Doc# OMA-MAE-2006-0209R01-TS-DCD_Semantics-[image: image16.jpg]"sOMaQa

Open Mobile Alliance

Contribution
Input Contribution

Doc# OMA-MAE-2006-0209R01-DCD_Semantics-Contribution
Input Contribution

Input Contribution

	Title:
	Contribution to DCD TS Semantics
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC MAE DCD AHG

	Submission Date:
	26 May 2006

	Source:
	Bin Hu, Motorola, +1-408-541-6511, bhu@motorola.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This input contribution describes a general model of the DCD TS Semantics.
Updated “5. Introduction” based on discussion on May 24 conference call.
2 Summary of Contribution

This input contribution describes a general session and transaction model of the DCD TS Semantics.

It first introduces a DCD logical communication model in Chapter 5.
The DCD session model and transaction management is described in Chapter 6, including:
· session management

· version management

· identification

· transaction management

· contents handling

The fundamental primitives and transactions are described in details in Chapter 7 for enabler administration, such as:
· “status” primitive

· “version discovery” transaction type
· “service registration” transaction type
· “service disconnect” transaction type

· “keep alive” transaction type
· “capability negotiation” transaction type

· partial content update
The common features are described in details in Chapter 8 for content delivery and channel administration, including:
· system message

· “general notification” transaction type

· “content update” transaction type

· “usage tracking report” transaction type

· “suspend / resume server-initiated content delivery” transaction type
· “client state report” transaction type

An extension framework is described in Chapter 9 to support those functions that are dependent on other enablers but are not available within DCD 1.0 time frame. The functions are:
· how to extend existing primitives

· how to introduce new transaction types

· how to enable OTA of Client State Transitioning using the extension framework

Finally, the status and error codes are illustrated in Chapter 10.

3 Detailed Proposal

5. Introduction

This document starts with a description of the fundamental concept of session in DCD. Then, it continues describing the transactions and the information elements that permit DCD to support interoperability between different DCD Client and DCD Server implementations.

The session and transaction model in this document conforms to the architectural model and protocol stack described in [DCD-AD].

5.1 DCD Logical Communication Model

DCD should support various network technologies, such as point-to-point and broadcast network technologies. Logically the DCD transport layer is divided into three paths: a two-way data path for all two-way transactions, a one-way data path for delivering the data pushed from the server, and a notification path used to deliver the server notifications. The three paths are depicted as follows.

[image: image1.wmf]DCD Client

DCD Server

Two

-

way Data Path

Notification Path

One

-

way Data Path

Figure 1: Logical Model of Communications

The need and use of a notification path and a one-way data path depends on the protocol and bearer used in two-way data path. The protocol bindings in two-way data path may be WSP, HTTP, HTTPS, SMS, Cell Broadcast, BCAST or other bearers. In case of WSP, HTTP and HTTPS, the communication is asymmetric, i.e., it always originates from the DCD Client to the DCD Server. Thus, the client can always start a transaction from the DCD Client to the DCD Server. If the DCD Server needs to start a transaction or deliver a system message or content, there are three options:

· The DCD Server inserts the notification or data into a response message for a pending transaction from the DCD Client to the DCD Server (so-called Transaction Tunneling in 5.4.1)
· The DCD Server sends a notification through the notification path to the client in order to request an immediate GetRequest (in most of cases) or another transaction request primitive from the DCD Client to the DCD Server on the two-way data path. The transaction request or system message is then delivered through the GetResponse primitive or another transaction response primitive.
· The DCD Server delivers the data directly through the one-way data path to the client.
In addition to the use described above, the notification path or one-way data path MAY also be used to establish the two-way data path when the two-way data path is not available. For instance, if a TCP/IP connection for the two-way data path has been disconnected, or the PDP context in 2.5G or 3G mobile networks is not allocated, the notification path or one-way data path can be used to re-establish the two-way data path connection to the DCD Server.

In the SMS technology, both the client and server can originate transactions and the two-way data path is always available. Thus, a separate notification path and one-way data path is not needed.

6. DCD Session

6.1 Session Management

The DCD Session is a framework in which the DCD Client communicates with the DCD Server. The DCD session is transport-independent. If the transport connection is broken, the client MAY reconnect the transport connection and MUST be able to continue the session if the transport re-connection is successful. The session MAY still be continued even in case that the client device MAY be power-cycled.

In order to establish a session, the client MUST register with a DCD Server using one of the available DCD Protocol versions, transport mechanisms and a DCD Protocol syntax definition (e.g. XML, textual tokena or binary tokens, etc.) that is supported over the selected transport. The DCD Client and the DCD Server MUST maintain the initial protocol version, and syntax definition that was used during the service registration throughout the whole session – until the session finishes. The server MAY deny access if the protocol version, the transport, or the syntax definition is not supported.

The DCD session is established when the DCD Client registers, and is disconnected when either the DCD Client or the DCD Server decides to disconnect the session. The session is identified by a globally unique Session-ID. In addition, the DCD Client MUST provide at registration phase a globally unique Client-Token for the session, which is used by the DCD Server to trigger the communications in some cases.

The DCD Client and the DCD Server MUST use the same version of the DCD Protocol that was used in the service registration in every transaction throughout the whole session. The versions supported on the DCD Server side MAY be retrieved at any time – it is independent from DCD sessions. The DCD Client MAY initiate a version discovery transaction to retrieve the list of supported versions from the DCD Server, and re-register at any time during the session. Refer to 5.2 and 6.2 for further information of this mechanism.

The authentication of the user is done at the registration phase. The authentication is, in general, considered to be valid throughout the session. However, the server MAY, at any time disconnect the session and request the client to re-register. In this case, the client provides the old Session-ID. After valid authentication, the server MAY accept to re-establish the old session. Refer to 5.1.3.

There are different levels of security that can be supported in a DCD session. The application level security is based on the Session-ID and Client-Token, and the authentication is performed based on the Client-ID and User-Credentials. The DCD Server can also perform a network level authentication using a network-based subscriber identifier, for example, the WAP Gateway in the operator side can insert a subscriber identifier in every transaction. Both application-level security and network-level security can be used jointly for different types of transactions and / or contents.

During the session, both the DCD Client and the DCD Server MUST maintain Session Context. The session context defined in 5.1.2 contains dynamic information of the DCD services the client is currently using. The section 5.1.1 defines what the actual state of services the session context contains, and it assumes that the negotiated services, capabilities, subscriptions and synchronization levels are valid throughout the session.

The session context in the DCD Server and the DCD Client are tied together by the services the user is currently using (subscribed channels, etc). The DCD Server and the DCD Client MAY assume that the link between the contexts is valid throughout the session as well as in a re-established session.

Associated with each session is an auto expiry timer value called Session TTL. The server can set any timer value and the client MUST obey that.

Normally all transactions are performed within an established session. For all transaction requests that include Session-ID, the response MUST include the identical Session-ID.

6.1.1 Session State Model

The session state model is consistent with the DCD State Model described in [DCD-RD], including the service states, operational states and the state transition diagram.

6.1.2 Session Context

The session context contains dynamic information of a session of the user. During the session, the session context MUST be maintained on both client and server. The session context MUST contain the following session information:

· Current service state and operational state (see 5.1.1).

· Negotiated client capabilities: client capabilities negotiated during the Client Capability Negotiation transaction (see 6.6).

· Synchronization level of content update.

Each session MUST have 1 and only 1 session context.

The server MAY store the session context for a period of time after the session is disconnected. The time period a session is stored on the server is a server-side setting and can vary from 0 to infinite:

· 0: the session context is not stored

· n: integer number indicating the time period a session is stored in seconds after the disconnect of the session

· Missing value (Infinite): the session context is stored until the user sets up another session with the same client.

It is RECOMMENDED not to store session for unlimited period of time because clients MAY change Client-ID and users MAY not use the same client ever again. The server stores the session context after disconnect is to allow the users to restore the session (see 6.3.6) after session re-establishment.

6.1.3 Re-establishing Sessions

Clients MAY request re-establishment of a disconnected session and the associated Session Context (see 5.1.2). The client MAY request re-establishment of sessions that have been disconnected successfully or with some error.

A successfully restored session carries over all credentials from the disconnected session and the associated Session Context:

Session re-establishment is described in detail in [DCD-TS-Bindings].

6.2 Version Management

Each set of the DCD Enabler specifications defines a version of the DCD Enabler Protocol. Content types, XML namespaces, and special definition in some particular transports are used to identify which version of the protocol is being used for each of the following specific purposes:

· 5.1;

· 5.4;

· 6.6
Sessions are established using matched sets of content types, or namespaces, or special definitions defined in a specific version of the DCD Enabler Protocol specifications.

The client and the server MUST maintain the same version (and hence the content type, namespaces and special definitions) that was used in the registration phase throughout the whole duration of the session.

The Version Discovery transaction provides a mechanism by which a client can discover the protocol versions implemented by a specific server. The mechanism is described in details in 6.2.

6.3 Identification

6.3.1 Client Identifier – Client-ID

The Client-ID is the combination of Subscriber-ID and Device-ID to uniquely identify the DCD Client and its associated subscriber. The Client-ID SHALL consist of:

· Subscriber-ID

· Device-ID (optional)

6.3..1 Subscriber Identifier – Subscriber-ID
The Subscriber-ID is a unique identifier of the DCD subscriber. The client MUST identify the subscriber using Subscriber-ID during the service registration or whenever an outband transaction is performed.

For example, a DCD subscriber MAY be identified by International Mobile Subscriber Identifier (IMSI) for GSM / UMTS / WCDMA devices or Electronic Serial Number (ESN) for CDMA / CDMA2000 devices.

6.3..2 Device Identifier – Device-ID
The Device-ID uniquely identifies a device. For example, it MAY be identified by International Mobile Equipment Identifier (IMEI) for GSM / UMTS / WCDMA devices or Electronic Serial Number (ESN) for CDMA / CDMA2000 devices.

6.3.2 Client Software Identifier – DCD-Client-ID

The DCD-Client-ID identifies a DCD Client software that physically runs on a device, which is a randomly generated string by a client software vendor.

It MAY consist of information such as:

· Device model the description of a device, e.g. MOT-V557

· Software Build Version: the current build version of the DCD Client software

· Other information: software specific information, such as MIDP and CLDC version for J2ME client software

which implies the content handling capabilities in the client.

It MAY contain some other information that the vendor deems appropriate.

The DCD-Client-ID is vendor-specific, and unique among the different builds of the client software.

The example of a DCD-Client-ID is: MOT-v557 R4512.08.28C KJava1.0

6.3.3 Device Type – Device-Type

The Device-Type identifies a type of physical device that represents the same type of capabilities.

6.4 Transaction Management

A DCD transaction is a basic communication mechanism between a client and a server. A transaction usually consists of a request and a response primitive. The purpose of the transaction is to exchange data between the entities or request an operation: usually both within the same transaction. The transactions MAY originate from either the client or the server.

Initiator of the transaction MUST expect the Status primitive as the result of transaction even if it is not specified explicitly in the description of transaction. This behavior is used to notify the initiator about error(s) caused by the request. Some response primitives carry a Result element that allows error reporting within the normal response primitive. The error management – including the exact usage of Status primitive and Result element – is described in 6.1.

The server MAY return informational status codes. The client MUST be prepared to accept one or more 1xx status codes prior to a regular response even if the client does not expect a 100 “Continue” status code. A user agent MUST ignore all unexpected 1xx status codes. None of the status codes in the 1xx category close the transactions.

The initiating entity, the client or the server, allocates a transaction identifier that the responding entity returns in the response message. This links together the requesting message and response message, thus the transaction identifier MUST be identical in the request and the response. The originator of the transaction MUST maintain the uniqueness of the transaction identifiers in a particular direction (C->S or S->C) within a session.

