream
	(no data)

	0x04
	AccessUnit
	An Access Unit

	0x05
	EndOfSAFSession
	(no data)

	0x06
	CacheUnit
	A cache object

	0x07
	RemoteStreamHeader
	An url and a SimpleDecoderConfigDescriptor

	0x08
	GroupDescriptor
	-

	0x09
	FirstFragmentUnit
	The first Fragment of an Access Unit

	0x0A
	FragmentUnit
	A Fragment of an Access Unit (not the first fragment)

	0x0B ~ 0x0F
	Reserved
	-

EDIT 21: Add to section 6.2.1 Scene Tree, at the end

“

The API defined in Appendix A of [W3C SVGT12] with IDL definitions in Appendix B of the same document can be used to access the LASeR scene tree from programming languages such as ECMA-Script [ref], Java [ref], C [ref] or C++ [ref].

”
EDIT 22: Create section 6.9 Addition to the uDOM API

1.6. Parsing of an encoded XML element

1.6.1. Syntax

Node parseLASeRBinaryElement(in sequence<octet> data, in Document contextDoc);
1.6.2. Semantics
Given a chunk of binary data and a Document object, parse the binary data as a LASeR element and return a Node representing it. If the binary data is not well-formed, this method must return a null value.”

The format of the sequence<octet> data parameter is: one LASeRHeader followed by a byte-aligned encoded object of class updatable_elements as defined in clause 12.

LASeR bitstream

LASeR XML

encoding XML

transformation to LASeR XML

ISO/IEC 15938-1 decoding

� This richer functionality allows for coming back to the previous channel but would suppose to keep two streams open (i.e. in a DVB-H case to syntonise two bursts).

Document type: International Standard
Document subtype: Amendment
Document stage: (40) Enquiry
Document language: E
STD Version 2.1

_1184102945.ppt

 Delivery Layer

DB A

DB B

 Decoder

CB

DB C

sel 1

sel 2

_1191220454.ppt

Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Starting viewport

Ending viewport

_1208099937.vsd
�

Stopped

Connecting

Not playing

Playing

begin of
timed element

connected

buffer ready or resume

pause or buffer underflow

progress�

end of stream

end of
timed element

LASeRPlayable

progress

LASeREndStream

LASeRConnecting

LASeRBuffering

LASeRBuffering

end of
timed element

_1191220535.ppt

Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Starting viewport

Ending viewport

_1184127123.ppt

Delivery

Layer

Decoding

Layer

Composition

Layer

DB

DB

DB

Decoder

Decoder

Decoder

Composition

CB

CB

CB

Grouped

Streams

Selection of active stream

_1184102341.ppt

Delivery

Layer

Decoding

Layer

Composition

Layer

DB

DB

DB

SAF

DeMux

Decoder

Decoder

Decoder

RTSP/

RTP

DB

DB

DB

HTTP

Decoder

Decoder

Decoder

Composition

CB

CB

CB

CB

CB

CB

HTTP/SAF Session

RTSP/RTP Session

_1172664490.ppt

Que j’aime à faire apprendre ce nombre utile au sage. Immortel Archimède, toi de qui Syracuse garde encore la mémoire.

Starting viewport

After clicking 2

After clicking RIGHT

