Doc# OMA-MAE-2006-0348-INP_Caching_conformance[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-MAE-2006-0348-INP_Caching_conformance

Input Contribution

Input Contribution

	Title:
	Caching conformance
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	MAE

	Submission Date:
	8th October 2006

	Source:
	David Sanders, Vodafone

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This document introduces a set of changes to the User Agent Caching Model Specification (OMA-TS-UACACHE-V1_0-20060822-D) and provides a resolution to approved Browser Interoperability requirement:
· The behaviour of a mobile web browser (i.e. UA cache directive processing) when it retrieves content from its cache SHALL be consistent.
· Mobile web browsers MUST support an interoperable set of caching directives by mandating at least one method of expiration, e.g. the Max-Age attribute of the Cache-Control header or the Expires header. Mobile web browsers MUST also use the HTTP Date header, if available, when cache freshness lifetime is calculated based on the Expires header
· The caching of resources MUST be supported by a mobile web browser in accordance with [RFC2616] to improve network optimization, performance and usability (e.g. A browser must be able to allocate sufficient memory for caching purposes to avoid unnecessary reload of web pages).
This document highlights a number of normative statements considered as being the most important for interoperability as described in RFC2616 and provides further clarification in areas that are considered ambiguous.

The intention of this CR is NOT to modify or conflict with the caching functionality including cache behaviour as described in RFC2616 but rather to identify conformance requirements to improve interoperability.

The italic text presented in section 3 is taken from RFC2616 and is used only for illustration purposes. The intention is to where necessary identify the relevant conformance criteria. All identified conformance is distinguished by “Conformance: statement [ref:..].

2 Summary of Contribution

It is proposed that the following changes including the new conformance statements are added to section 5 of OMA-TS-UACACHE-V1_0-20060822-D.

5. User Agent Responsibilities

The user agent MUST implement resource caching as described in [RFC2616].

User Agent HTTP cache header ad directives conformance

Conformance 1: A User Agent MUST support the HTTP Cache-Control header including its cache-request and cache-response directives as defined by [HTTP/1.1 section 14.9 Cache-control] [Reference: section 13.1.3 Cache-Control mechanisms]

Conformance 2: A User Agent MUST support the "Cache-Control: no-cache" cache-control directive to force an end-to-end (i.e. force any intermediate caches to obtain a new copy of the resource from the origin server) revalidation of its cached resource [Reference 13.2.5 Disambiguating Expiration Values]

Conformance 3: A User Agent MUST support the “max-age=0” cache-control directive for Specific and Unspecified end-to-end revalidation {Reference: 14.9.4 Cache Revalidation and Reload Controls}

Conformance 4: A User Agent MUST support the Last-Modified entity-header field, If-Modified-Since request-header fields and ETag response-header fields [Reference: 13.3.1 Last-Modified Dates]
Conformance 5: A User Agent MUST support the Date general-header field.
User Agent Behaviour

Conformance 1: The expiration time of a resource to be cached MUST be specified by the max-age directive. The expiration time of a resource to be cached MAY be specified by the Expires header. [Reference: 14.9.3 Modifications of the Basic Expiration Mechanism]

Conformance 2: When the cache of a User Agent receives a cache-control “max-age” directive and an Expires general header the cache-control “max-age” directive MUST take precedence over the Expires general header. [Reference 13.2.4 Expiration Calculations]

Conformance 3: The cache of a User Agent MUST include an Age response header field in every response generated from its own cache. [Reference: 13.2.3 Age Calculations]

Conformance 4: A cache of a User Agent MUST NOT cache a response that has a Date header value older than an existing cached response for the same resource [Reference: 13.12 Cache Replacement]

Conformance 5: If a response includes an s-maxage directive then for a shared cache the maximum age specified by this directive MUST override the maximum age specified either by the Expires header or a max-age directive. [Reference: 14.9.3 Modifications of the Basic Expiration Mechanism]

Conformance 6: A User Agent MUST store Last-Modified entity header field and ETag response-header field values received from an origin server as meta information (See section 7.1 HTTP1.1) with the cached resource for use in subsequent conditional responses [Reference: 13.3.4 Rules for When to Use Entity Tags and Last-Modified Dates]

Origin Server

Conformance 1: An origin server MUST specify explicit expiration times using the max-age directive. The origin server MAY specify explicit expiration times using the Expires header. [Reference: section 13.2.1 Server-Specified Expiration]
Conformance 2: An origin server SHOULD provide an explicit expiration time “in the future”, indicating that a response MAY be used to satisfy subsequent requests. [Reference: section 13.2.2 Heuristic Expiration]Conformance 11: An origin server SHOULD send a Date general header field with every response, giving the time at which the response was generated. [Reference: 13.2.3 Age Calculations]
Conformance 3: An Expiration time as specified using the HTTP Cache-Control “max-age” and Expires header MUST NOT be used to force a User Agent to refresh its History mechanisms. [Reference: section 13.2.1 Server-Specified Expiration]

3 Detailed Proposal

13 Caching in HTTP

3.1.1 Cache Correctness

 A correct cache MUST respond to a request with the most up-to-date

 response held by the cache that is appropriate to the request (see

 sections 13.2.5, 13.2.6, and 13.12) which meets one of the following

 conditions:

 1. It has been checked for equivalence with what the origin server

 would have returned by revalidating the response with the

 origin server (section 13.3);

 2. It is "fresh enough" (see section 13.2). In the default case,

 this means it meets the least restrictive freshness requirement

 of the client, origin server, and cache (see section 14.9); if

 the origin server so specifies, it is the freshness requirement

 of the origin server alone.

 If a stored response is not "fresh enough" by the most

 restrictive freshness requirement of both the client and the

 origin server, in carefully considered circumstances the cache

 MAY still return the response with the appropriate Warning

 header (see section 13.1.5 and 14.46), unless such a response

 is prohibited (e.g., by a "no-store" cache-directive, or by a

 "no-cache" cache-request-directive; see section 14.9).

 3. It is an appropriate 304 (Not Modified), 305 (Proxy Redirect),

 or error (4xx or 5xx) response message.

 If the cache can not communicate with the origin server, then a

 correct cache SHOULD respond as above if the response can be

 correctly served from the cache; if not it MUST return an error or

 warning indicating that there was a communication failure.

 If a cache receives a response (either an entire response, or a 304

 (Not Modified) response) that it would normally forward to the

 requesting client, and the received response is no longer fresh, the

 cache SHOULD forward it to the requesting client without adding a new

 Warning (but without removing any existing Warning headers). A cache

 SHOULD NOT attempt to revalidate a response simply because that

 response became stale in transit; this might lead to an infinite

 loop. A user agent that receives a stale response without a Warning

 MAY display a warning indication to the user.

Conformance: The cache of an OMA User Agent MUST respond to a request with the most up-to-date cached resource held by the cache that is appropriate to the request (see sections 13.2.5, 13.2.6, and 13.12) when the cached resource has been checked for equivalence with what the origin server would have returned by revalidating the response with the origin server; [See section 13.1.1 Cache Correctness]

Conformance: The cache of an OMA User Agent MUST respond to a request with the most up-to-date cached resource held by the cache that is appropriate to the request (see sections 13.2.5, 13.2.6, and 13.12) when the cached resource is "fresh enough" [See section 13.1.1 Cache Correctness]

Conformance: The cache of an OMA User Agent MUST respond to a request with the most up-to-date cached resource held by the cache that is appropriate to the request (see sections 13.2.5, 13.2.6, and 13.12) when the response is a 304 (Not Modified), 305 (Proxy Redirect), or error (4xx or 5xx) response message. [See section 13.1.1 Cache Correctness]

13.1.2 Warnings

 Whenever a cache returns a response that is neither first-hand nor

 "fresh enough" (in the sense of condition 2 in section 13.1.1), it

 MUST attach a warning to that effect, using a Warning general-header.

 The Warning header and the currently defined warnings are described

 in section 14.46. The warning allows clients to take appropriate

 action.

Conformance: The cache of an OMA User Agent MUST attach a Warning general-header when the response it returns is neither first-hand nor “fresh enough”. [See section 13.1.2 Warnings]

 Warnings MAY be used for other purposes, both cache-related and

 otherwise. The use of a warning, rather than an error status code,

 distinguish these responses from true failures.

 Warnings are assigned three digit warn-codes. The first digit

 indicates whether the Warning MUST or MUST NOT be deleted from a

 stored cache entry after a successful revalidation:

 1xx Warnings that describe the freshness or revalidation status of

 the response, and so MUST be deleted after a successful

 revalidation. 1XX warn-codes MAY be generated by a cache only when

 validating a cached entry. It MUST NOT be generated by clients.