The response to a request message SHOULD be received within a reasonable time from the initiation of the transaction. After that period, the requesting entity MAY resend the request message using the same transaction identifier. The responding entity SHOULD guarantee that the requested operation or data is carried out only once, even if multiple request messages with the same transaction identifier are received.

The transactions MUST be serial. “Serial” means that one transaction MUST be complete (closed) before a next one is started (open). A transaction MUST be considered to be closed when a final response primitive has been received, or a time-out waiting for a response primitive has occurred, or the underlying transport has been detected as “broken.” After a transaction has been closed, the transaction identifier MUST be invalidated on both the client and server side. Invalidated transaction identifiers MUST NOT be re-used within the same session.

All mandatory information elements MUST be present in the primitives. All conditional information elements MUST be either present or absent according to the relevant requirement. All optional information elements MUST be either present or absent according to the relevant usage context.

If the value in the information element is not supported in the server, the server SHALL return error code 423 “Unsuported value”.

6.4.1 Transaction Tunneling

In order to achieve the transaction efficiency, the DCD Enabler supports the tunneled transaction types, namely “Transaction Tunneling”.

If several types of transactions are ready to be initiated in the DCD Client, and the information elements of those request primitives are sufficient, the client can choose to combine those request primitives together into one transaction request message. Thus the original primitives are tunneled into one transaction.

The sequence of those primitives in one tunneled transaction is not significant. The server MAY or MAY NOT handle those primitives in the order of received.

In general practice, the client SHOULD tunnel the primitives in the order of logical sequence that is needed to complete the whole batch of primitives. The server SHOULD handle those primitives in the order of logical sequence that is needed to complete the whole batch of primitives.

If the error happens before the server completes the handling of all tunneled primitives, it is the server’s implementation choice, which is subject to the error handling policy in the server, to decide whether or not to continue the handling of the rest primitives.

If all primitives are successfully performed in the server, the general successful status code (200) SHALL be responded with the information elements of the corresponding response primitives.

Otherwise, the status code 201 (Partially Successful) or 900 (Multiple Errors) SHALL be used when some or all primitives have failed in the server. The Detailes element SHALL include all part(s) that resulted in error(s), but the result(s) of successful part(s) of the transaction MAY be omitted.

6.5 Contents

6.5.1 Content Type Support

The DCD Enabler supports delivering any content (i.e. content agnostic). This section lists the requirements for all client and server implementations that MUST be fulfilled to guarantee interoperability of various client and server implementations. These are mandatory requirements for any client and server implementations and thus not negotiated.

All content MUST have a proper content type indication in the corresponding information element, with the exception of the default “text/plain; charset=UTF-8” content type that MUST be supported by all client and server implementations. Default content type means that when the content type indication is missing, the content MUST be handled assuming “text/plain; charset=UTF-8” content type.

The suggested content types are:

· <TBD content types>

The suggested content types, while not mandatory, are content types that are highly RECOMMENDED to further maximize the interoperability of the various client and server implementations.

The message MAY carry other types of content. In this case, the “Content-Type” MUST be consistent with the MIME types that are standardized in IETF [RFC2045], [RFC2046] or OMA.

While some content types are RECOMMENDED to facilitate interoperability, the server MUST recognize the capabilities of clients through the “SupportedContentTypes” in 6.6 to ensure the interoperability of different types of content between client and server, and deliver the content as described in 5.5.4. The server MAY also offer content transcoding as described in 5.5.2.

The DCD Enabler supports Plain Text, XML and Binary syntax [DCD-TS-Syntax]. The Plain Text Syntax supports only “text/plain; charset=UTF-8”, while the XML and Binary XML syntaxes support any media type.

XML documents MUST NOT contain rich content directly; all rich content MUST be transfer-encoded using any of the transfer-encoding methods that have been agreed during client capability negotiation in the “SupportedTransferEncoding” setting. See “SupportedTransferEncoding” setting in 6.6 for the agreement and the available list of transfer-encoding methods.

The content MAY refer to another content using the content reference (URI or internal Content-ID) instead of including the content directly. The client SHOULD provide a mechanism to retrieve the content from the URI and Content-ID whenever feasible, but it is up to the client implementation to support the necessary protocol(s) and retrieval mechanism(s).

6.5.2 Content Transcoding

The DCD Server MAY offer content transcoding when the content type to be delivered to a client is not supported by the client for some reason (content type, content size, or content policy limitation). Content transcoding is an OPTIONAL feature for the servers. The content transcoding algorithms and the supported content types are subject to the server implementation and as such not in the scope of the DCD Enabler. The DCD Enabler provides the means to support content transcoding by conveying the supported content types (either truly supported or provided using content transcoding) from the server to the client in the “SupportedContentTypes” element during 6.6 – as if the server was supporting the content type requested by the client.

When the server performs content transcoding, the server

· MUST transcode the original content to another content type based on the following requirements:

· the content type – including character set when applicable – to which the content will be transcoded MUST be supported by the client, and

· the transcoded content MUST fit into the size limitation of the client without triggering any kind of policy limitations related to the selected content type.

· SHOULD guarantee that the quality of the transcoded content is comparable with the original content.

6.5.3 Content Handling Policies

The DCD Enabler supports different content handling policies. The policies are agreed on the basis of rich content types during client capability negotiation as described in 6.6. The description in this section assumes that the content type for which the policy applies has been agreed during the client capability negotiation. This section lists the requirements for all client and server implementations that MUST be fulfilled to guarantee the interoperability of various client and server implementations.

The DCD Enabler defines the following content handling policies:

· No policy (‘N’) – the content can be delivered from the server without limitation on the content itself. Note that even though the content policy is ‘N’, the “DownloadableSize” capability settings might limit the content anyway. The server MUST deliver the particular rich content according to the requirements described in 5.5.4.

· Extra cost policy (‘C’) – the content can be delivered from the server within the limitation implied by the policy, however some extra charge will be added for the user when the content is delivered. When the rich content is oversized in a way that it falls into the ‘C’ policy, the server SHOULD NOT deliver the particular content initially. It is RECOMMENDED that the service provider confirms the extra charges with the user using a System Message.

· Reject policy (‘R’) – when the content is larger than the limitation implied by the policy, the rich content will be automatically rejected. The server MAY send an informational System Message to the user describing the event, however such behavior is NOT RECOMMENDED as it might lead to a bad user experience.

To further enhance the user experience it is RECOMMENDED not to bother the user with System Messages every time the content policy restricts rich content delivery – the server should remember the user’s decision based on the policy setting, content type and size, however remembering the decision might also be part of the System Message itself – these recommendations are all implementation-specific issues that are not in the scope of the DCD Enabler. See 7.1 for possible System Message utilization scenarios.

6.5.4 Content Delivery

The client MUST agree with the server on the supported content types and limitations when the session context is set up, as described in 6.6. Before any rich content is delivered to the client, the server MUST verify the capabilities of the client versus the credentials of the rich content by:

· evaluating the MIME type of the content, and

· evaluating the general size limitation that originates from the “DownloadableSize” capability settings, as described above in this section, and

· evaluating the rich content according to the content handling policy of the rich content when applicable as described in 5.5.3.

· When the server finds that the content size fits into the “DownloadableSize” capability settings, the server MUST continue with further evaluations, including the content handling policy. The server MUST NOT continue with the evaluation when the content size does not fit into the “DownloadableSize” capability settings.

6.6 Transaction Flow

The typical DCD Enabler transaction flows are defined in [DCD-TS-CallFlows].

7. Fundamental Primitives and Transactions

The fundamental primitives and transactions provide the basic functionalities in the DCD Enabler.

7.1 Status Primitive

The Status primitive is used as a generic response primitive to all primitives that do not have a specific response primitive, and it is used as a generic response to all primitives to manage error situations as well.

The processing party SHALL always respond with Status primitive to those requests that do not have their own response primitives.

When there is a specific response primitive defined for a request,

· If the transaction succeeds, the specific response primitive SHALL be sent.

· if the transaction fails

· when the processing party is unable to understand the request because it is malformed and cannot be processed, the Status primitive SHALL be sent including error code 400 (Bad Request) instead of the expected response primitive.

· when the processing party is able to understand the request but there was an error during processing, and

· the specific response primitive has no placeholder for the Result element, a Status primitive SHALL be sent instead of the expected response primitive.

· the specific response primitive has placeholder for the Result element, the specific response primitive SHALL be sent.

The Result structure SHALL contain one of the status codes specified in this document, refer to error codes in Status Codes and Descriptions. It MAY also contain a Description string and if necessary, a detailed description explaining the error in the Details element. The Details MAY be used with every error code but has its main use when the partial error happens.

When the transaction is completely successful, the Result element SHALL NOT include detailed results.

The Result structure MAY also contain SystemMessage notifications from the server. See section 7.1.

The status code 201 (Partially successful) SHALL be used when only part of the request was successfully processed. In this case the Detailes element SHALL include all part(s) that resulted in error(s) but the result(s) of successful part(s) of the transaction MAY be omitted.

When no part of the transaction was successfully processed but the error cannot be described by only one status code, the code 900 (Multiple errors) is used. In this case DetailedResult element SHALL include all errors. By definition there can be no successful parts and that is the difference from status code 201 (Partially successful).

The server MAY return status code 501 (Not Implemented) to any request to indicate that a particular feature has not been implemented or to indicate that an unrecognized request has been received.

The server MAY return status codes 903 (Not enough credit) or 904 (Operation requires a higher class) to indicate that a charging related error has occurred. Interface to a charging system is however outside of the scope of this specification and is implementation specific.
The client and the server SHALL support the Status Primitive.

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	Status
	Primitive identifier.

	Session-ID
	O
	String
	Session identifier. The Session-ID is globally unique.

	Transaction-ID
	O
	String
	Transaction identifier. The Transaction-ID is unique within the session.

	Result
	M
	Structure
	The result of the transaction. See Table 2 Information elements in Result structure.

Table 1 Information elements in Status primitive

	Information Element
	Req
	Type
	Description

	Code
	M
	String
	Status code

	Description
	O
	String
	Optional description of the result

	Details
	O
	Structure
	List of detailed result message, which includes a detailed status code and description. See Table 3 Information elements in Details structure.

Table 2 Information elements in Result structure

	Information Element
	Req
	Type
	Description

	Code
	M
	String
	Status code

	ID
	O
	String
	Optional identifier of the detailed result. It is present if it is used by a System Message that requires a response. The ID is unique within the session.

	Description
	O
	String
	Optional description of the detailed result

	Property-Set
	O
	Structure
	Optional list of properties or recursive property-sets. See Table 4 Information elements in Property-Set structure.

Table 3 Information elements in Details structure

	Information Element
	Req
	Type
	Description

	Property-Set
	O
	Structure
	List of property sets recursively.

	Property
	O
	Structure
	List of properties. See Table 5 Information elements in Property structure.

Table 4 Information elements in Property-Set structure

	Information Element
	Req
	Type
	Description

	Key
	O
	String
	Key

	Value
	O
	String
	Value

Table 5 Information elements in Property structure

7.2 “Version Discovery” Transaction Type

7.2.1 Transaction

[image: image2.wmf]VersionDiscoveryRequest

Client

Server

VersionDiscoveryResponse

Figure 2: Version Discovery

From time to time, it may be necessary for a client to evaluate the best protocol version to use in sessions with a particular server. This is achieved using the Version Discovery transaction, which determines the protocol versions that are mutually acceptable to both the client and server. The DCD Client MAY and server MUST support the version discovery transaction for the compatibility with the protocol versions in the future.

The client initiates the Version Discovery transaction by sending a VersionDiscoveryRequest primitive to the intended server.

When the server receives the VersionDiscoveryRequest, it examines the client's proposed protocol version (if any).

· If the client proposes different protocol versions, the server MUST select the version that it supports. It includes this agreed protocol version in the VersionDiscoveryResponse.

· If the server supports none of the protocol versions that the client proposed in a particular set, then the server MUST return an empty result.

· If the client does not propose any protocol version, the server MUST include all of the supported protocol versions in the response.

If the server knows of other servers that better support the protocol versions proposed by the client, the server MAY return the supported protocol versions and URLs (or MSISDNs/MDNs over SMS transport) of those servers to the client.

The Version Discovery transaction does not follow the basic message structure; it is a dedicated transaction that is meant to be consistent with all future versions of the DCD Enablers. All servers MUST implement this transaction, while it is OPTIONAL for the clients.

7.2.2 Primitives and information elements

	Primitive
	Direction

	VersionDiscoveryRequest
	Client (Server

	VersionDiscoveryResponse
	Client (Server

Table 6 Primitive directions for Version Discovery

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	VersionDiscoveryRequest
	Primitive identifier.

	Client-ID
	M
	Structure
	Client Identifier. See 5.3.1. See Table 9 Information elements in Client-ID structure.

	Version-List
	O
	Structure
	List of versions supported by the client.

Table 7 Information elements in VersionDiscoveryRequest primitive

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	VersionDiscoveryResponse
	Primitive identifier.

	Client-ID
	M
	Structure
	Client Identifier. See 5.3.1. See Table 9 Information elements in Client-ID structure.

	Version-List
	C
	Structure
	List of versions implemented by the server. This is a subset of the Version-List present in the request if it is not empty

	Other-Servers
	O
	Structure
	List of other servers that better support the protocol versions proposed by the client. See Table 10 Information elements in Other-Servers structure.

Table 8 Information elements in VersionDiscoveryResponse primitive

	Information Element
	Req
	Type
	Description

	Subscriber-ID
	M
	String
	Subscriber Identifier, e.g. IMSI for GSM and ESN for CDMA. See 5.3.1.1.

	Device-ID
	M
	String
	Device Identifier, e.g. IMEI. See 5.3.1.2.

Table 9 Information elements in Client-ID structure
	Information Element
	Req
	Type
	Description

	Version
	M
	String
	Protocol version

	URL
	M
	String
	Server URL

Table 10 Information elements in Other-Servers structure

7.3 “Service Registration” Transaction Type

[image: image3.wmf]S

e

r

v

i

c

e

R

e

g

i

s

t

r

a

t

i

o

n

R

e

q

u

e

s

t

Client

Server

C

h

a

l

l

e

n

g

e

R

e

s

p

o

n

s

e

S

e

r

v

i

c

e

R

e

g

i

s

t

r

a

t

i

o

n

R

e

s

p

o

n

s

e

D

i

g

e

s

t

R

e

q

u

e

s

t

Figure 3: Four-way Service Registration

In order to use the DCD services, the client MUST register with a service provider.

The service registration SHALL happen automatically, meaning that the DCD Client performs the service registration without any user interaction.

After a successful service registration, a client capability negotiation MAY be performed to update the service provider with the client capability information.

7.3.1 Four-Way Service Registration

The service registration is four-way, meaning four primitives are involved.

Step 1: The client sends the ServiceRegistrationRequest with the following mandatory informational elements of:

· Transaction-ID

· Client-ID

· Client-MSISDN

· Application-ID

· Encryption

· Client-Token

And optionally:

· Session-ID – in case of session recovery

· Supported-Authentication-Method – when missing, MD5 is used.

Refer to Table 12 Information elements in ServiceRegistrationRequest primitive for the details of those information elements.

The Client-ID SHALL be unique in the scope of the device and its associated subscriber, and the server SHALL NOT allow establishing multiple sessions for the same device / subscriber with the same Client-ID. If the client re-establishes a session, the Session-ID, Client-ID, Client-MSISDN, Application-ID, Client-Token and the User-Credentials in DigestRequest SHALL be identical to the ones in the existing session context of the server.

The Supported-Authentication-Method indicates which digest schemas are supported in the client. For example, NONE, PWD, BASIC, SHA, MD5 etc. If this element is missing, the default is MD5 which MUST be supported in both the client and the server.

· NONE: means there is no “Username:Password”

· PWD: means the plain text string of “Username:Password” without any digest schema or BASE64 encoding

· BASIC: means the BASE64 encoded string of “Username:Password”

· Other values: the hash method to generate the BASE64 encoded string of “Username:Password” with challenge nonce, for example, MD5 or SHA.

Step 2: The server returns the ChallengeResponse with the status code 401 (or 900 as the main status and 401 as one of the details if there are multiple statuses) and the information element:

· Nonce – A random string generated by the server for the client to generate the digest. The string is NOT BASE64 encoded. This element is not present if the Used-Authentication-Method is NONE, or PWD, or BASIC.

And optionally:

· Authentication-Method – the schema (hash algorithm) that the server expects the client to generate the digest with. If it is missing, the MD5 is used.

· System-Message-List – a list of System Message(s).

Refer to Table 13 Information elements in ChallengeResponse primitive for the details of those information elements.

The server MAY include a list of System Message(s) in Step 2, for example Advice Of Charge (AOC) message. The server MAY require a response to the System Message(s) before allowing the user to access the DCD-enabled service - for example to acknowledge an Advice Of Charge (AOC) message.

When the server requires response to System Message(s), it SHALL include error code 416 in System Message(s) that require(s) the response. When the client receives a ChallengeResponse with System Message(s) that have error code 416, it SHALL handle the System Message(s) and reach a definitive result. For example, it prompts the end-user with the content of the System Message(s), e.g. AOC. When the client reaches a definitive result after handling the System Message(s), for example, the end-user has responded to the System Message(s), e.g. AOC, the client SHALL include the System-Message-Response-List element in the DigestRequest in Step 3. The System-Message-Response-List element SHALL contain the definitive result (e.g. the end-user's response(s)) to the System Message(s). If the server finds that the result (e.g. the end-user's response) is non-conformant to a System Message, it MAY repeat Step 2 any number of times, or it MAY refuse the client – using error code 603 – to perform service registration attempts for an implementation-specific period of time.

The server MAY keep track of outstanding System Message(s) requiring response for an implementation specific period and resend those System Message(s) through general notifications to the client during future transactions if no response is received from the client.

When the System Message(s) from the server does not contain error code 416 – the server does not require a response to the System Message(s) – the client SHALL handle the System Message(s) (e.g. prompt the end-user with the System Message(s)), and it MAY continue with the service registration sequence normally, and MAY send the result (e.g. user's response(s) to the System Message(s)) later.

Step 3: The client sends the DigestRequest with the information element:

· User-Credentials

And optionally:

· System-Message-Response-List – see above Step 2.

Refer to Table 14 Information elements in DigestRequest primitive for the details of the information elements.

The plain text format of the User-Credentials is “Username:Password”, where the “Username” and “Password” are concatenated by ‘:’.

If the “Authentication-Method” in the ChallengeResponse from the server in Step 2 is “NONE”, the User-Credentials will be empty.

If the “Authentication-Method” in the ChallengeResponse from the server in Step 2 is “PWD”, the User-Credentials will be its plain text string:

User-Credentials = “Username:Password“

If the “Authentication-Method” in the ChallengeResponse from the server in Step 2 is “BASIC”, the User-Credentials will be BASE64 encoded string of “Username:Password”:

User-Credentials = BASE64-encode (“Username:Password“)
If the “Authentication-Method” in the ChallengeResponse from the server in Step 2 is something other than “NONE” or “PWD” or “BASIC”, for example, SHA, or if the “Authentication-Method” is missing in the ChallengeResponse from the server in Step 2, the user-Credentials is generated in the following algorithm:

User-Credentials = Digest-Schema (Nonce + “Username:Password“)

Where the “Digest-Schema“ is either the hash algorithm represented in “Authentication-Method” (except NONE, or PWD, or BASIC) or MD5 (default if “Authentication-Method” is missing).

Note that the generated “User-Credentials” is BASE64 encoded.

Step 4: The server authenticates the client and if succeeded, it returns the ServiceRegistrationResponse with the information elements:

· Session-ID

· Session-TTL

And optionally

· Encrypted-User-Key

Refer to Table 15 Information elements in ServiceRegistrationResponse primitive for the details of the information elements.

7.3.2 Refer to Two-Way Service Registration

In order to support implementing the network-based authentication paradigm, a simpler two-way service registration is allowed without using User-Credentials and related Challenge-Response and Digest-Request.

[image: image4.wmf]S

e

r

v

i

c

e

R

e

g

i

s

t

r

a

t

i

o

n

R

e

q

u

e

s

t

Client

Server

S

e

r

v

i

c

e

R

e

g

i

s

t

r

a

t

i

o

n

R

e

s

p

o

n

s

e

Figure 4: Two-way Service Registration

Content Encryption and Session TTL
 for the content encryption and session TTL.
7.3.3 Two-Way Service Registration

In order to support implementing the network-based authentication paradigm, a simpler two-way service registration is allowed without using User-Credentials and related Challenge-Response and Digest-Request.

[image: image5.wmf]S

e

r

v

i

c

e

R

e

g

i

s

t

r

a

t

i

o

n

R

e

q

u

e

s

t

Client

Server

S

e

r

v

i

c

e

R

e

g

i

s

t

r

a

t

i

o

n

R

e

s

p

o

n

s

e

Figure 4: Two-way Service Registration

7.3.4 Content Encryption and Session TTL

The “Encryption” information element in ServiceRegistrationRequest indicates whether or not the content needs the encryption before being delivered. The server keeps a list of “known-keys” for encryption and decryption. The “Application-ID” indicates a “known-key” in the list. The “known-key” list is mutually agreed between the client vendors and the service providers according to a business agreement, and provisioned separately.

When the content encryption is requested, the serve SHALL encrypt a randomly-generated “User-Key” with the designated “known-key”, and return the encrypted “User-Key” in the response. The client SHALL decrypt the “User-Key” for the purpose of content decryption. In the future content update, the server SHALL encrypt the content with the “User-Key”, and the client SHALL decrypt the content with the same “User-Key”.

Upon successful service registration, the server SHALL return the Session-ID to identify the session, the encrypted “User-Key” if applicable, and the Session TTL.

The Session TTL indicates the validity period of the session if there is no transaction happening. The client SHALL perform “KeepAlive” transaction to keep the session alive before the session TTL expires in the server.

7.3.5 Primitives and information elements

	Primitive
	Direction

	ServiceRegistrationRequest
	Client (Server

	ServiceRegistrationResponse
	Client (Server

Table 11 Primitive directions for Service Registration

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ServiceRegistrationRequest
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	O
	String
	Session identifier. If it is present, it represents the previous session. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Client-ID
	M
	Structure
	Client Identifier. See 5.3.1. See Table 9 Information elements in Client-ID structure.

	Client-MSISDN
	M
	String
	International number starting with ‘+’.

	DCD-Client-ID
	M
	String
	DCD Client software Identifier. See5.3.2.

	Supported-Authentication-Method
	O
	Enumerated
	The list of supported digest schema in client. The minimum set of possible values is { NONE, PWD, BASIC, SHA, MD5 }. They are separated by a whitespace ‘ ’ if the list is more than one. If this element is missing, the default MD5 is used.

	Encryption
	M
	Boolean
	Whether or not the content will be encrypted

	Client-Token
	M
	String
	Identifies the Client when server sends Push message. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Client-Token is globally unique.

Table 12 Information elements in ServiceRegistrationRequest primitive

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ChallengeResponse
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Result
	M
	Structure
	The result of the transaction. See Table 2 Information elements in Result structure.

	Authentication-Method
	O
	Enumerated
	The digest schema that should be used by the client to generate the digest. The minimum set of possible values is { NONE PWD BASIC SHA MD5 }. If this element is missing, the default MD5 is used.