 2xx Warnings that describe some aspect of the entity body or entity

 headers that is not rectified by a revalidation (for example, a

 lossy compression of the entity bodies) and which MUST NOT be

 deleted after a successful revalidation.

 See section 14.46 for the definitions of the codes themselves.

 HTTP/1.0 caches will cache all Warnings in responses, without

 deleting the ones in the first category. Warnings in responses that

 are passed to HTTP/1.0 caches carry an extra warning-date field,

 which prevents a future HTTP/1.1 recipient from believing an

 erroneously cached Warning.

 Warnings also carry a warning text. The text MAY be in any

 appropriate natural language (perhaps based on the client's Accept

 headers), and include an OPTIONAL indication of what character set is

 used.

 Multiple warnings MAY be attached to a response (either by the origin

 server or by a cache), including multiple warnings with the same code

 number. For example, a server might provide the same warning with

 texts in both English and Basque.

 When multiple warnings are attached to a response, it might not be

 practical or reasonable to display all of them to the user. This

 version of HTTP does not specify strict priority rules for deciding

 which warnings to display and in what order, but does suggest some

 heuristics.
13.1.3 Cache-control Mechanisms

 The basic cache mechanisms in HTTP/1.1 (server-specified expiration

 times and validators) are implicit directives to caches. In some

 cases, a server or client might need to provide explicit directives

 to the HTTP caches. We use the Cache-Control header for this purpose.

 The Cache-Control header allows a client or server to transmit a

 variety of directives in either requests or responses. These

 directives typically override the default caching algorithms. As a

 general rule, if there is any apparent conflict between header

 values, the most restrictive interpretation is applied (that is, the

 one that is most likely to preserve semantic transparency). However,

 in some cases, cache-control directives are explicitly specified as

 weakening the approximation of semantic transparency (for example,

 "max-stale" or "public").

 The cache-control directives are described in detail in section 14.9.

Conformance: An OMA User Agent MUST support the HTTP Cache-Control header including its cache-request and cache-response directives as defined by [HTTP/1.1 section 14.9 Cache-control] [Reference: section 13.1.3 Cache-Control mechanisms]

Conformance: The HTTP Cache-Control header including its cache-request and cache-response directives as defined in HTTP SHOULD override the default caching algorithms of a OMA User Agent. [Reference: section 13.1.3 Cache-Control mechanisms]

13.1.4 Explicit User Agent Warnings

 Many user agents make it possible for users to override the basic

 caching mechanisms. For example, the user agent might allow the user

 to specify that cached entities (even explicitly stale ones) are

 never validated. Or the user agent might habitually add "Cache-

 Control: max-stale=3600" to every request. The user agent SHOULD NOT

 default to either non-transparent behavior, or behavior that results

 in abnormally ineffective caching, but MAY be explicitly configured

 to do so by an explicit action of the user.

 If the user has overridden the basic caching mechanisms, the user

 agent SHOULD explicitly indicate to the user whenever this results in

 the display of information that might not meet the server's

 transparency requirements (in particular, if the displayed entity is

 known to be stale). Since the protocol normally allows the user agent

 to determine if responses are stale or not, this indication need only

 be displayed when this actually happens. The indication need not be a

 dialog box; it could be an icon (for example, a picture of a rotting

 fish) or some other indicator.

 If the user has overridden the caching mechanisms in a way that would

 abnormally reduce the effectiveness of caches, the user agent SHOULD

 continually indicate this state to the user (for example, by a

 display of a picture of currency in flames) so that the user does not

 inadvertently consume excess resources or suffer from excessive

 latency.

13.1.5 Exceptions to the Rules and Warnings

 In some cases, the operator of a cache MAY choose to configure it to

 return stale responses even when not requested by clients. This

 decision ought not be made lightly, but may be necessary for reasons

 of availability or performance, especially when the cache is poorly

 connected to the origin server. Whenever a cache returns a stale

 response, it MUST mark it as such (using a Warning header) enabling

 the client software to alert the user that there might be a potential

 problem.

 It also allows the user agent to take steps to obtain a first-hand or

 fresh response. For this reason, a cache SHOULD NOT return a stale

 response if the client explicitly requests a first-hand or fresh one,

 unless it is impossible to comply for technical or policy reasons.
13.1.6 Client-controlled Behavior

 While the origin server (and to a lesser extent, intermediate caches,

 by their contribution to the age of a response) are the primary

 source of expiration information, in some cases the client might need

 to control a cache's decision about whether to return a cached

 response without validating it. Clients do this using several

 directives of the Cache-Control header.

 A client's request MAY specify the maximum age it is willing to

 accept of an unvalidated response; specifying a value of zero forces

 the cache(s) to revalidate all responses. A client MAY also specify

 the minimum time remaining before a response expires. Both of these

 options increase constraints on the behavior of caches, and so cannot

 further relax the cache's approximation of semantic transparency.

 A client MAY also specify that it will accept stale responses, up to

 some maximum amount of staleness. This loosens the constraints on the

 caches, and so might violate the origin server's specified

 constraints on semantic transparency, but might be necessary to

 support disconnected operation, or high availability in the face of

 poor connectivity.

13.2 Expiration Model

13.2.1 Server-Specified Expiration

 HTTP caching works best when caches can entirely avoid making

 requests to the origin server. The primary mechanism for avoiding

 requests is for an origin server to provide an explicit expiration

 time in the future, indicating that a response MAY be used to satisfy

 subsequent requests. In other words, a cache can return a fresh

 response without first contacting the server.

 Our expectation is that servers will assign future explicit

 expiration times to responses in the belief that the entity is not

 likely to change, in a semantically significant way, before the

 expiration time is reached. This normally preserves semantic

 transparency, as long as the server's expiration times are carefully

 chosen.

 The expiration mechanism applies only to responses taken from a cache

 and not to first-hand responses forwarded immediately to the

 requesting client.

 If an origin server wishes to force a semantically transparent cache

 to validate every request, it MAY assign an explicit expiration time

 in the past. This means that the response is always stale, and so the

 cache SHOULD validate it before using it for subsequent requests. See

 section 14.9.4 for a more restrictive way to force revalidation.

 If an origin server wishes to force any HTTP/1.1 cache, no matter how

 it is configured, to validate every request, it SHOULD use the "must-

 revalidate" cache-control directive (see section 14.9).
Conformance: The cache of an OMA User Agent MUST validate its cached resource when it receives a “Must-revalidate” cache-control directive. [Reference: section 13.2.1 Server-Specified Expiration]

 Servers specify explicit expiration times using either the Expires

 header, or the max-age directive of the Cache-Control header.
Conformance: An origin server MUST specify explicit expiration times using the max-age directive. The origin server MAY specify explicit expiration times using the Expires header. [Reference: section 13.2.1 Server-Specified Expiration]

 An expiration time cannot be used to force a user agent to refresh

 its display or reload a resource; its semantics apply only to caching

 mechanisms, and such mechanisms need only check a resource's

 expiration status when a new request for that resource is initiated.

 See section 13.13 for an explanation of the difference between caches

 and history mechanisms.
Conformance: An Expiration time as specified using the HTTP Cache-Control “max-age” and Expires header MUST NOT be used to force a User Agent to refresh its History mechanisms. [Reference: section 13.2.1 Server-Specified Expiration]
13.2.2 Heuristic Expiration

 Since origin servers do not always provide explicit expiration times,

 HTTP caches typically assign heuristic expiration times, employing

 algorithms that use other header values (such as the Last-Modified

 time) to estimate a plausible expiration time. The HTTP/1.1

 specification does not provide specific algorithms, but does impose

 worst-case constraints on their results. Since heuristic expiration

 times might compromise semantic transparency, they ought to used

 cautiously, and we encourage origin servers to provide explicit

 expiration times as much as possible.
Conformance: An origin server SHOULD provide an explicit expiration time “in the future”, indicating that a response MAY be used to satisfy subsequent requests. [Reference: section 13.2.2 Heuristic Expiration]

13.2.3 Age Calculations

 In order to know if a cached entry is fresh, a cache needs to know if

 its age exceeds its freshness lifetime. We discuss how to calculate

 the latter in section 13.2.4; this section describes how to calculate

 the age of a response or cache entry.

 In this discussion, we use the term "now" to mean "the current value

 of the clock at the host performing the calculation." Hosts that use

 HTTP, but especially hosts running origin servers and caches, SHOULD

 use NTP [28] or some similar protocol to synchronize their clocks to

 a globally accurate time standard.

 HTTP/1.1 requires origin servers to send a Date header, if possible,

 with every response, giving the time at which the response was

 generated (see section 14.18). We use the term "date_value" to denote

 the value of the Date header, in a form appropriate for arithmetic

 operations.