	Nonce
	C
	String
	A random string generated by the server for the client to generate the digest. The string is NOT BASE64 encoded. This element is not present if the Authentication-Method is NONE, or PWD, or BASIC.

	System-Message-List
	O
	Structure
	A list of system-messages. The message list shares the same structure as Details in 6.1.

Table 13 Information elements in ChallengeResponse primitive
	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ServiceRegistrationRequest
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	User-Credentials
	M
	String
	If the Authentication-Method is “NONE”, it is empty. If the Authentication-Method is “PWD”, it is the plain text string of “Username:Password”. If the Authentication-Method is “BASIC”, it is the BASE64-encoded string of “Username:Password”. Otherwise, it is the digest hash string based on the pair of “Username:Password” and the nonce. The digest hash string is BASE64 encoded.

	System-Message-Response-List
	O
	Structure
	A list of responses of system-messages. The response list shares the same structure as Details in 6.1.

Table 14 Information elements in DigestRequest primitive
	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ServiceRegistrationResponse
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Result
	M
	Structure
	The result of the transaction. See Table 2 Information elements in Result structure.

	Session-ID
	C
	String
	Session identifier. It is present only if the transaction succeeds. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Encryted-User-Key
	O
	String
	The User-Key used to encrypt the content in the server and decrypt the content in the client.

	Session TTL
	C
	Integer
	The server required TTL in seconds for the session. ‘0’ means an infinite session. It is present only if the transaction succeeds.

Table 15 Information elements in ServiceRegistrationResponse primitive

7.3.6 Session Recovery

[image: image6.wmf]S

e

r

v

i

c

e

R

e

g

i

s

t

r

a

t

i

o

n

R

e

q

u

e

s

t

Client

Server

C

h

a

l

l

e

n

g

e

R

e

s

p

o

n

s

e

D

i

g

e

s

t

R

e

q

u

e

s

t

S

e

r

v

i

c

e

R

e

g

i

s

t

r

a

t

i

o

n

R

e

s

p

o

n

s

e

Figure 5: Session Recovery

The client SHOULD store the Session-ID – when a new session has been established – in a storage area that is capable of keeping the Session-ID safe when an unexpected disconnection occurs (e.g. power loss, crash, etc), and the client MUST remove the safely stored Session-ID upon service disconnection. When the client has such Session-ID stored, and the client remembers client-side session context, it SHALL use the Session-ID in the ServiceRegistrationRequest to re-establish the session.

The DCD Server MAY recover the session. When the server recovers the session, the session context of the user MUST be re-established into the same state as it was at the time the session was disconnected (see 5.1.2), and the server MUST perform the required actions to bring the session into this state. For example, if the session context contains synchronization level of content update, the server MUST recover to this level during the session recovery.

7.3.7 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Version not supported. (505)

· Too many non-conformant System Message replies (603)

ServiceRegistrationRequest error conditions:

· Further authorization needed to use the server. (401)

· Invalid password. (409)

· The particular client/user is not allowed to use the server. (403)

· Session-ID, Client-ID and User-Credentials do not matching. (411)

· System Message Response required (416)

· The server could not recover the session. (502)

· No matching digest schema supported (510)

· No matching known key found (511)

· Client-ID is not unique (604)

· MSISDN error (901)

· Service provider agreement missing (902)

7.4 “Service Disconnect” Transaction Type

7.4.1 Transactions

[image: image7.wmf]S

e

r

v

i

c

e

D

i

s

c

o

n

e

c

t

R

e

q

u

e

s

t

Client

Server

S

t

a

t

u

s

Figure 6: Service Termination

The client MAY disconnect the session with the server by using the ServiceDisconnectRequest message. The server MUST respond with a Status primitive.

[image: image8.wmf]Client

Server

S

y

s

t

e

m

M

e

s

s

a

g

e

:

S

e

r

v

i

c

e

D

i

s

c

o

n

n

e

c

t

Figure 7: Server Initiated Disconnection

Whenever the server wants to disconnect a client, it MAY send a ServiceDisconnect system message to the client. The client MUST NOT send any response to the ServiceDisconnect system message. The server SHOULD disconnect a client if the Session TTL timer has expired. The server MAY also disconnect the client for some other reasons. The server sends the ServiceDisconnect system message to the client containing the Session-ID, and the Result element containing status code and descriptive text.

If the client disconnects the session or the server disconnects the client, the session context and the related information MUST be dropped, unless the server offers session recovery and it keeps the session context for a later recovery. For more information see session context in chapter 5.1.2.

7.4.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Version not supported. (505)

· Service Not Registered. (602)

System Message: ServiceDisconnect error conditions:

· Forced disconnect. (601)

· Session expired. (600)

7.4.3 Primitives and information elements

	Primitive
	Direction

	ServiceDisconnectRequest
	Client (Server

	Status
	Client (Server

	System Message: ServiceDisconnect
	Client (Server

Table 16 Primitive directions for Service Disconnect

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ServiceDisconnectRequest
	Primitive identifier

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	M
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

Table 17 Information elements in ServiceDisconnectRequest

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	System Message: ServiceDisconnect
	Primitive identifier.

	Session-ID
	M
	String
	Session identifier. The Session-ID is globally unique.

	Result
	M
	Structure
	Indicates the code and description why the disconnection happened. See Table 2 Information elements in Result structure.

Table 18 Information elements in System Message: ServiceDisconnect

7.5 “Keep Alive” Transaction Type

7.5.1 Transactions

[image: image9.wmf]KeepAliveRequest

Client

Server

KeepAliveResponse

Figure 8: Keep Alive transaction

The client MUST send KeepAliveRequest to keep the session alive if no other transaction has occurred before the Session TTL has expired. The server MAY reset the Session TTL timer not only when the client sends that KeepAliveRequest primitive, but also when any other transaction occurs over the data channel.

The client MAY support the KeepAlive transaction or use other transactions to keep the session alive.

If the server policy is to mandate the re-authentication after session expires, the server MAY not support KeepAlive.

The server MAY specify a different Session TTL value over the time. So the server MAY occasionally return a modified Session TTL in the KeepAliveResponse.

In order to minimize the latency and achieve the bandwidth efficiency and transaction efficiency, the client MAY request Keep Alive and Usage Tracking Report in a single transaction by including the appropriate information elements in either the KeepAliveRequest or ClientStatusReport primitive.
7.5.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Version not supported. (505)

· Service Not Registered. (602)

KeepAliveRequest error conditions:

· Session expired. (600)

7.5.3 Primitives and information elements

	Primitive
	Direction

	KeepAliveRequest
	Client (Server

	KeepAliveResponse
	Client (Server

Table 19 Primitive directions for keep Alive transaction

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	KeepAliveRequest
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	M
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

Table 20 Information elements in KeepAliveRequest primitive

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	KeepAliveResponse
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	M
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Result
	M
	Structure
	The result of the request. See Table 2 Information elements in Result structure.

	Session TTL
	O
	Integer
	Indicates the new time-to-live of the session in seconds.

Table 21 Information elements in KeepAliveResponse primitive

7.6 “Capability Negotiation” Transaction Type

7.6.1 Transactions

[image: image10.wmf]Client

Server

ClientCapabilityRequest

ClientCapabilityResponse

Figure 9: Client Capability transaction

Client capability negotiation MAY be performed during the service registration or after the successful service registration. Refer to ServiceRegistrationRequest and ServiceRegistrationResponse primitives in 6.3 for client capability negotiation during service registration.

The server MAY maintain the client capability information during the session, and it MAY cache these capabilities between sessions.

The client capability negotiation MAY also be repeated any time during a session.

The ClientCapabilityRequest primitive MUST contain the Capability-List element that conveys the client capability information to the server. The client capability information includes:

· SupportedContentTypes – Structure(s) containing the media types and the related credentials of those content types that the client supports as follows:

· ContentType – the MIME type of the media object.

· SizeLimit – An integer number in character (byte) count that indicates the length of this particular media type that the client supports without special conditions. See Policy for special conditions.

· Policy – An enumerated value that indicates whether or not there is a special handling policy regarding this media type. It MUST be one of the following values:

· C – the server will add extra cost to the customer based on the extra size of the media content when the size of the media content is higher than the size defined in PolicyLimit. The PolicyLimit MUST be present.

· N – No active policy meaning that the client does not wish to limit this particular content type in any way. The PolicyLimit MUST NOT be present. The server MAY change this value to ‘R’ or ‘C’ in the ClientCapabilityResponse.

· R – the client will not accept the content where the content size is higher than the size defined in PolicyLimit. The PolicyLimit MUST be present. The server MUST accept and MUST NOT change the ‘R’ value.

· PolicyLimit – An integer value that indicates the special handling policy limitation regarding this particular media type. The client MUST make sure that when PolicyLimit is specified, the Policy is ‘R’ and the PolicyLimit value is higher than the SizeLimit value.

· SupportedCharsets – the list of supported character set and the current default character set in the device. The server MUST accept the values.

· SupportedLanguages – The list of supported language set and the current default language setting in the device. The server MUST accept the values.

· SupportedTransferEncodings – The supported transfer-encoding methods and the default one in the client device, such as “BASE64”, for the embedded binary content. The client MUST NOT request any transfer-encoding method when the encoding syntax in use is binary (e.g. binary XML). The DCD Enabler recommends the BASE64 transfer-encoding method, since BASE64 is the most commonly used transfer-encoding method. However client and server implementations are not restricted to BASE64. Various client and server implementations MAY use other transfer-encoding methods as well, such as uuencode.

· DownloadableSize – the maximum character (byte) count of the size of any object transmitted from the server, including the XML (or Binary, or SMS – depending on the actual encoding) primitive size, which the client-side can handle. The server SHOULD accept this value without changes unless the server finds the value unreasonably high. When the value is too high, the server MUST include DownloadableSize in the ClientCapabilityResponse primitive indicating a value that was accepted. The originator MUST NOT send primitives that are larger than DownloadableSize. When a primitive is too large to fit into this limit, the originator MUST handle the primitive according to the partial content update mechanism as described in 6.7.

· MemoryCapability

· RAMSize – the RAM / cache size of the device

· StorageSize – the persistent storage size of the device

· Display – the capability of the display in the device, including:

· ScreenSize

· ContainerSize

· SupportedBearers – the list of supported bearers such as HTTP(S), WSP, CB, SMS etc., and the default one, e.g. HTTP.

· UsageTracking – pre-configured settings for sending the usage tracking report to the server, including:

· Tracking Interval in seconds – 0 value means infinite, i.e. no report.

· Server URL

· TimeReliability – whether the time in client is reliable or not for the server to deliver time-sensitive content, as well as local time.

The ClientCapabilityResponse primitive MAY contain the Capability-List element that conveys the acknowledged) and agreed capability information back to the client. The missing capabilities in the list indicate that the server has acknowledged and agreed the original ones from the client.

The client and server MUST reach an agreement on all of the above capabilities.

7.6.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Version not supported. (505)

· Session expired. (600)

· Service Not Registered. (602)

ClientCapabilityRequest error conditions:

· Service provider agreement missing (902)

7.6.3 Primitives and information elements

	Primitive
	Direction

	ClientCapabilityRequest
	Client (Server

	ClientCapabilityResponse
	Client (Server

Table 22 Primitive directions for Client Capability transaction

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ClientCapabilityRequest
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	M
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Capability-List
	M
	Structure
	Identifies the list of capabilities requested by the client. See
TimeReliability

O

Structure

Whether the time in the client is reliable or not for the server to deliver time-sensitive content.

Table 25 Information elements in Capability-List structure
.

Table 23 Information elements in ClientCapabilityRequest primitive

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ClientCapabilityResponse
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	M
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Result
	O
	Structure
	The result of the request. It is present only if there are errors. Table 2 Information elements in Result structure.

	Capability-List
	M
	Structure
	Identifies the list of capabilities acknowledged and agreed by the server. See
TimeReliability

O

Structure

Whether the time in the client is reliable or not for the server to deliver time-sensitive content.

Table 25 Information elements in Capability-List structure
.

Table 24 Information elements in ClientCapabilityResponse primitive

	Information Element
	Req
	Type
	Description

	SupportedContentTypes
	O
	Structure
	The list of content types that are supported in the device. See Table 26 Information elements in SupportedContentTypes structure.

	SupportedCharsets
	O
	Structure
	The list of supported character sets in the device and the current default character set. See Table 27 Information elements in SupportedCharsets structure.

	SupportedLanguages
	O
	Structure
	The list of supported languages in the device and the current default language. See Table 28 Information elements in SupportedLanguages structure.

	SupportedTransferEncodings
	O
	Structure
	The list of supported transfer encoding methods in the device and the current default method. See Table 29 Information elements in SupportedTransferEncodings structure.

	DownloadableSize
	O
	Integer
	The size limit of a downloadable object

	MemoryCapability
	O
	Structure
	The RAM size and persistent storage size in kilobytes (KB). See Table 30 Information elements in MemoryCapability structure.

	Display
	O
	Structure
	The list of display settings. See Table 31 Information elements in Display structure.

	SupportedBearers
	O
	Structure
	The list of supported bearers in the device and the current default bear. See Table 32 Information elements in SupportedBearers structure.

	UsageTracking
	O
	Structure
	Interval, URL, etc. for usage tracking. Table 33 Information elements in UsageTracking structure.

	TimeReliability
	O
	Structure
	Whether the time in the client is reliable or not for the server to deliver time-sensitive content.

Table 25 Information elements in Capability-List structure

	Information Element
	Req
	Type
	Description

	ContentType
	M
	String
	The MIME type

	SizeLimit
	M
	Integer
	The accepted content length limit

	Policy
	M
	Char
	The content policy

	PolicyLimit
	C
	Integer
	The content policy limit

Table 26 Information elements in SupportedContentTypes structure

	Information Element
	Req
	Type
	Description

	Default
	M
	String
	The current default character set

	Supported
	M
	String
	The supported character sets using whitespace ‘ ’ to separate each other.

Table 27 Information elements in SupportedCharsets structure

	Information Element
	Req
	Type
	Description

	Default
	M
	String
	The current default language

	Supported
	M
	String
	The supported languages using whitespace ‘ ’ to separate each other.

Table 28 Information elements in SupportedLanguages structure

	Information Element
	Req
	Type
	Description

	Default
	M
	String
	The current default transfer encoding

	Supported
	M
	String
	The supported transfer encoding using whitespace ‘ ’ to separate each other.

Table 29 Information elements in SupportedTransferEncodings structure

	Information Element
	Req
	Type
	Description

	RAMSize
	M
	Integer
	The size of RAM / cache in kilobytes (KB)

	StorageSize
	M
	Integer
	The size of persistent storage in kilobytes (KB)

Table 30 Information elements in MemoryCapability structure

	Information Element
	Req
	Type
	Description

	ScreenSize
	M
	Integer
	The screen size of the display

	Container
	M
	Structure
	The list of container settings such as name, height and width. Table 35 Information elements in Container structure.

Table 31 Information elements in Display structure

	Information Element
	Req
	Type
	Description

	Default
	M
	String
	The current default bearer

	Supported
	M
	String
	The supported bearers using whitespace ‘ ’ to separate each other.

Table 32 Information elements in SupportedBearers structure

	Information Element
	Req
	Type
	Description

	Interval
	M
	Integer
	The tracking interval that the client needs to report to server. 0 means the infinite, i.e. no report.

	Href
	M
	String
	The server URL to which the tracking report is sent.

	Connection-profile
	O
	String
	Specifies which connection profile the client should use when the server URL is specified through “href”. If it is not specified, the default connection profile is used.

	Property-Set
	O
	Structure
	Optional list of properties or recursive property-sets. See Table 4 Information elements in Property-Set structure.

Table 33 Information elements in UsageTracking structure

	Information Element
	Req
	Type
	Description

	Time
	M
	String
	ISO 8601 format. “YYYY-MM-DDThh:mm” for local time with time zone “+hh:mm” or “-hh:mm” at the end optionally. “YYYY-MM-DDThh:mmZ” for UTC time.

	Reliable
	M
	Boolean
	Whether the time in the client is reliable or not for the server to deliver time-sensitive content.

Table 34 Information elements in TimeReliability
	Information Element
	Req
	Type
	Description

	Name
	M
	String
	Container name

	Height
	M
	Integer
	Container height

	Width
	M
	Integer
	Container width

Table 35 Information elements in Container structure

7.7 Partial Content Update Mechanism

The client MAY set a limit on the maximum primitive size using the DownloadableSize setting during client capability negotiation – see 6.6. In the content update, the client is unable to determine the size of the actual content update before retrieval. The partial content update mechanism provides a workaround so that the longer content can be transferred as well.

If the total content update is larger than the DownloadableSize, the server MAY split the total content into a group of several content responses so that each content update response fits into the DownloadableSize limit. The granularity of the split is an implementation-specific decision at server’s discretion. The server SHALL return the content update response with update TTL value ‘0’ and the client SHALL immediately repeat the same content update request until the final piece of content is transmitted where the update TTL value is positive or is not present (meaning infinite).

Since splitting always happens at XML element boundaries, splitting a single terminating XML element is not possible. Thus for example, the atomic content of a content update cannot be split.

8. Common Features

8.1 System Message

The Server MAY send a System Message to the user through the general notification transaction.

A System Message MUST contain a status code, a text message itself and optionally a property-set. A System Message List is a list of system messages.

The server MAY require a response to the System Message(s) before allowing the user to continue. When the server requires a conformant response to System Message(s), it MUST reject all requests from the client – except KeepAlive – until the user responds to the System Message. The server MUST reject the requests by sending a Status primitive that includes the Result element with error code 416 (or 416 in one of the details of the Result), and the System Message(s) that MUST be responded in order to continue the session.

The System Message shares the same structure as Details in 6.1.

8.2 “General Notification” Transaction Type

8.2.1 Transactions

[image: image11.wmf]G

e

t

R

e

q

u

e

s

t

Client

Server

G

e

t

R

e

s

p

o

n

s

e

N

o

t

i

f

y

Figure 10: General Notification transaction

The client may be interested in receiving notifications about specific events on the server. When an event happens in the server, for example, a new subscription, a new ads, etc., the server MUST send a Notify primitive to the client in a separate “push” channel which is defined over a specific data transport, e.g. WAP Push.

There are three event types:

· content-update

· usage-tracking-report

· system

If the event is “content-update”, the client MUST use Content Update transaction to retrieve updated content.

If the event is “usage-tracking-report”, the client MUST use Usage Tracking Report transaction to report usage statistics and other records, e.g. security violations.

If the event is “system”, the client MUST use a GetRequest to retrieve the real event message from the server. The server uses the GetResponse to deliver the event message.

8.2.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Version not supported. (505)

· Session expired. (600)

· Service Not registered. (602)

8.2.3 Primitives and information elements

	Primitive
	Direction

	Notify
	Client (Server

	GetRequest
	Client (Server

	GetResponse
	Client (Server

Table 36 Primitive directions for General Notification transaction

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	Notify
	Primitive identifier.

	Client-Token
	O
	String
	Identifies the client. It was generated and set by the client in Service Registration. The Client-Token is globally unique.

	Href
	O
	String
	The server URL from which the client retrieves the real event message. If it is not specified, the default base URL is used,

	Connection-profile
	C
	String
	Specifies which connection profile the client should use when the server URL is specified through “href”. If it is not specified, the default connection profile is used.

	Action
	M
	Enumerate
	The types of events { content-update | usage-tracking-report | system }

	Content-Set
	O
	Structure
	List of Content-Sets when the action is “content-update” or “usage-tracking-report”. Those Content-Sets may be breaking news channel, or newly subscribed channels, or new promotions / ads, etc.

See Table 44 Information elements in Content-Set structure.

	Content
	O
	Structure
	List of Content when the action is “content-update” or “usage-tracking-report”. Those Contents may be breaking news, or newly subscribed contents, or new promotions / ads, etc.

See Table 45 Information elements in Content structure.

	System-Message-List
	O
	Structure
	A list of system-messages. The system message shares the same structure as Table 3 Information elements in Details structure in 6.1.

Table 37 Information elements in Notify primitive

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	GetRequest
	Primitive identifier.

	Transaction-ID
	O
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	O
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

Table 38 Information elements in GetRequest primitive

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	GetResponse
	Primitive identifier.

	Transaction-ID
	O
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	O
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Result
	O
	Structure
	The result of the request. It is present only if there are errors. See Table 2 Information elements in Result structure

	System-Message-List
	O
	Structure
	A list of system-messages. The system message shares the same structure as Table 3 Information elements in Details structure in 6.1.

Table 39 Information elements in GetResponse primitive

8.3 “Content Update” Transaction Type

8.3.1 Transactions

[image: image12.wmf]C

o

n

t

e

n

t

U

p

d

a

t

e

R

e

q

u

e

s

t

Client

Server

C

o

n

t

e

n

t

U

p

d

a

t

e

R

e

s

p

o

n

s

e

Figure 11: Content Update transaction

The client MAY request content update when the content TTL expires, or when a server notifies of the new content, or the user manually forces the update, or any other event happens in the handsets. The client MAY also request the content update at certain grarularity level by specifying the level identifier.

8.3..1 Content Update Triggers

The client SHALL specify the “Request-Trigger” in the content update request. There are seven triggers that may trigger a content update:

· sim – when the SIM card is swapped in the device

· ttl – when the time of next content update expires

· svr – a notification from server to retrieve the content update

· mc – when the master clear happens in the device

· mr – when the master reset happens in the device

· man – when the user manually wants to update the content

Note that in the even of “sim”, i.e. SIM card is swapped in the device, the client SHALL clear all previous content related to the previous user including the session context. The client SHALL request a new ServiceRegistration to create a new session for the new user before the content update can be performed.

8.3..2 Content Update Expectations

The client SHALL specify the “Expected-Content” in the content update request. There are four types of expectations:

· Complete – the server will deliver all “Content-Set”s specified in the request, plus any “Content-Set”s with the same charging bundle that the client has not yet encountered. It implies that the full new content of the entire “Application” up to date with the same charging bundle will be delivered if neither “Content-Set” nor “Content” is specified in the “Application” structure.
· Partial – the server will deliver all “Content-Set”s specified in the request and nothing more. It implies that the full new content with the same charging bundle of the entire “Application” up to the specified “Sync-Anchor” will be delivered if neither “Content-Set” nor “Content” is specified in the “Application” structure.
· Data – the server will deliver data referenced by content-id in the form of a content primitive (as specified in 7.3.6). This is not applicable if such behavior is specified in particular transport-binding, e.g. HTTP.
· id – the client expects the list of ids of the top level “Content-Set”, and the associated “Href” and “Connection-Profile”.

If the value in the information element “Expected-Content” is not supported in the server, the server SHALL return error code 423 “Unsuported value”.

8.3..3 Application

The content update is for each “Application”. Each “Application” SHALL specify a standard “Application-ID” defined in OMNA, for example, “x-oma-motorola:screen3.ua”. Each Application-ID standards for a type of application and its Application Profile that defines the semantics of the content structure.

The content for the “Application” is structured in “Content-Set” and “Content”. The “Content-Set” is recursive until the leaf node “Content”, which is called an “atomic” element.

The “Sync-Anchor” in the “Application” specifies the current synchronization level of the entire application.