Conformance: An origin server SHOULD send a Date general header field with every response, giving the time at which the response was generated. [Reference: 13.2.3 Age Calculations]

 HTTP/1.1 uses the Age response-header to convey the estimated age of

 the response message when obtained from a cache. The Age field value

 is the cache's estimate of the amount of time since the response was

 generated or revalidated by the origin server.

 The current_age of a cache entry is calculated by adding the amount

 of time (in seconds) since the cache entry was last validated by the

 origin server to the corrected_initial_age. When a response is

 generated from a cache entry, the cache MUST include a single Age

 header field in the response with a value equal to the cache entry's

 current_age.
Conformance: The cache of a User Agent MUST include an Age header field in every response generated from its own cache. [Reference: 13.2.3 Age Calculations]

 The presence of an Age header field in a response implies that a

 response is not first-hand. However, the converse is not true, since

 the lack of an Age header field in a response does not imply that the

 response is first-hand unless all caches along the request path are

 compliant with HTTP/1.1 (i.e., older HTTP caches did not implement

 the Age header field).

13.2.4 Expiration Calculations

 In order to decide whether a response is fresh or stale, we need to

 compare its freshness lifetime to its age. The age is calculated as

 described in section 13.2.3; this section describes how to calculate

 the freshness lifetime, and to determine if a response has expired.

 In the discussion below, the values can be represented in any form

 appropriate for arithmetic operations.

 We use the term "expires_value" to denote the value of the Expires

 header. We use the term "max_age_value" to denote an appropriate

 value of the number of seconds carried by the "max-age" directive of

 the Cache-Control header in a response (see section 14.9.3).

 The max-age directive takes priority over Expires, so if max-age is

 present in a response, the calculation is simply:

Conformance: When the cache of a User Agent receives a cache-control “max-age” directive and an Expires general header the cache-control “max-age” directive MUST take precedence over the Expires general header. [Reference 13.2.4 Expiration Calculations]

 freshness_lifetime = max_age_value

 Otherwise, if Expires is present in the response, the calculation is:

 freshness_lifetime = expires_value - date_value

 Note that neither of these calculations is vulnerable to clock skew,

 since all of the information comes from the origin server.

 If none of Expires, Cache-Control: max-age, or Cache-Control: s-

 maxage (see section 14.9.3) appears in the response, and the response

 does not include other restrictions on caching, the cache MAY compute

 a freshness lifetime using a heuristic. The cache MUST attach Warning

 113 to any response whose age is more than 24 hours if such warning

 has not already been added.

 Also, if the response does have a Last-Modified time, the heuristic

 expiration value SHOULD be no more than some fraction of the interval

 since that time. A typical setting of this fraction might be 10%.

 The calculation to determine if a response has expired is quite

 simple:

 response_is_fresh = (freshness_lifetime > current_age)

13.2.5 Disambiguating Expiration Values

 Because expiration values are assigned optimistically, it is possible

 for two caches to contain fresh values for the same resource that are

 different.

 If a client performing a retrieval receives a non-first-hand response

 for a request that was already fresh in its own cache, and the Date

 header in its existing cache entry is newer than the Date on the new

 response, then the client MAY ignore the response. If so, it MAY

 retry the request with a "Cache-Control: max-age=0" directive (see

 section 14.9), to force a check with the origin server.

 If a cache has two fresh responses for the same representation with

 different validators, it MUST use the one with the more recent Date

 header. This situation might arise because the cache is pooling

 responses from other caches, or because a client has asked for a

 reload or a revalidation of an apparently fresh cache entry.

13.2.6 Disambiguating Multiple Responses

 Because a client might be receiving responses via multiple paths, so

 that some responses flow through one set of caches and other

 responses flow through a different set of caches, a client might

 receive responses in an order different from that in which the origin

 server sent them. We would like the client to use the most recently

 generated response, even if older responses are still apparently

 fresh.

 Neither the entity tag nor the expiration value can impose an

 ordering on responses, since it is possible that a later response

 intentionally carries an earlier expiration time. The Date values are

 ordered to a granularity of one second.

 When a client tries to revalidate a cache entry, and the response it

 receives contains a Date header that appears to be older than the one

 for the existing entry, then the client SHOULD repeat the request

 unconditionally, and include

 Cache-Control: max-age=0

 to force any intermediate caches to validate their copies directly

 with the origin server, or

Conformance: A User Agent MUST support the "max-age=0" cache-control directive to force an end-to-end (i.e. force any intermediate caches to validate their copies directly with the origin server) revalidation of its cached resource [Reference 13.2.5 Disambiguating Expiration Values]

 Cache-Control: no-cache

 to force any intermediate caches to obtain a new copy from the origin

 server.
Conformance: A User Agent MUST support the "Cache-Control: no-cache" cache-control directive to force an end-to-end (i.e. force any intermediate caches to obtain a new copy of the resource from the origin server) revalidation of its cached resource [Reference 13.2.5 Disambiguating Expiration Values]

 If the Date values are equal, then the client MAY use either response

 (or MAY, if it is being extremely prudent, request a new response).

 Servers MUST NOT depend on clients being able to choose

 deterministically between responses generated during the same second,

 if their expiration times overlap.

13.3 Validation Model

 When a cache has a stale entry that it would like to use as a

 response to a client's request, it first has to check with the origin

 server (or possibly an intermediate cache with a fresh response) to

 see if its cached entry is still usable. We call this "validating"

 the cache entry. Since we do not want to have to pay the overhead of

 retransmitting the full response if the cached entry is good, and we

 do not want to pay the overhead of an extra round trip if the cached

 entry is invalid, the HTTP/1.1 protocol supports the use of

 conditional methods.

 The key protocol features for supporting conditional methods are

 those concerned with "cache validators." When an origin server

 generates a full response, it attaches some sort of validator to it,

 which is kept with the cache entry. When a client (user agent or

 proxy cache) makes a conditional request for a resource for which it

 has a cache entry, it includes the associated validator in the

 request.

 The server then checks that validator against the current validator

 for the entity, and, if they match (see section 13.3.3), it responds

 with a special status code (usually, 304 (Not Modified)) and no

 entity-body. Otherwise, it returns a full response (including

 entity-body). Thus, we avoid transmitting the full response if the

 validator matches, and we avoid an extra round trip if it does not

 match.

 In HTTP/1.1, a conditional request looks exactly the same as a normal

 request for the same resource, except that it carries a special

 header (which includes the validator) that implicitly turns the

 method (usually, GET) into a conditional.

 The protocol includes both positive and negative senses of cache-

 validating conditions. That is, it is possible to request either that

 a method be performed if and only if a validator matches or if and

 only if no validators match.

 Note: a response that lacks a validator may still be cached, and

 served from cache until it expires, unless this is explicitly

 prohibited by a cache-control directive. However, a cache cannot

 do a conditional retrieval if it does not have a validator for the

 entity, which means it will not be refreshable after it expires

Conformance: The cache of a User Agent MUST NOT perform a conditional retrieval of the cached resource if a validator (i.e. Last-Modified or ETag response-header) is not available for that resource [Reference: 13.3 Validation Model]

13.3.1 Last-Modified Dates

 The Last-Modified entity-header field value is often used as a cache

 validator. In simple terms, a cache entry is considered to be valid

 if the entity has not been modified since the Last-Modified value.

Conformance: A WAE User Agent MUST support the Last-Modified entity header field [Reference: 13.3.1 Last-Modified Dates]

13.3.2 Entity Tag Cache Validators

 The ETag response-header field value, an entity tag, provides for an

 "opaque" cache validator. This might allow more reliable validation

 in situations where it is inconvenient to store modification dates,

 where the one-second resolution of HTTP date values is not

 sufficient, or where the origin server wishes to avoid certain

 paradoxes that might arise from the use of modification dates.

 Entity Tags are described in section 3.11. The headers used with

 entity tags are described in sections 14.19, 14.24, 14.26 and 14.44.

Conformance: A WAE User Agent MUST support the Last-Modified entity header field and ETag response-header fields [Reference: 13.3.1 Last-Modified Dates]

13.3.3 Weak and Strong Validators

 Since both origin servers and caches will compare two validators to

 decide if they represent the same or different entities, one normally

 would expect that if the entity (the entity-body or any entity-

 headers) changes in any way, then the associated validator would

 change as well. If this is true, then we call this validator a

 "strong validator."

 However, there might be cases when a server prefers to change the

 validator only on semantically significant changes, and not when

 insignificant aspects of the entity change. A validator that does not

 always change when the resource changes is a "weak validator."

 Entity tags are normally "strong validators," but the protocol

 provides a mechanism to tag an entity tag as "weak." One can think of

 a strong validator as one that changes whenever the bits of an entity

 changes, while a weak value changes whenever the meaning of an entity

 changes. Alternatively, one can think of a strong validator as part

 of an identifier for a specific entity, while a weak validator is

 part of an identifier for a set of semantically equivalent entities.

 Note: One example of a strong validator is an integer that is

 incremented in stable storage every time an entity is changed.

 An entity's modification time, if represented with one-second

 resolution, could be a weak validator, since it is possible that

 the resource might be modified twice during a single second.

 Support for weak validators is optional. However, weak validators

 allow for more efficient caching of equivalent objects; for

 example, a hit counter on a site is probably good enough if it is

 updated every few days or weeks, and any value during that period

 is likely "good enough" to be equivalent.

 A "use" of a validator is either when a client generates a request

 and includes the validator in a validating header field, or when a

 server compares two validators.

 Strong validators are usable in any context. Weak validators are only

 usable in contexts that do not depend on exact equality of an entity.

 For example, either kind is usable for a conditional GET of a full

 entity. However, only a strong validator is usable for a sub-range

 retrieval, since otherwise the client might end up with an internally

 inconsistent entity.

 Clients MAY issue simple (non-subrange) GET requests with either weak

 validators or strong validators. Clients MUST NOT use weak validators

 in other forms of request.

 The only function that the HTTP/1.1 protocol defines on validators is

 comparison. There are two validator comparison functions, depending

 on whether the comparison context allows the use of weak validators

 or not:

 - The strong comparison function: in order to be considered equal,

 both validators MUST be identical in every way, and both MUST

 NOT be weak.

 - The weak comparison function: in order to be considered equal,

 both validators MUST be identical in every way, but either or

 both of them MAY be tagged as "weak" without affecting the

 result.

 An entity tag is strong unless it is explicitly tagged as weak.

 Section 3.11 gives the syntax for entity tags.

 A Last-Modified time, when used as a validator in a request, is

 implicitly weak unless it is possible to deduce that it is strong,

 using the following rules:

 - The validator is being compared by an origin server to the

 actual current validator for the entity and,

 - That origin server reliably knows that the associated entity did

 not change twice during the second covered by the presented

 validator.

 or

 - The validator is about to be used by a client in an If-

 Modified-Since or If-Unmodified-Since header, because the client

 has a cache entry for the associated entity, and

 - That cache entry includes a Date value, which gives the time

 when the origin server sent the original response, and

 - The presented Last-Modified time is at least 60 seconds before

 the Date value.

 or

 - The validator is being compared by an intermediate cache to the

 validator stored in its cache entry for the entity, and

 - That cache entry includes a Date value, which gives the time

 when the origin server sent the original response, and

 - The presented Last-Modified time is at least 60 seconds before

 the Date value.

 This method relies on the fact that if two different responses were

 sent by the origin server during the same second, but both had the

 same Last-Modified time, then at least one of those responses would

 have a Date value equal to its Last-Modified time. The arbitrary 60-

 second limit guards against the possibility that the Date and Last-

 Modified values are generated from different clocks, or at somewhat

 different times during the preparation of the response. An

 implementation MAY use a value larger than 60 seconds, if it is

 believed that 60 seconds is too short.

 If a client wishes to perform a sub-range retrieval on a value for

 which it has only a Last-Modified time and no opaque validator, it

 MAY do this only if the Last-Modified time is strong in the sense

 described here.

 A cache or origin server receiving a conditional request, other than

 a full-body GET request, MUST use the strong comparison function to

 evaluate the condition.

 These rules allow HTTP/1.1 caches and clients to safely perform sub-

 range retrievals on values that have been obtained from HTTP/1.0

 servers.

13.3.4 Rules for When to Use Entity Tags and Last-Modified Dates

 We adopt a set of rules and recommendations for origin servers,

 clients, and caches regarding when various validator types ought to

 be used, and for what purposes.

 HTTP/1.1 origin servers:

 - SHOULD send an entity tag validator unless it is not feasible to

 generate one.

 - MAY send a weak entity tag instead of a strong entity tag, if

 performance considerations support the use of weak entity tags,

 or if it is unfeasible to send a strong entity tag.

 - SHOULD send a Last-Modified value if it is feasible to send one,

 unless the risk of a breakdown in semantic transparency that

 could result from using this date in an If-Modified-Since header

 would lead to serious problems.

 In other words, the preferred behavior for an HTTP/1.1 origin server

 is to send both a strong entity tag and a Last-Modified value.

 In order to be legal, a strong entity tag MUST change whenever the

 associated entity value changes in any way. A weak entity tag SHOULD

 change whenever the associated entity changes in a semantically

 significant way.

 Note: in order to provide semantically transparent caching, an

 origin server must avoid reusing a specific strong entity tag

 value for two different entities, or reusing a specific weak

 entity tag value for two semantically different entities. Cache

 entries might persist for arbitrarily long periods, regardless of

 expiration times, so it might be inappropriate to expect that a

 cache will never again attempt to validate an entry using a

 validator that it obtained at some point in the past.

 HTTP/1.1 clients:

 - If an entity tag has been provided by the origin server, MUST

 use that entity tag in any cache-conditional request (using If-

 Match or If-None-Match).
 - If only a Last-Modified value has been provided by the origin

 server, SHOULD use that value in non-subrange cache-conditional

 requests (using If-Modified-Since).

 - If only a Last-Modified value has been provided by an HTTP/1.0

 origin server, MAY use that value in subrange cache-conditional

 requests (using If-Unmodified-Since:). The user agent SHOULD

 provide a way to disable this, in case of difficulty.

 - If both an entity tag and a Last-Modified value have been

 provided by the origin server, SHOULD use both validators in

 cache-conditional requests. This allows both HTTP/1.0 and

 HTTP/1.1 caches to respond appropriately.

Conformance: A WAE User Agent MUST store Last-Modified entity header field and ETag response-header field values received from an origin server for use in subsequent conditional responses [Reference: 13.3.4 Rules for When to Use Entity Tags and Last-Modified Dates]

 An HTTP/1.1 origin server, upon receiving a conditional request that

 includes both a Last-Modified date (e.g., in an If-Modified-Since or

 If-Unmodified-Since header field) and one or more entity tags (e.g.,

 in an If-Match, If-None-Match, or If-Range header field) as cache

 validators, MUST NOT return a response status of 304 (Not Modified)

 unless doing so is consistent with all of the conditional header

 fields in the request.

 An HTTP/1.1 caching proxy, upon receiving a conditional request that

 includes both a Last-Modified date and one or more entity tags as

 cache validators, MUST NOT return a locally cached response to the

 client unless that cached response is consistent with all of the

 conditional header fields in the request.

 Note: The general principle behind these rules is that HTTP/1.1

 servers and clients should transmit as much non-redundant

 information as is available in their responses and requests.

 HTTP/1.1 systems receiving this information will make the most

 conservative assumptions about the validators they receive.

 HTTP/1.0 clients and caches will ignore entity tags. Generally,

 last-modified values received or used by these systems will

 support transparent and efficient caching, and so HTTP/1.1 origin

 servers should provide Last-Modified values. In those rare cases

 where the use of a Last-Modified value as a validator by an

 HTTP/1.0 system could result in a serious problem, then HTTP/1.1

 origin servers should not provide one.

13.3.5 Non-validating Conditionals

 The principle behind entity tags is that only the service author

 knows the semantics of a resource well enough to select an

 appropriate cache validation mechanism, and the specification of any

 validator comparison function more complex than byte-equality would

 open up a can of worms. Thus, comparisons of any other headers

 (except Last-Modified, for compatibility with HTTP/1.0) are never

 used for purposes of validating a cache entry.

13.4 Response Cacheability

 Unless specifically constrained by a cache-control (section 14.9)

 directive, a caching system MAY always store a successful response

 (see section 13.8) as a cache entry, MAY return it without validation

 if it is fresh, and MAY return it after successful validation. If

 there is neither a cache validator nor an explicit expiration time

 associated with a response, we do not expect it to be cached, but

 certain caches MAY violate this expectation (for example, when little

 or no network connectivity is available). A client can usually detect

 that such a response was taken from a cache by comparing the Date

 header to the current time.

 Note: some HTTP/1.0 caches are known to violate this expectation

 without providing any Warning.

 However, in some cases it might be inappropriate for a cache to

 retain an entity, or to return it in response to a subsequent

 request. This might be because absolute semantic transparency is

 deemed necessary by the service author, or because of security or

 privacy considerations. Certain cache-control directives are

 therefore provided so that the server can indicate that certain

 resource entities, or portions thereof, are not to be cached

 regardless of other considerations.

 Note that section 14.8 normally prevents a shared cache from saving

 and returning a response to a previous request if that request

 included an Authorization header.