The “Absent-Mode” in the “Application” specifies the semantics when the “Content-Set” or “Content” is absent:

· remove – those content are invalidated, such as unsubscribed, or unavailable default channels, etc., and should be removed.

· ignore – the unmentioned contents are unrelated to this update, and should be ignored. This typically is used for broadcasting the ads, and the other contents are not impacted.

The “Update-TTL” in the “Application” specifies the time for next content update.

The “Meta-Data” in the “Application” specifies the meta-data for all the contents of the application.
8.3..4 Content-Set and Content

The “Content-Set” and “Content” structure carries the actual content data. The common elements in both of them are:

· ID – uniquely identifies this “Content-Set” or “Content” element inside this “Application”

· Name – the name of this “Content-Set” or “Content” element. The Application Conformance Profile SHALL define the reserved names and their semantics for each specific type of application

· Sync-Anchor – the synchronization level of this “Content-Set” or “Content” element.

· Priority – ‘0’ is the highest priority, and ‘n-1’ is higher than ‘n’.

· Lifespan – Lifespane MUST be one of the following, and MUST NOT be both:

· The “Activation” and “Expiration” time (absolute time in ISO 8601 format OR relative time [RFC2445]) of the “Content-Set” or “Content” element. If the absolute time in ISO 8601 is used, “YYYY-MM-DDThh:mm” for local time with time zone “+hh:mm” or “-hh:mm” at the end optionally, and “YYYY-MM-DDThh:mmZ” for UTC time. If the relative time [RFC2445] is used, the following BNF definition SHALL be followed:

activation ::= dur-value

expiration ::= dur-value

dur-value = "P" (dur-date | dur-time | dur-week)

dur-date = dur-day [dur-time]

dur-time = "T" (dur-hour | dur-minute | dur-second)

dur-week = 1*DIGIT "W"

dur-hour = 1*DIGIT "H" [dur-minute]

dur-minute = 1*DIGIT "M" [dur-second]

dur-second = 1*DIGIT "S"

dur-day = 1*DIGIT "D"

For example, “P2W” stands for “two weeks after receiving the content”, “P1D” represents “one day after receiving content”, “P1DT1H” means “one day and one hour after receiving content”, and “PT2H3M45S” indicates “two hours three minutes and forty five seconds after receiving content”.

If only “Activation” is present and “Expiration” is missing, the “Expiration” value is “never expire”.

If only “Expiration” is present and “Activation” is missing, the “Activation” value is “now”.

If both “Activation” and “Expiration” are present, and if “Expiration” is the relative time, the “Expiration” is relative to the “Activation” time. In all other cases, the relative time of either “Activation” or “Expiration” is relative to the time of receiving the content.

· The relative validity period “Lifetime” in seconds from now on.
· Display-Timer – the time in seconds to display this “Content-Set” or “Content” element.

· Container – the container that this this “Content-Set” or “Content” element belongs to.

· Meta-Data – for this “Content-Set” or “Content” element.

The unique elements in “Content-Set” are:

· Bundle-ID – for different charing bundles

· Href – the server URL for this specific “Content-Set”. If it is missing, the base URL is used.

· Connection-profile – the connection profile when connecting to the server URL. If it is missing, the default connection profile is used,

· Absent-Mode – “remove” or “ignore”. Refer to 7.3.1.3 for further details.

· Order – the order of the “Content-Set” compared to the other “Content-Set” at the same level. If it is missing, the order is based on the sequence when it is received.

· Update-TTL – for this “Content-Set”

· Update-Schedule – for this “Content-Set”

· Recursive “Content-Set”

· Content

The unique elements in “Content” are:

· Content-Type

· Content-ID – identifies the internal referenced content

· Href – identifies the external referenced content

· Connection-Profile – corresponding connection profile for the “Href”

· Value – content data

8.3..5 Content Update Scheduling

The server SHALL return the updated content with an Update TTL and / or Update Schedule for this “Application” and / or specific “Content-Set” that indicates next content update originated from the client.

When determining the next content update based on Update TTL and Update Schedule, the client SHALL consider all relevant values of Update TTL and Update Schedule at “Application” and specific “Content-Set”, and calculate the next content update time for the entire “Application” and each specific “Content-Set”.

The next content update MAY be infinite, e.g. there is neither Update TTL nor Update Schedule at both “Application” and “Content-Set”. In the case of infinite content update, the client SHALL NOT initiate any further content update, and wait for some other events to trigger, e.g. manual refresh, server notification, etc.
8.3.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Version not supported. (505)

· Session expired. (600)

· Service not registered. (602)
· Incorrect content identifier
8.3.3 Primitives and information elements

	Primitive
	Direction

	ContentUpdateRequest
	Client (Server

	ContentUpdateResponse
	Client (Server

Table 40 Primitive directions for Content Update

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ContentUpdateRequest
	Primitive identifier.

	Transaction-ID
	O
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	O
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Request-Trigger
	M
	Enumerate
	ttl: ttl request

man: manual refresh

svr: server notified new content

sim: sim change event in device

mc: master clear event in device

mr: master reset event in device

	Expected-Content
	M
	Enumerate
	Complete: Server will deliver all “Content-Set”s specified in the request, plus any “Content-Set”s with the same charging bundle that the client has not yet encountered. It implies that the full new content of the entire “Application” up to date with the same charging bundle will be delivered if neither “Content-Set” nor “Content” is specified in the “Application” structure.

Partial: Server will deliver all “Content-Set”s specified in the request and nothing more. It implies that the full new content with the same charging bundle of the entire “Application” up to the specified “Sync-Anchor” will be delivered if neither “Content-Set” nor “Content” is specified in the “Application” structure.

Data: Server will deliver data referenced by content-id in the form of a content primitive (as specified in 7.3.6). This is not applicable if such behavior is specified in particular transport-binding, e.g. HTTP.

id: expects the list of ids of top-level “Content-Set”, and their “Href” and optionally “Connection-profile” if applicable.

	Application
	O
	Structure
	List of applications that need the content update. If it is omitted or empty, all applications’ full content are requested. See Table 43 Information elements in Application structure.

Table 41 Information elements in ContentUpdateRequest primitive

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ContentUpdateResponse
	Primitive identifier.

	Transaction-ID
	O
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	O
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Result
	O
	Structure
	The result of the request. It is present only if there are errors. See Table 2 Information elements in Result structure

	Application
	C
	Structure
	List of content update for all applications. See Table 43 Information elements in Application structure.

Table 42 Information elements in ContentUpdateResponse primitive

	Information Element
	Req
	Type
	Description

	ID
	M
	String
	The standard Application–ID defined in OMNA. For example, “x-oma-motorola:screen3.ua”. Each Application-ID standards for a type of application and its Application Profile.

	Name
	M
	String
	Application name.

	Sync-Anchor
	M
	String
	Synchronization level of the application. An empty string means all Contents in this Application are requested.

	Absent-Mode
	C
	String
	Defines how the client should handle the situation when the “content-set” or “content” underneath is absent:

“remove”: those content are invalidated, such as unsubscribed, or unavailable default channels, etc., and should be removed.

“ignore”: the unmentioned contents are unrelated to this update, and should be ignored. This typically is used for broadcasting the ads, and the other contents are not impacted.

It is NOT present in ContentUpdateRequest and MANDATORY in ContentUpdateResponse

	Update TTL
	O
	Integer
	Content update TTL in seconds specifies the next update request expected from the client.

0: immediately repeat the update request. This is used when partial content update happens, or when the server only returns the list of “Content-Set” ids based upon the “Requested-Content” value, and the client is expected to repeat the content update until all content updates are delivered.

	Meta-Data
	O
	Structure
	The meta-data of all contents under this application.

It is NOT present in ContentUpdateRequest, and OPTIONAL in ContentUpdateResponse.

The structure is the same as Table 4 Information elements in Property-Set structure.

	Content-Set
	O
	Structure
	List of content-sets.

When it is present in ContentUpdateRequest, the specific Content-Set and its subordinates are requested.

When it is present in ContentUpdateResponse, it represents the newly updated Content-Sets.

See Table 44 Information elements in Content-Set structure.

	Content
	O
	Structure
	List of contents.

When it is present in ContentUpdateRequest, the referenced content via “Content-ID” is requested.

When it is present in ContentUpdateResponse, it represents the newly updated Content.

See Table 45 Information elements in Content structure.

Table 43 Information elements in Application structure

	Information Element
	Req
	Type
	Description

	ID
	O
	String
	Content-Set ID. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The ID is unique inside the application.

	Name
	O
	String
	Content-Set name. The Application Conformance Profile shall define the semantics for different type of applications.

	Bundle-ID
	O
	String
	The bundle ID of the Content-Set. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The ID is unique inside the application. This is used for differentiating from different charging groups.

	Sync-Anchor
	O
	String
	Synchronization level of the Content-Set. An empty string means all contents in this Content-Set are requested.

	Href
	C
	String
	The URL if it is a referenced Content-Set (e.g. from another server). The client is expected to initiated another request to retrieve the referenced Content-Set from the Href. If it is not specified, the default base URL is used for this Conent-Set.

It is NOT present in ContentUpdateRequest.

When it is present in ContentUpdateResponse, the other optional content-specific elements SHALL NOT be present.

	Connection-profile
	C
	String
	Specifies which connection profile the client should use when the server URL is specified through “href”. If it is not specified, the default connection profile is used.

	Absent-Mode
	O
	String
	It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

See the definition in Table 43 Information elements in Application structure.

	Order
	O
	Integer
	The order of the Content-Set at the same level. Missing element means at the order of received.

It is NOT present in ContentUpdateRequest

It is NOT present if Href is present in ContentUpdateResponse.

	Priority
	O
	Integer
	The priority of the Content-Sets at the same level under their parent. ‘0’ is the highest. Missing “priority” element means all the “Content-Set” at the same level under their parent are the same priority.

It is NOT present in ContentUpdateRequest

It is NOT present if Href is present in ContentUpdateResponse.

	Lifespan
	O
	Structure
	The lifespan of the Content-Set that it will be gone forever afterwards (e.g.auto-unsubscribed). Missing element means infinite.

It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

	Display-timer
	O
	Integer
	The time-to-display in seconds of the Content-Set. It is always positive. Missing element means infinite until it is updated or lifespan expires or subject to the display policy of the application.

It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

	Update TTL
	O
	Integer
	Content update TTL in seconds specifies the next update request expected from the client.

0: immediately repeat the update request. This is used when partial content update happens, or when the server only returns the list of “Content-Set” ids based upon the “Expected-Content”, and the client is expected to repeat the content update until all new contents are delivered.

It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

	Update-schedule
	O
	Enumerated Set
	The content update schedule of the Content-Set. It is a set of enumerated update schedule on 24-hour basis. The examples are { 01:00, 06:00, 15:00, 20:00 }, { 06:30, 12:30, 18:30 }, etc.

It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

	Container
	O
	String
	The name of container in which the “Content-Set” shall be displayed. Missing element means to display in the default container.

It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

	Meta-Data
	O
	Structure
	The meta-data of all contents under this Content-Set.

It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

The structure is the same as Table 4 Information elements in Property-Set structure.

	Content-Set
	O
	Structure
	List of Content-Sets in the next level recursively.

It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

See Table 44 Information elements in Content-Set structure

	Content
	O
	Structure
	List of real Content.

It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

See Table 45 Information elements in Content structure.

Table 44 Information elements in Content-Set structure

	Information Element
	Req
	Type
	Description

	ID
	O
	String
	Content ID. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The ID is unique inside the application.

	Name
	O
	String
	Content name. The Application Conformance Profile shall define the semantics for different type of applications.

	Sync-Anchor
	O
	String
	Synchronization level of the Content.