 A response received with a status code of 200, 203, 206, 300, 301 or

 410 MAY be stored by a cache and used in reply to a subsequent

 request, subject to the expiration mechanism, unless a cache-control

 directive prohibits caching. However, a cache that does not support

 the Range and Content-Range headers MUST NOT cache 206 (Partial

 Content) responses.

 A response received with any other status code (e.g. status codes 302

 and 307) MUST NOT be returned in a reply to a subsequent request

 unless there are cache-control directives or another header(s) that

 explicitly allow it. For example, these include the following: an

 Expires header (section 14.21); a "max-age", "s-maxage", "must-

 revalidate", "proxy-revalidate", "public" or "private" cache-control

 directive (section 14.9).
13.5 Constructing Responses From Caches

 The purpose of an HTTP cache is to store information received in

 response to requests for use in responding to future requests. In

 many cases, a cache simply returns the appropriate parts of a

 response to the requester. However, if the cache holds a cache entry

 based on a previous response, it might have to combine parts of a new

 response with what is held in the cache entry.

13.5.1 End-to-end and Hop-by-hop Headers

 For the purpose of defining the behavior of caches and non-caching

 proxies, we divide HTTP headers into two categories:

 - End-to-end headers, which are transmitted to the ultimate

 recipient of a request or response. End-to-end headers in

 responses MUST be stored as part of a cache entry and MUST be

 transmitted in any response formed from a cache entry
Conformance: The cache of a User Agent MUST support End-to-end headers as defined by HTTP 1.1 [Reference: 13.5.1 End-to-end and Hop-by-hop Headers]

Conformance: The cache of A WAE User Agent MUST store received End-to-end headers together with the resource to be cached [Reference: 13.5.1 End-to-end and Hop-by-hop Headers]

 - Hop-by-hop headers, which are meaningful only for a single

 transport-level connection, and are not stored by caches or

 forwarded by proxies.

 The following HTTP/1.1 headers are hop-by-hop headers:

 - Connection

 - Keep-Alive

 - Proxy-Authenticate

 - Proxy-Authorization

 - TE

 - Trailers

 - Transfer-Encoding

 - Upgrade

 All other headers defined by HTTP/1.1 are end-to-end headers.

 Other hop-by-hop headers MUST be listed in a Connection header,

 (section 14.10) to be introduced into HTTP/1.1 (or later).

13.5.2 Non-modifiable Headers

 Some features of the HTTP/1.1 protocol, such as Digest

 Authentication, depend on the value of certain end-to-end headers. A

 transparent proxy SHOULD NOT modify an end-to-end header unless the

 definition of that header requires or specifically allows that.

 A transparent proxy MUST NOT modify any of the following fields in a

 request or response, and it MUST NOT add any of these fields if not

 already present:

 - Content-Location

 - Content-MD5

 - ETag

 - Last-Modified

 A transparent proxy MUST NOT modify any of the following fields in a

 response:

 - Expires

 but it MAY add any of these fields if not already present. If an

 Expires header is added, it MUST be given a field-value identical to

 that of the Date header in that response.

 A proxy MUST NOT modify or add any of the following fields in a

 message that contains the no-transform cache-control directive, or in

 any request

 - Content-Encoding

 - Content-Range

 - Content-Type

 A non-transparent proxy MAY modify or add these fields to a message

 that does not include no-transform, but if it does so, it MUST add a

 Warning 214 (Transformation applied) if one does not already appear

 in the message (see section 14.46).

 Warning: unnecessary modification of end-to-end headers might

 cause authentication failures if stronger authentication

 mechanisms are introduced in later versions of HTTP. Such

 authentication mechanisms MAY rely on the values of header fields

 not listed here.

 The Content-Length field of a request or response is added or deleted

 according to the rules in section 4.4. A transparent proxy MUST

 preserve the entity-length (section 7.2.2) of the entity-body,

 although it MAY change the transfer-length (section 4.4).

13.5.3 Combining Headers

 When a cache makes a validating request to a server, and the server

 provides a 304 (Not Modified) response or a 206 (Partial Content)

 response, the cache then constructs a response to send to the

 requesting client.

 If the status code is 304 (Not Modified), the cache uses the entity-

 body stored in the cache entry as the entity-body of this outgoing

 response. If the status code is 206 (Partial Content) and the ETag or

 Last-Modified headers match exactly, the cache MAY combine the

 contents stored in the cache entry with the new contents received in

 the response and use the result as the entity-body of this outgoing

 response, (see 13.5.4).
Conformance: When the cache of a User Agent receives a status code 304 Not Modified the cache MUST use the cached resource associated with the request as the entity-body in the response. [Reference: 13.5.2 Non-modifiable Headers]

 The end-to-end headers stored in the cache entry are used for the

 constructed response, except that

 - any stored Warning headers with warn-code 1xx (see section

 14.46) MUST be deleted from the cache entry and the forwarded

 response.

 - any stored Warning headers with warn-code 2xx MUST be retained

 in the cache entry and the forwarded response.

 - any end-to-end headers provided in the 304 or 206 response MUST

 replace the corresponding headers from the cache entry.

 Unless the cache decides to remove the cache entry, it MUST also

 replace the end-to-end headers stored with the cache entry with

 corresponding headers received in the incoming response, except for

 Warning headers as described immediately above. If a header field-

 name in the incoming response matches more than one header in the

 cache entry, all such old headers MUST be replaced.

 In other words, the set of end-to-end headers received in the

 incoming response overrides all corresponding end-to-end headers

 stored with the cache entry (except for stored Warning headers with

 warn-code 1xx, which are deleted even if not overridden).

 Note: this rule allows an origin server to use a 304 (Not

 Modified) or a 206 (Partial Content) response to update any header

 associated with a previous response for the same entity or sub-

 ranges thereof, although it might not always be meaningful or

 correct to do so. This rule does not allow an origin server to use

 a 304 (Not Modified) or a 206 (Partial Content) response to

 entirely delete a header that it had provided with a previous

 response.

13.5.4 Combining Byte Ranges

 A response might transfer only a subrange of the bytes of an entity-

 body, either because the request included one or more Range

 specifications, or because a connection was broken prematurely. After

 several such transfers, a cache might have received several ranges of

 the same entity-body.

 If a cache has a stored non-empty set of subranges for an entity, and

 an incoming response transfers another subrange, the cache MAY

 combine the new subrange with the existing set if both the following

 conditions are met:

 - Both the incoming response and the cache entry have a cache

 validator.

 - The two cache validators match using the strong comparison

 function (see section 13.3.3).

 If either requirement is not met, the cache MUST use only the most

 recent partial response (based on the Date values transmitted with

 every response, and using the incoming response if these values are

 equal or missing), and MUST discard the other partial information.

13.6 Caching Negotiated Responses

 Use of server-driven content negotiation (section 12.1), as indicated

 by the presence of a Vary header field in a response, alters the

 conditions and procedure by which a cache can use the response for

 subsequent requests. See section 14.44 for use of the Vary header

 field by servers.

 A server SHOULD use the Vary header field to inform a cache of what

 request-header fields were used to select among multiple

 representations of a cacheable response subject to server-driven

 negotiation. The set of header fields named by the Vary field value

 is known as the "selecting" request-headers.

 When the cache receives a subsequent request whose Request-URI

 specifies one or more cache entries including a Vary header field,

 the cache MUST NOT use such a cache entry to construct a response to

 the new request unless all of the selecting request-headers present

 in the new request match the corresponding stored request-headers in

 the original request.

 The selecting request-headers from two requests are defined to match

 if and only if the selecting request-headers in the first request can

 be transformed to the selecting request-headers in the second request

 by adding or removing linear white space (LWS) at places where this

 is allowed by the corresponding BNF, and/or combining multiple

 message-header fields with the same field name following the rules

 about message headers in section 4.2.

 A Vary header field-value of "*" always fails to match and subsequent

 requests on that resource can only be properly interpreted by the

 origin server.

 If the selecting request header fields for the cached entry do not

 match the selecting request header fields of the new request, then

 the cache MUST NOT use a cached entry to satisfy the request unless

 it first relays the new request to the origin server in a conditional

 request and the server responds with 304 (Not Modified), including an

 entity tag or Content-Location that indicates the entity to be used.

 If an entity tag was assigned to a cached representation, the

 forwarded request SHOULD be conditional and include the entity tags

 in an If-None-Match header field from all its cache entries for the

 resource. This conveys to the server the set of entities currently

 held by the cache, so that if any one of these entities matches the

 requested entity, the server can use the ETag header field in its 304

 (Not Modified) response to tell the cache which entry is appropriate.

 If the entity-tag of the new response matches that of an existing

 entry, the new response SHOULD be used to update the header fields of

 the existing entry, and the result MUST be returned to the client.

 If any of the existing cache entries contains only partial content

 for the associated entity, its entity-tag SHOULD NOT be included in

 the If-None-Match header field unless the request is for a range that

 would be fully satisfied by that entry.

 If a cache receives a successful response whose Content-Location

 field matches that of an existing cache entry for the same Request-

]URI, whose entity-tag differs from that of the existing entry, and

 whose Date is more recent than that of the existing entry, the

 existing entry SHOULD NOT be returned in response to future requests

 and SHOULD be deleted from the cache.

13.7 Shared and Non-Shared Caches

 For reasons of security and privacy, it is necessary to make a

 distinction between "shared" and "non-shared" caches. A non-shared

 cache is one that is accessible only to a single user. Accessibility

 in this case SHOULD be enforced by appropriate security mechanisms.

 All other caches are considered to be "shared." Other sections of

 this specification place certain constraints on the operation of

 shared caches in order to prevent loss of privacy or failure of

 access controls.

13.8 Errors or Incomplete Response Cache Behavior

 A cache that receives an incomplete response (for example, with fewer

 bytes of data than specified in a Content-Length header) MAY store

 the response. However, the cache MUST treat this as a partial

 response. Partial responses MAY be combined as described in section

 13.5.4; the result might be a full response or might still be

 partial. A cache MUST NOT return a partial response to a client

 without explicitly marking it as such, using the 206 (Partial

 Content) status code. A cache MUST NOT return a partial response

 using a status code of 200 (OK).

 If a cache receives a 5xx response while attempting to revalidate an

 entry, it MAY either forward this response to the requesting client,

 or act as if the server failed to respond. In the latter case, it MAY

 return a previously received response unless the cached entry

 includes the "must-revalidate" cache-control directive (see section

 14.9).

13.9 Side Effects of GET and HEAD

 Unless the origin server explicitly prohibits the caching of their

 responses, the application of GET and HEAD methods to any resources

 SHOULD NOT have side effects that would lead to erroneous behavior if

 these responses are taken from a cache. They MAY still have side

 effects, but a cache is not required to consider such side effects in

 its caching decisions. Caches are always expected to observe an

 origin server's explicit restrictions on caching.

 We note one exception to this rule: since some applications have

 traditionally used GETs and HEADs with query URLs (those containing a

 "?" in the rel_path part) to perform operations with significant side

 effects, caches MUST NOT treat responses to such URIs as fresh unless

 the server provides an explicit expiration time. This specifically

 means that responses from HTTP/1.0 servers for such URIs SHOULD NOT

 be taken from a cache. See section 9.1.1 for related information.

13.10 Invalidation After Updates or Deletions

 The effect of certain methods performed on a resource at the origin

 server might cause one or more existing cache entries to become non-

 transparently invalid. That is, although they might continue to be

 "fresh," they do not accurately reflect what the origin server would

 return for a new request on that resource.

 There is no way for the HTTP protocol to guarantee that all such

 cache entries are marked invalid. For example, the request that

 caused the change at the origin server might not have gone through

 the proxy where a cache entry is stored. However, several rules help

 reduce the likelihood of erroneous behavior.

 In this section, the phrase "invalidate an entity" means that the

 cache will either remove all instances of that entity from its

 storage, or will mark these as "invalid" and in need of a mandatory

 revalidation before they can be returned in response to a subsequent

 request.

 Some HTTP methods MUST cause a cache to invalidate an entity. This is

 either the entity referred to by the Request-URI, or by the Location

 or Content-Location headers (if present). These methods are:

 - PUT

 - DELETE

 - POST

Conformance: When the cache of a User Agent receives either a PUT, DELETE or POST HTTP Method it MUST invalidate the cached resource [Reference: Invalidation After Updates or Deletions]

 In order to prevent denial of service attacks, an invalidation based

 on the URI in a Location or Content-Location header MUST only be

 performed if the host part is the same as in the Request-URI.

 A cache that passes through requests for methods it does not

 understand SHOULD invalidate any entities referred to by the

 Request-URI.

13.11 Write-Through Mandatory

 All methods that might be expected to cause modifications to the

 origin server's resources MUST be written through to the origin

 server. This currently includes all methods except for GET and HEAD.

 A cache MUST NOT reply to such a request from a client before having

 transmitted the request to the inbound server, and having received a

 corresponding response from the inbound server. This does not prevent

 a proxy cache from sending a 100 (Continue) response before the

 inbound server has sent its final reply.

 The alternative (known as "write-back" or "copy-back" caching) is not

 allowed in HTTP/1.1, due to the difficulty of providing consistent

 updates and the problems arising from server, cache, or network

 failure prior to write-back.

13.12 Cache Replacement

 If a new cacheable (see sections 14.9.2, 13.2.5, 13.2.6 and 13.8)

 response is received from a resource while any existing responses for

 the same resource are cached, the cache SHOULD use the new response

 to reply to the current request. It MAY insert it into cache storage

 and MAY, if it meets all other requirements, use it to respond to any

 future requests that would previously have caused the old response to

 be returned. If it inserts the new response into cache storage the

 rules in section 13.5.3 apply.

 Note: a new response that has an older Date header value than

 existing cached responses is not cacheable.

Conformance: A cache of a User Agent MUST NOT cache a response that has a Date header value older than an existing cached response for the same resource [Reference: 13.12 Cache Replacement]

13.13 History Lists

 User agents often have history mechanisms, such as "Back" buttons and

 history lists, which can be used to redisplay an entity retrieved

 earlier in a session.

 History mechanisms and caches are different. In particular history

 mechanisms SHOULD NOT try to show a semantically transparent view of

 the current state of a resource. Rather, a history mechanism is meant

 to show exactly what the user saw at the time when the resource was

 retrieved.

 By default, an expiration time does not apply to history mechanisms.

 If the entity is still in storage, a history mechanism SHOULD display

 it even if the entity has expired, unless the user has specifically

 configured the agent to refresh expired history documents.

 This is not to be construed to prohibit the history mechanism from

 telling the user that a view might be stale.

 Note: if history list mechanisms unnecessarily prevent users from

 viewing stale resources, this will tend to force service authors

 to avoid using HTTP expiration controls and cache controls when

 they would otherwise like to. Service authors may consider it

 important that users not be presented with error messages or

 warning messages when they use navigation controls (such as BACK)

 to view previously fetched resources. Even though sometimes such

 resources ought not to cached, or ought to expire quickly, user

 interface considerations may force service authors to resort to

 other means of preventing caching (e.g. "once-only" URLs) in order

 not to suffer the effects of improperly functioning history

 mechanisms.

14 Header Field Definitions

 This section defines the syntax and semantics of all standard

 HTTP/1.1 header fields. For entity-header fields, both sender and

 recipient refer to either the client or the server, depending on who

 sends and who receives the entity.

14.6 Age

 The Age response-header field conveys the sender's estimate of the

 amount of time since the response (or its revalidation) was

 generated at the origin server. A cached response is "fresh" if

 its age does not exceed its freshness lifetime. Age values are

 calculated as specified in section 13.2.3.

 Age = "Age" ":" age-value

 age-value = delta-seconds

 Age values are non-negative decimal integers, representing time in

 seconds.

 If a cache receives a value larger than the largest positive

 integer it can represent, or if any of its age calculations

 overflows, it MUST transmit an Age header with a value of

 2147483648 (2^31). An HTTP/1.1 server that includes a cache MUST

 include an Age header field in every response generated from its

 own cache. Caches SHOULD use an arithmetic type of at least 31

 bits of range.

14.9 Cache-Control
 The Cache-Control general-header field is used to specify directives

 that MUST be obeyed by all caching mechanisms along the

 request/response chain. The directives specify behavior intended to

 prevent caches from adversely interfering with the request or

 response. These directives typically override the default caching

 algorithms. Cache directives are unidirectional in that the presence

 of a directive in a request does not imply that the same directive is

 to be given in the response.

 Note that HTTP/1.0 caches might not implement Cache-Control and

 might only implement Pragma: no-cache (see section 14.32).

 Cache directives MUST be passed through by a proxy or gateway

 application, regardless of their significance to that application,

 since the directives might be applicable to all recipients along the

 request/response chain. It is not possible to specify a cache-

 directive for a specific cache.