	Priority
	O
	Integer
	The priority of the Contents at the same level under their parent. ‘0’ is the highest. Missing “priority” element means all the Contents at the same level under their parent are the same priority.

	Lifespan
	O
	Structure
	The lifespan of the Content that it will be gone forever afterwards (e.g.auto-unsubscribed). Missing element means infinite.

	Display-timer
	O
	Integer
	The time-to-display in seconds of the Content. It is always positive. Missing element means infinite until it is updated or lifespan expires or subject to the display policy of the application.

It is NOT present in ContentUpdateRequest.

It is NOT present if Href is present in ContentUpdateResponse.

	Container
	O
	String
	The name of container in which the “Content” shall be displayed. Missing element means to display in the default container.

	Meta-Data
	O
	Structure
	The meta-data of this Content. The structure is the same as Table 4 Information elements in Property-Set structure.

	Content-Type
	C
	String
	The content-type if the content is not referenced by either “Href” or “Content-ID”. If it is the binary content, the binary content is encoded with the default transferred encoding method agreed in 6.6, typically it is BASE64.

	Content-ID
	C
	String
	The Content-ID if it is the referenced content and the content is referenced internally by the “Content-ID”. The client is expected to initiated another ContentUpdateRequest with the “Mode: data” to retrieve the content. The Content-ID is globally unique.

	Href
	C
	String
	The URL if it is the referenced content and the content is referenced externally by the “Href”. The client is expected to initiated another request to retrieve the content according to the schema specified in the “Href”.

	Connection-profile
	C
	String
	Specifies which connection profile the client should use when the externally referenced content is specified through “href”. If it is not specified, the default connection profile is used.

	Value
	O
	String
	The Content value

Table 45 Information elements in Content structure

	Information Element
	Req
	Type
	Description

	Activation
	C
	String
	Absolute time (ISO 8601 format) or relative time ([RFC2445] format). Refer to Error! Reference source not found. for details.

	Expiration
	C
	String
	Absolute time (ISO 8601 format) or relative time ([RFC2445] format). Refer to Error! Reference source not found. for details.

	Lifetime
	C
	Integer
	The relative validity period in seconds from now on. When “Lifetime” is present, neither “Activation” nor “Expiration” is present.

Table 46 Information elements in Lifespan structure

8.3.4 Differential Content Update

The content update is differential, i.e. only the new content after the previous synchronization will be delivered. The rules to distinguish different situations are defined as follows:

	
	Content-Set or Content “ID”
	Content-Set or Content “Sync-Anchor”
	Content-Set element or Content “value”

	New subscription with new content
	New
	New
	Non-empty

	New subscription but new content is empty
	New
	New
	Empty

	Invalidated or unrelated content as defined in “absent-mode” element
	None
	None
	None

	Subscription – differential content update
	Old
	New
	Non-empty

	Subscription – content unchanged
	Old
	Old
	Empty

	Subscription – content deleted (empty content)
	Old
	New
	Empty

Table 47 Differential Content Update

8.3.5 Embedded Binary Content

The server MAY return the embedded binary content directly along with other textual content in the same ContentUpdateResponse. The Content-Type SHALL be indicated for the embedded binary content.

All binary content are encoded with the agreed default transfer encoding method in 6.6, for example BASE64.

8.3.6 Content Referenced by Content-ID

The server MAY return the reference of the content either with an internal Content-ID or with an external Href. Either the Content-ID or the Href SHALL be indicated respectively.

When the client retrieves the content referenced by a Content-ID, the client SHALL specify the list of “Content” element as the update granularity level, and include the Content_ID(s) in the “Content” element(s).

The server SHALL return the embedded content based on the “Content-ID”. If the content is binary content, the embedded binary content SHALL be returned as specified in 7.3.5. If the update is partially successful, e.g. some Content-ID(s) are not available, the server SHALL return the 201 (Partially successful) code and return the available content only.

All binary content are encoded with the agreed default transfer encoding method in 6.6, for example BASE64.

However, in order to achieve bandwidth efficiency, the actual response from the server MAY be subject to the specific optimization method specified in the [DCD-TS-Bindings]. For example, the server SHALL return a multipart MIME of binary contents when retrieveing the content referenced by Content-ID over HTTP transport.

8.3.7 Content Referenced by Href

When the client retrieves the content referenced by a Href, the client SHALL initiate a separate request according to the schema specified in the Href, e.g. FTP, or RTP, or HTTP. The details are out of the scope of DCD Enabler.

The binary content SHALL NOT be constrained by the agreed default transfer encoding method in 6.6. Instead, it is subject to the schema of Href.

8.4 “Usage Tracking Report” Transaction Type

8.4.1 Transactions

[image: image13.wmf]Client

Server

U

s

a

g

e

T

r

a

c

k

i

n

g

R

e

p

o

r

t

R

e

q

u

e

s

t

U

s

a

g

e

T

r

a

c

k

i

n

g

R

e

p

o

r

t

R

e

s

p

o

n

s

e

Figure 12: Usage Tracking Report

The client MAY send the usage tracking report to the server at the agreed interval in the ClientCapabilityNegotiation.

The server MAY specify a different report interval when responding to the report.

8.4.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Version not supported. (505)

· Session expired. (600)

· Service Not Registered. (602)

8.4.3 Primitives and information elements

	Primitive
	Direction

	UsageTrackingReportRequest
	Client (Server

	UsageTrackingReportResponse
	Client (Server

Table 48 Primitive directions in Usage Tracking Report transaction

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ContentUpdateRequest
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	M
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Start-time
	M
	String
	ISO 8601 format. “YYYY-MM-DDThh:mm” for local time with time zone “+hh:mm” or “-hh:mm” at the end optionally, and “YYYY-MM-DDThh:mmZ” for UTC time.

	End-time
	M
	String
	ISO 8601 format. “YYYY-MM-DDThh:mm” for local time with time zone “+hh:mm” or “-hh:mm” at the end optionally, and “YYYY-MM-DDThh:mmZ” for UTC time.

	Application
	M
	Structure
	List of applications that report the usage status. See Table 51 Information elements in Application structure.

Table 49 Information elements in UsageTrackingReportRequest primitive

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ContentUpdateResponse
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	M
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Result
	O
	Structure
	The result of the request. It is present only if there are errors.

	UsageTracking
	O
	structure
	Interval, URL, etc. for usage tracking. It shares the same structure as defined in Table 33 Information elements in UsageTracking structure.

Table 50 Information elements in UsageTrackingReportResponse primitive

	Information Element
	Req
	Type
	Description

	ID
	M
	String
	The standard Application–ID defined in OMNA. For example, “x-oma-motorola:screen3.ua”. Each Application-ID standards for a type of application and its Application Conformance Profile.

	Name
	M
	String
	Application name

	Stat-Set
	O
	Structure
	List of stats sets. See Table 52 Information elements in Stat-Set structure.

	Stat
	O
	Structure
	List of stats. See Table 53 Information elements in Stat structure.

Table 51 Information elements in Application structure

	Information Element
	Req
	Type
	Description

	ID
	M
	String
	Stat-Set ID. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The ID is unique inside the application.

	Name
	M
	String
	Stat-Set name. The Application Conformance Profile SHALL define the semantics for different type of applications

	Stat-Set
	O
	Structure
	List of Stat-Sets in the next level recursively.Table 53 Information elements in Stat structure.

	Stat
	O
	Structure
	List of real Stats. See Table 53 Information elements in Stat structure.

Table 52 Information elements in Stat-Set structure

	Information Element
	Req
	Type
	Description

	Key
	M
	String
	The Stat key

	Value
	M
	String
	The Stat value

Table 53 Information elements in Stat structure

8.5 “Suspend / Resume Server-initiated Content Delivery” Transaction Type

8.5.1 Transactions

[image: image14.wmf]Client

Server

S

e

r

v

e

r

I

n

i

t

i

a

t

e

d

D

e

l

i

v

e

r

y

R

e

q

u

e

s

t

S

t

a

t

u

s

Figure 13: Suspend / Resume Server-initiated Content Delivery

The client MAY be able to suspend and resume server-initiated content delivery.

8.5.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Version not supported. (505)

· Session expired. (600)

· Service Not Registered. (602)

8.5.3 Primitives and information elements

	Primitive
	Direction

	ServerInitiatedDeliveryRequest
	Client (Server

	Status
	Client (Server

Table 54 Primitive directions in suspend / resume server-initiated content delivery transaction

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ServerInitiatedDeliveryRequest
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	M
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	Mode
	M
	Enumerated
	suspend: suspend the server-initiated content delivery

resume: resume the server-initiated content delivery

Table 55 Information elements in ServerInitiatedDeliveryRequest primitive

8.6 “Client State Report” Transaction Type

8.6.1 Transactions

[image: image15.wmf]Client

Server

C

l

i

e

n

t

S

t

a

t

e

R

e

p

o

r

t

R

e

q

u

e

s

t

S

t

a

t

u

s

Figure 14: Client State Report

Whenever the operational state is changed in the client, e.g. from Active to Suspended, the client MAY be able to report new state to the server. There are four operational states as defined in 5.1.1:

· active

· inactive

· disabled

· suspended

8.6.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Version not supported. (505)

· Session expired. (600)

· Service Not Registered. (602)

8.6.3 Primitives and information elements

	Primitive
	Direction

	ClientStateReportRequest
	Client (Server

	Status
	Client (Server

Table 56 Primitive directions in Client State Report transaction

	Information Element
	Req
	Type
	Description

	Primitive-Type
	M
	ClientStateReportRequest
	Primitive identifier.

	Transaction-ID
	M
	String
	Transaction identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Transaction-ID is unique within the session.

	Session-ID
	M
	String
	Session identifier. Maximum is 64 bytes – 64 alphanumerical ASCII characters. The Session-ID is globally unique.

	State
	M
	Enumerated
	One of the states in the enumerated set { active, inactive, disabled, suspended }

Table 57 Information elements in ClientStateReportRequest primitive

9. Extension Framework

This extension framework includes support of two (2) basic operations:

· Extending existing primitives

· Introducing new primitives

It is RECOMMENDED that applications use the version discovery transaction for detecting which extensions the client and the server support.

The server or client MAY return status code 501 to indicate that a particular transaction is not implemented within a recognized namespace.

9.1 Extending Existing Primitives

Extension blocks MAY be appended to existing primitives, designated with a namespace. Both clients and servers MUST ignore unrecognized extension blocks without generating an error.

The extension block is defined within an “ExtBlock” element with an appropriate xmlns.

9.2 Introducing New Primitives

The extension framework defines general primitives that serve as an envelope for proprietary operations. These primitives obey all rules set for the normal primitives with 1 exception:

· The actual content of these primitives are not defined.

Both clients and servers MUST ignore unrecognized primitive extensions without generating an error.

The extension framework is defined within an “ExtFunc” transaction with an appropriate xmlns.

9.3 Extension – Client State Transition OTA

The Client State Transition OTA is the process by which the client application receives the specific state transition message through general notification specified in 7.2. The service states and the transitional diagram are specified in 5.1.1 and Error! Reference source not found..

The Client State Transition OTA message will be conformant to the OMA OTAP Provisioning Specification v1.1 [OMA-OTAP]. Specifically:

· the “APPLICATION” characteristics will be used to provision the client state

· the “RESOURCE” characterics will be used to provision the base URL of the service provider and the subscription start page.

Note that this is not strictly compatible with OMA OTAP provisioning in that it will require the use of the DCD-specific Application-ID specified in [DCD-TS-Bindings]. However, the XML format of this message is intended to make the DCD Client State Transition OTA be part of the future OMA OTAP standard.

The Client State Transition OTA message is supported through extension block or extension framework.