 Cache-Control = "Cache-Control" ":" 1#cache-directive

 cache-directive = cache-request-directive

 | cache-response-directive

 cache-request-directive =

 "no-cache" ; Section 14.9.1

 | "no-store" ; Section 14.9.2

 | "max-age" "=" delta-seconds ; Section 14.9.3, 14.9.4

 | "max-stale" ["=" delta-seconds] ; Section 14.9.3

 | "min-fresh" "=" delta-seconds ; Section 14.9.3

 | "no-transform" ; Section 14.9.5

 | "only-if-cached" ; Section 14.9.4

 | cache-extension ; Section 14.9.6

 cache-response-directive =

 "public" ; Section 14.9.1

 | "private" ["=" <"> 1#field-name <">] ; Section 14.9.1

 | "no-cache" ["=" <"> 1#field-name <">]; Section 14.9.1

 | "no-store" ; Section 14.9.2

 | "no-transform" ; Section 14.9.5

 | "must-revalidate" ; Section 14.9.4

 | "proxy-revalidate" ; Section 14.9.4

 | "max-age" "=" delta-seconds ; Section 14.9.3

 | "s-maxage" "=" delta-seconds ; Section 14.9.3

 | cache-extension ; Section 14.9.6

 cache-extension = token ["=" (token | quoted-string)]

 When a directive appears without any 1#field-name parameter, the

 directive applies to the entire request or response. When such a

 directive appears with a 1#field-name parameter, it applies only to

 the named field or fields, and not to the rest of the request or

 response. This mechanism supports extensibility; implementations of

 future versions of the HTTP protocol might apply these directives to

 header fields not defined in HTTP/1.1.

 The cache-control directives can be broken down into these general

 categories:

 - Restrictions on what are cacheable; these may only be imposed by

 the origin server.

 - Restrictions on what may be stored by a cache; these may be

 imposed by either the origin server or the user agent.

 - Modifications of the basic expiration mechanism; these may be

 imposed by either the origin server or the user agent.

 - Controls over cache revalidation and reload; these may only be

 imposed by a user agent.

 - Control over transformation of entities.

 - Extensions to the caching system.

14.9.1 What is Cacheable

 By default, a response is cacheable if the requirements of the

 request method, request header fields, and the response status

 indicate that it is cacheable. Section 13.4 summarizes these defaults

 for cacheability. The following Cache-Control response directives

 allow an origin server to override the default cacheability of a

 response:

Conformance: The cache of a WAE User Agent MUST conform to the rules of the cache-response-directives: public, private and no-cache as set by an origin server. [Reference: 14.9.1 What is Cacheable]

 public

 Indicates that the response MAY be cached by any cache, even if it

 would normally be non-cacheable or cacheable only within a non-

 shared cache. (See also Authorization, section 14.8, for

 additional details.)

 private

 Indicates that all or part of the response message is intended for

 a single user and MUST NOT be cached by a shared cache. This

 allows an origin server to state that the specified parts of the

 response are intended for only one user and are not a valid

 response for requests by other users. A private (non-shared) cache

 MAY cache the response.

 Note: This usage of the word private only controls where the

 response may be cached, and cannot ensure the privacy of the

 message content.

 no-cache

 If the no-cache directive does not specify a field-name, then a

 cache MUST NOT use the response to satisfy a subsequent request

 without successful revalidation with the origin server. This

 allows an origin server to prevent caching even by caches that

 have been configured to return stale responses to client requests.

 If the no-cache directive does specify one or more field-names,

 then a cache MAY use the response to satisfy a subsequent request,

 subject to any other restrictions on caching. However, the

 specified field-name(s) MUST NOT be sent in the response to a

 subsequent request without successful revalidation with the origin

 server. This allows an origin server to prevent the re-use of

 certain header fields in a response, while still allowing caching

 of the rest of the response.

 Note: Most HTTP/1.0 caches will not recognize or obey this

 directive.

14.9.2 What May be Stored by Caches

 no-store

 The purpose of the no-store directive is to prevent the

 inadvertent release or retention of sensitive information (for

 example, on backup tapes). The no-store directive applies to the

 entire message, and MAY be sent either in a response or in a

 request. If sent in a request, a cache MUST NOT store any part of

 either this request or any response to it. If sent in a response,

 a cache MUST NOT store any part of either this response or the

 request that elicited it. This directive applies to both non-

 shared and shared caches. "MUST NOT store" in this context means

 that the cache MUST NOT intentionally store the information in

 non-volatile storage, and MUST make a best-effort attempt to

 remove the information from volatile storage as promptly as

 possible after forwarding it.

 Even when this directive is associated with a response, users

 might explicitly store such a response outside of the caching

 system (e.g., with a "Save As" dialog). History buffers MAY store

 such responses as part of their normal operation.

 The purpose of this directive is to meet the stated requirements

 of certain users and service authors who are concerned about

 accidental releases of information via unanticipated accesses to

 cache data structures. While the use of this directive might

 improve privacy in some cases, we caution that it is NOT in any

 way a reliable or sufficient mechanism for ensuring privacy. In

 particular, malicious or compromised caches might not recognize or

 obey this directive, and communications networks might be

 vulnerable to eavesdropping.

14.9.3 Modifications of the Basic Expiration Mechanism

 The expiration time of an entity MAY be specified by the origin

 server using the Expires header (see section 14.21). Alternatively,

 it MAY be specified using the max-age directive in a response. When

 the max-age cache-control directive is present in a cached response,

 the response is stale if its current age is greater than the age

 value given (in seconds) at the time of a new request for that

 resource. The max-age directive on a response implies that the

 response is cacheable (i.e., "public") unless some other, more

 restrictive cache directive is also present.
Conformance: The expiration time of a resource to be cached MUST be specified by the max-age directive. The expiration time of a resource to be cached MAY be specified by the Expires header. [Reference: 14.9.3 Modifications of the Basic Expiration Mechanism]

 If a response includes both an Expires header and a max-age

 directive, the max-age directive overrides the Expires header, even

 if the Expires header is more restrictive.
Conformance: If a response includes both an Expires header and a max-age directive, the max-age directive MUST override the Expires header, even if the Expires header is more restrictive. [Reference: 14.9.3 Modifications of the Basic Expiration Mechanism]

This rule allows an origin

 server to provide, for a given response, a longer expiration time to

 an HTTP/1.1 (or later) cache than to an HTTP/1.0 cache. This might be

 useful if certain HTTP/1.0 caches improperly calculate ages or

 expiration times, perhaps due to desynchronized clocks.

 Many HTTP/1.0 cache implementations will treat an Expires value that

 is less than or equal to the response Date value as being equivalent

 to the Cache-Control response directive "no-cache". If an HTTP/1.1

 cache receives such a response, and the response does not include a

 Cache-Control header field, it SHOULD consider the response to be

 non-cacheable in order to retain compatibility with HTTP/1.0 servers.

 Note: An origin server might wish to use a relatively new HTTP

 cache control feature, such as the "private" directive, on a

 network including older caches that do not understand that

 feature. The origin server will need to combine the new feature

 with an Expires field whose value is less than or equal to the

 Date value. This will prevent older caches from improperly

 caching the response.

 s-maxage

 If a response includes an s-maxage directive, then for a shared

 cache (but not for a private cache), the maximum age specified by

 this directive overrides the maximum age specified by either the

 max-age directive or the Expires header.
Conformance: If a response includes an s-maxage directive then for a shared cache the maximum age specified by this directive MUST override the maximum age specified either by the Expires header or a max-age directive. [Reference: 14.9.3 Modifications of the Basic Expiration Mechanism]

The s-maxage directive

 also implies the semantics of the proxy-revalidate directive (see

 section 14.9.4), i.e., that the shared cache must not use the

 entry after it becomes stale to respond to a subsequent request

 without first revalidating it with the origin server. The s-

 maxage directive is always ignored by a private cache.

 Note that most older caches, not compliant with this specification,

 do not implement any cache-control directives. An origin server

 wishing to use a cache-control directive that restricts, but does not

 prevent, caching by an HTTP/1.1-compliant cache MAY exploit the

 requirement that the max-age directive overrides the Expires header,

 and the fact that pre-HTTP/1.1-compliant caches do not observe the

 max-age directive.

 Other directives allow a user agent to modify the basic expiration

 mechanism. These directives MAY be specified on a request:

 max-age

 Indicates that the client is willing to accept a response whose

 age is no greater than the specified time in seconds. Unless max-

 stale directive is also included, the client is not willing to

 accept a stale response.

 min-fresh

 Indicates that the client is willing to accept a response whose

 freshness lifetime is no less than its current age plus the

 specified time in seconds. That is, the client wants a response

 that will still be fresh for at least the specified number of

 seconds.

 max-stale

 Indicates that the client is willing to accept a response that has

 exceeded its expiration time. If max-stale is assigned a value,

 then the client is willing to accept a response that has exceeded

 its expiration time by no more than the specified number of

 seconds. If no value is assigned to max-stale, then the client is

 willing to accept a stale response of any age.

 If a cache returns a stale response, either because of a max-stale

 directive on a request, or because the cache is configured to

 override the expiration time of a response, the cache MUST attach a

 Warning header to the stale response, using Warning 110 (Response is

 stale).

Conformance: If a cache of a User Agent returns a stale response it MUST attach a Warning header to the stale response, using Warning 110 (Response is stale).

 A cache MAY be configured to return stale responses without

 validation, but only if this does not conflict with any "MUST"-level

 requirements concerning cache validation (e.g., a "must-revalidate"

 cache-control directive).

 If both the new request and the cached entry include "max-age"

 directives, then the lesser of the two values is used for determining

 the freshness of the cached entry for that request.

14.9.4 Cache Revalidation and Reload Controls

 Sometimes a user agent might want or need to insist that a cache

 revalidate its cache entry with the origin server (and not just with

 the next cache along the path to the origin server), or to reload its

 cache entry from the origin server. End-to-end revalidation might be

 necessary if either the cache or the origin server has overestimated

 the expiration time of the cached response. End-to-end reload may be

 necessary if the cache entry has become corrupted for some reason.

 End-to-end revalidation may be requested either when the client does

 not have its own local cached copy, in which case we call it

 "unspecified end-to-end revalidation", or when the client does have a

 local cached copy, in which case we call it "specific end-to-end

 revalidation."

 The client can specify these three kinds of action using Cache-

 Control request directives:

Conformance: A User Agent MUST support the “no-cache” cache-control directive for End-to-end cache reload {Reference: 14.9.4 Cache Revalidation and Reload Controls}

Conformance: A User Agent MUST support the “max-age=0” cache-control directive for Specific and Unspecified end-to-end revalidation {Reference: 14.9.4 Cache Revalidation and Reload Controls}

 End-to-end reload

 The request includes a "no-cache" cache-control directive or, for

 compatibility with HTTP/1.0 clients, "Pragma: no-cache". Field

 names MUST NOT be included with the no-cache directive in a

 request. The server MUST NOT use a cached copy when responding to

 such a request.

 Specific end-to-end revalidation

 The request includes a "max-age=0" cache-control directive, which

 forces each cache along the path to the origin server to

 revalidate its own entry, if any, with the next cache or server.

 The initial request includes a cache-validating conditional with

 the client's current validator.

 Unspecified end-to-end revalidation

 The request includes "max-age=0" cache-control directive, which

 forces each cache along the path to the origin server to

 revalidate its own entry, if any, with the next cache or server.

 The initial request does not include a cache-validating

 conditional; the first cache along the path (if any) that holds a

 cache entry for this resource includes a cache-validating

 conditional with its current validator.

 max-age

 When an intermediate cache is forced, by means of a max-age=0

 directive, to revalidate its own cache entry, and the client has

 supplied its own validator in the request, the supplied validator

 might differ from the validator currently stored with the cache

 entry. In this case, the cache MAY use either validator in making

 its own request without affecting semantic transparency.

 However, the choice of validator might affect performance. The

 best approach is for the intermediate cache to use its own

 validator when making its request. If the server replies with 304

 (Not Modified), then the cache can return its now validated copy

 to the client with a 200 (OK) response. If the server replies with

 a new entity and cache validator, however, the intermediate cache

 can compare the returned validator with the one provided in the

 client's request, using the strong comparison function. If the

 client's validator is equal to the origin server's, then the

 intermediate cache simply returns 304 (Not Modified). Otherwise,

 it returns the new entity with a 200 (OK) response.

 If a request includes the no-cache directive, it SHOULD NOT

 include min-fresh, max-stale, or max-age.

 only-if-cached

 In some cases, such as times of extremely poor network

 connectivity, a client may want a cache to return only those

 responses that it currently has stored, and not to reload or

 revalidate with the origin server. To do this, the client may

 include the only-if-cached directive in a request. If it receives

 this directive, a cache SHOULD either respond using a cached entry

 that is consistent with the other constraints of the request, or

 respond with a 504 (Gateway Timeout) status. However, if a group

 of caches is being operated as a unified system with good internal

 connectivity, such a request MAY be forwarded within that group of

 caches.

 must-revalidate

 Because a cache MAY be configured to ignore a server's specified

 expiration time, and because a client request MAY include a max-

 stale directive (which has a similar effect), the protocol also

 includes a mechanism for the origin server to require revalidation

 of a cache entry on any subsequent use. When the must-revalidate

 directive is present in a response received by a cache, that cache

 MUST NOT use the entry after it becomes stale to respond to a

 subsequent request without first revalidating it with the origin

 server. (I.e., the cache MUST do an end-to-end revalidation every

 time, if, based solely on the origin server's Expires or max-age

 value, the cached response is stale.)

 The must-revalidate directive is necessary to support reliable

 operation for certain protocol features. In all circumstances an

 HTTP/1.1 cache MUST obey the must-revalidate directive; in

 particular, if the cache cannot reach the origin server for any

 reason, it MUST generate a 504 (Gateway Timeout) response.

Conformance: The cache of a User Agent MUST obey the must-revalidate directive. The cache MUST generate a 504 (Gateway Timeout) response. [Reference: 14.9.4 Cache Revalidation and Reload Controls]

 Servers SHOULD send the must-revalidate directive if and only if

 failure to revalidate a request on the entity could result in

 incorrect operation, such as a silently unexecuted financial

 transaction. Recipients MUST NOT take any automated action that

 violates this directive, and MUST NOT automatically provide an

 unvalidated copy of the entity if revalidation fails.

 Although this is not recommended, user agents operating under

 severe connectivity constraints MAY violate this directive but, if

 so, MUST explicitly warn the user that an unvalidated response has

 been provided. The warning MUST be provided on each unvalidated

 access, and SHOULD require explicit user confirmation.

 proxy-revalidate

 The proxy-revalidate directive has the same meaning as the must-

 revalidate directive, except that it does not apply to non-shared

 user agent caches. It can be used on a response to an

 authenticated request to permit the user's cache to store and

 later return the response without needing to revalidate it (since

 it has already been authenticated once by that user), while still

 requiring proxies that service many users to revalidate each time

 (in order to make sure that each user has been authenticated).

 Note that such authenticated responses also need the public cache

 control directive in order to allow them to be cached at all.

14.9.5 No-Transform Directive

 no-transform

 Implementors of intermediate caches (proxies) have found it useful

 to convert the media type of certain entity bodies. A non-

 transparent proxy might, for example, convert between image

 formats in order to save cache space or to reduce the amount of

 traffic on a slow link.

 Serious operational problems occur, however, when these

 transformations are applied to entity bodies intended for certain

 kinds of applications. For example, applications for medical

 imaging, scientific data analysis and those using end-to-end

 authentication, all depend on receiving an entity body that is bit

 for bit identical to the original entity-body.

 Therefore, if a message includes the no-transform directive, an

 intermediate cache or proxy MUST NOT change those headers that are

 listed in section 13.5.2 as being subject to the no-transform

 directive. This implies that the cache or proxy MUST NOT change

 any aspect of the entity-body that is specified by these headers,

 including the value of the entity-body itself.

14.9.6 Cache Control Extensions

 The Cache-Control header field can be extended through the use of one

 or more cache-extension tokens, each with an optional assigned value.

 Informational extensions (those which do not require a change in

 cache behavior) MAY be added without changing the semantics of other

 directives. Behavioral extensions are designed to work by acting as

 modifiers to the existing base of cache directives. Both the new

 directive and the standard directive are supplied, such that

 applications which do not understand the new directive will default

 to the behavior specified by the standard directive, and those that

 understand the new directive will recognize it as modifying the

 requirements associated with the standard directive. In this way,

 extensions to the cache-control directives can be made without

 requiring changes to the base protocol.

 This extension mechanism depends on an HTTP cache obeying all of the

 cache-control directives defined for its native HTTP-version, obeying

 certain extensions, and ignoring all directives that it does not

 understand.

 For example, consider a hypothetical new response directive called

 community which acts as a modifier to the private directive. We

 define this new directive to mean that, in addition to any non-shared

 cache, any cache which is shared only by members of the community

 named within its value may cache the response. An origin server

 wishing to allow the UCI community to use an otherwise private

 response in their shared cache(s) could do so by including

 Cache-Control: private, community="UCI"

 A cache seeing this header field will act correctly even if the cache

 does not understand the community cache-extension, since it will also

 see and understand the private directive and thus default to the safe

 behavior.

 Unrecognized cache-directives MUST be ignored; it is assumed that any

 cache-directive likely to be unrecognized by an HTTP/1.1 cache will

 be combined with standard directives (or the response's default

 cacheability) such that the cache behavior will remain minimally

 correct even if the cache does not understand the extension(s).

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that the proposed cache conformance statements are discussed and agreed with a view of including them in the OMA-TS-UACACHE-V1_0-20060822-D specification.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 46)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 46)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