The parameters in “APPLICATION” characteristics are defined as follows for client state transition:

	Parm name
	Req
	Type
	Description

	APPID
	M
	String
	Value must be “w901e”, which is equivalent to “X-Wap-Application-Id: x-oma-motorola:screen3.ua”.

	APROTOCOL
	M
	String
	The following are possible state values:

“ON”: the client is active for both content delivery and content display.

“OFF”: the client is disabled. There is neither content delivery nor content display. The user is NOT allowed to change the client to other modes.

“DISABLED”: the client is disabled. There is neither content delivery nor content display. The user is allowed to change the client to other modes.

 “INACTIVE”: the client is inactive. The client does not display the content. But the client still can initiate content delivery or accept the server-initiated content delivery.

“SUSPENDED”: the client is suspeneded. There is no client-initiated content delivery, and the client will not accept server-initiated content delivery. But the client still displays the old content.

“SESSION”: the client is expected to re-register the session with the server.

Table 58 Parameters in “APPLICATION” Characteristics

The parameters in “RESOURCE” characteristics are defined as follows for server configuration:

	Parm name
	Req
	Type
	Description

	URI
	M
	String
	The base URI of the service provider

	STARTPAGE
	M
	String
	The subscription start page

Table 59 Parameters in “RESOURCE” Characteristics

10. Status Codes and Descriptions

10.1 1xx – Informational

The client MUST be prepared to accept one or more 1xx status codes prior to a regular response even if the client does not expect a 100 “Continue” status code. A user agent SHALL ignore unexpected 1xx status code. This category of the status codes does not finish a transaction.

5.4.2 100 – Continue

The client SHOULD continue with its request. The server has accepted the request for processing, but the processing has not been completed. The request might or might not eventually be successfully completed. The server MUST send a final response again upon completing the request. The “100” response is used when time of completion will be too long, possibly causing the server and client connection to break.

5.4.2 101 – Queued

The client SHOULD continue with its request. The server has accepted the request, but does not have resources to start processing. The request might or might not eventually be successfully completed. The server MUST send a final response again upon completing the request.

5.4.2 102 – Started

The client SHOULD continue with its request. The server has accepted the request for processing. The “102” response is used when server needs to start additional transactions in order to process the request. The server MUST send a final response again upon completing the request.

10.2 2xx – Successful

The 2xx class of status codes indicates that the client’s request was successfully received, understood and accepted.

5.4.2 200 – Successful

This is used to indicate that the request succeeded.

5.4.2 201 – Partially successful

This is used to indicate that the request was successfully completed, but some parts were not completed due to certain errors. The details of the error case(s) are indicated in the response.

5.4.2 203 – Extension block ignored

The client/server requested a transaction that carries an extension block (“ExtBlock”). However the extension block was ignored on the terminating end – in an otherwise successful transaction. The originator of the request MUST NOT perform the behavior described in the proprietary solution as the requested proprietary functionality was ignored on the terminating end.

10.3 4xx – Client Error

The 4xx class of status codes is intended for cases in which the client seems to have erred. The server SHOULD include the explanation of the error situation including whether it is a temporary or permanent condition. The user agents SHOULD be able to display the error description to the user.

5.4.2 400 – Bad Request

The server could not understand the request due to the malformed syntax. The client MUST NOT repeat the request without modification.

5.4.2 401 – Unauthorized

When an authorization request is expected (e.g. ServiceRegistrationRequest), the server will respond with this status code in ChallengeResponse. Properties will contain details of available authorization schemes.

5.4.2 402 – Bad Parameter

The server cannot understand one of the parameters in the request. The client MUST NOT repeat the request without modification.

5.4.2 403 – Forbidden

The server understood the request, but the principal settings denied access to some of the resources. Authorization will not help and the request SHOULD NOT be repeated. This type of response can be returned if user is not registered in the network yet.

5.4.2 404 – Not Found

The server cannot find anything matching the request. No indication is given of whether the condition is temporary or permanent.

5.4.2 405 – Service Not Supported

The server does not support the service method in the request.

5.4.2 406 – Request Timeout

The client did not produce a request within the time the server was prepared to wait.

5.4.2 407 – Invalid Client-ID

The server encountered an invalid Client-ID.

5.4.2 408 – Invalid Username

The server encountered an invalid Username.

5.4.2 409 – Invalid password

The password provided by the client was incorrect; it does not match with the given Username. The client MUST NOT repeat the request without modification.

5.4.2 410 – Invalid Transaction-ID

The server encountered an invalid transaction ID.

5.4.2 411 – Session-ID, Client-ID and User-Credentials do not match

The Session-ID, Client-ID and User-Credentials do not match in the request.

5.4.2 412 – Unable to Deliver

The server cannot deliver the request. The requested resource is no longer available at the server and no forwarding address is known.

5.4.2 413 – Unable to find suitable content type

The server cannot deliver the content because the client does not support any suitable content type. The client MUST NOT repeat the request without performing client capability negotiation where it agrees on a suitable content type.

5.4.2 414 – Unsupported Media Type

The server cannot deliver the content because the client cannot support the format of the entity that it requested.

5.4.2 415 – Response too large

The response would be larger than what the client is capable to handle according to the limitations agreed during client capability negotiation. The client MUST NOT repeat the request without performing client capability negotiation where it agrees on higher limitations.

5.4.2 416 – System Message Response required

The server has sent a System Message notification to the client requiring response from the end-user. The client MUST NOT repeat the request without gathering feedback from the end-user and sending a System Message resposne to the server.

5.4.2 417 – Unknown System Message ID

The System Message response contains an unknown system message id.

5.4.2 418 – Number of characters exceeds the maximum number of characters

The client submitted a value where the number of characters is more than the allowed maximum numbers of characters for this value.

5.4.2 419 – Wrong value type

The type of the value submitted by the client does not match the required value types.

5.4.2 420 – Missing Application-ID

The client attempted to retrieve the content update without providing an Application-ID, thus the server rejected the request. The client MUST NOT repeat the request without modification.

5.4.2 421 – Invalid Application-ID

The client attempted to use an Application-ID that was not registered in OMNA. The client MUST NOT repeat the request without modification during the active session.

5.4.2 422 – Unsupported Application-ID

The server is not supporting the requested Application-ID for content delivery. The client MUST NOT repeat the request without providing an acceptable Application-ID.

5.4.2 423 – Unsupported value

The value submitted by the client is not supported.

10.4 5xx – Server Error

The 5xx class of status codes is intended for cases in which the server is aware that it has erred or is incapable of performing the request.

5.4.2 500 – Internal server or network error

The server encountered an unexpected condition that prevented it from fulfilling the request.

5.4.2 501 – Function / Transaction is not implemented

The requested function / transaction is not implemented.

5.4.2 502 – Session could not be recovered

The server was not able to recover the session requested by the client.

5.4.2 503 – Service Unavailable

The server is currently unable to handle the request due to a temporary overloading or maintenance of the server.

5.4.2 504 – Timeout

The server could not produce a response within the time that it expected.

5.4.2 505 – Version Not Supported

The server does not support, or refuse to support, the request version that was used.

5.4.2 506 – Message queue is full

The server cannot fulfill the request, because its message queue is full. The client MAY repeat the request.

5.4.2 507 – Unsupported message context

The server is unable to understand the message context that the client has used. The client MUST NOT repeat the request without modification.

5.4.2 508 – Related services are missing

The server cannot perform the request, as some services that are indirectly related to the requested transaction have not been supported. The client MUST NOT repeat the request until the indirectly required services have been supported.

5.4.2 509 – Related client capabilities are missing

The server cannot perform the request, as some client capabilities that are indirectly related to the requested transaction are missing during client capability negotiation. The client MUST NOT repeat the request until the indirectly required capabilities are reported using a client capability negotiation.

5.4.2 510 – No matching digest scheme supported

The server does not support any of the digest schemas that the client has requested. MD5 is used.

5.4.2 511 – No matching known key found

The server does not find the matching known key.

5.4.2 520 – Header encoding not supported

The requested SMS header encoding (UDH or textual) is not supported. The clients MUST NOT repeat the request without modification. The client MAY repeat the request with the opposite header encoding (UDH if it was textual, or vice versa). See [CSP PTS] for detail on how this status code is used.

10.5 6xx – Session

The 6xx class status code indicates the session-related status.

5.4.2 600 – Session Expired

The client was disconnected because the Session TTL of user session has expired. The client MAY attempt to re-register the service at any time.

5.4.2 601 – Forced Logout

The server has disconnected the client for some reason. The client receiving this error code MUST NOT attempt to re-register automatically. Instead, it MUST wait for user interaction. The status details SHOULD give sufficient information for the user when the next registration attempt MAY be performed. The user MAY trigger the registration manually.

5.4.2 602 – Invalid session (service not registered).

There is no such session. (Previously not registered, or already disconnected.)

5.4.2 603 – Too many non-conformant System Message replies

The server will not accept new requests from the client for a period of time (it is implementation-specific), because the client already attempted to respond a System Message with non-conformant replies too many times. The server cannot verify whether the user is making mistakes, or the client is not DCD compliant, but this error code allows the server to protect itself against undesired attempts. The server is NOT REQUIRED to validate any requests while this protection is active – it MAY respond any request without validation with a Status primitive using the same error code. The client MUST NOT repeat the request until the protection time indicated in the status details expires.

5.4.2 604 – Client-ID is not unique

The server did not accept the service registration request from the client, because the Client-ID that the client attempted to use during service registration is already in use.

10.6 9xx General Errors

The 9xx class indicates status codes too general to fit into other classes.

5.4.2 900 Multiple Errors

The transaction was not successfully processed for several reasons and thus one single status code cannot indicate the errors. The details of the error cases are indicated in the response.

5.4.2 901 – MSISDN error

The client attempted to use an MSISDN that is not used by the device, thus the server rejected the request. The client MUST NOT repeat the request without modification.

5.4.2 902 – Service provider agreement missing

The client attempted to perform an operation that involves another service provider, however the agreement between the related service providers prevents the server from performing the requested operation. The client SHOULD NOT repeat the request without modification.

5.4.2 903 – Not enough credit to complete requested operation

The server cannot perform the requested operation since the user has not enough credit.

5.4.2 904 – Operation requires a higher class of service

The server cannot perform the requested operation since it requires a higher class of service. A class of service is a designation assigned by the service provider to describe the service treatment and privileges given to a particular user (e.g., premium, gold).

This document describes the call flows of DCD Enablers. The call flows illustrate the typical use cases and cover all message types that are essential to the DCD Enabler, including enabler administration / session management, content delivery functions and channel administration. The call flows will guide the development of further details of DCD Enabler in the semantics specification.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that this contribution be discussed.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 52)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 52)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

_1195045841.vsd
GetRequest

Client

Server

GetResponse

Notify

_1199729399.vsd
ServiceRegistrationRequest

Client

Server

ChallengeResponse

ServiceRegistrationResponse

DigestRequest

_1202557118.vsd
ServiceRegistrationRequest

Client

Server

ServiceRegistrationResponse

_1210146230.vsd
DCD Client

DCD Server

Two-way Data Path

Notification Path

One-way Data Path

_1199892091.vsd
ServiceRegistrationRequest

Client

Server

ChallengeResponse

DigestRequest

ServiceRegistrationResponse

_1199872443.vsd
Client

Server

ClientStateReportRequest

Status

_1195134246.vsd
Client

Server

UsageTrackingReportRequest

UsageTrackingReportResponse

_1196684412.vsd
Client

Server

ServerInitiatedDeliveryRequest

Status

_1195047087.vsd
ContentUpdateRequest

Client

Server

ContentUpdateResponse

_1195023597.vsd
ServiceDisconectRequest

Client

Server

Status

_1195023786.vsd
Client

Server

System Message: ServiceDisconnect

_1074593561.vsd

_1098254487.vsd

_1064750288.vsd

