Doc# OMA-MAE-2006-0413-INP_proposed_modification_and_question_on_doc_403[image: image11.jpg]
Change Request

Doc# OMA-MAE-2006-0304R02-CR_Arch_Diagram_RME_PA1_gmc
Change Request

Change Request

	Title:
	Inputs to the RME AD
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-MAE

	Doc to Change:
	OMA-AD-RME-V1_0_0-20060615-D

	Submission Date:
	2006-09-26

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	
Gaëlle Martin-Cocher, Streamezzo, gaelle.martin-cocher@streamezzo.com

	Replaces:
	 n/a

1 Reason for Change

This input contains suggested diagrams and text for sections 3 and 5 in the RME Architecture Document.
2 Impact on Backward Compatibility

N/A
3 Impact on Other Specifications

N/A
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We ask the group to kindly review and discuss this as a suggested input to chapters 3 and 5.
6 Detailed Change Proposal

Terminology and Conventions

3.2 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.
All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

4. Architectural Model

4.2 Dependencies
4.3 Architectural Diagram
The diagram in Figure 1 shows the architecture of the RME Enabler, including the scope of the RME specification. The Content Provider and other enablers present on the device are also shown.

Convention:

The following apply to the schemas below:

· A Functional/logical view is used and describes the architectural elements, components, etc. as abstract functional entities

· A Modelling Language is used:

· A unidirectional Arrow describes an API allowing a one way communication process between two logical components of the RM Enabler or between the RME enabler and another Enabler.

· A bidirectional Arrow describes an API with a bi-directional communication process, between two logical components of the RM Enabler or between the RME enabler and another Enabler.

[image: image2.emf]

RME Server

Content Provider

RME Client

Other OMA Enablers

RME Scope

Interface out-of-scope of RME

Interface in-scope of RME

RME INT -01

RME INT -02

Figure 1: Architecture of the RME Client and Server include in the scope of RME.

In Figure 2, the functional composition of the RME Client is shown.

[image: image3.emf]

Delivery Context 3

RME INT-03

RME INT-05

(uDOM)

Client Side

Scripting

De-compression

Error

Resilience

Protocol Re-sync and

Tune-in

Scene Manager

Scene Handling Context

Delivery Context 2

RME INT-04

Delivery Context 1

RME Client

RME Server

Storage Packaging Transport

Formats and Protocols

Compression or encoding

RME INT-01

RME INT-02

Re-sync and

Tune-in

Error

Resilience

Scene

Description

Remote

Interaction

Local User

Interaction

Font Handler

Media

Handler

High-level

Timing

Scene update

Mechanism

Handler

Scene Re-

Synch and

Tune-in

Caching and

storage

RME INT-05

(uDOM)

Low-level

Timing

Storage Packaging Transport

Formats and Protocols

Aggregation

Parsing and/or decoding (e.g.:

XML/Binary)

Figure 2 Functional compositions of the RME Client and the RME Server.

4.4 Functional Components and Interfaces

The RME Enabler consists of the RME Client and the RME Server. These two components are described in the following sections.

4.4.1 RME Client

The RME Client resides on, typically, the mobile terminal and provides the capability to display RME scene and data, handle modification of the RME Scene through the dynamic update mechanism as well as handling interaction with the RME data locally or remotely.
The RME Client can be divided into two parts: Scene Handling Context and Delivery Context. A number of different delivery contexts can be used to deliver the RME data from the RME server. Note, that the delivery context does not include the actual transport protocols such as UDP, TCP, HTTP etc, as the RME Enabler will be agnostic to these transport protocols.

Requests and receipt of RME scene and data between the Scene Handling Context and different Delivery Contexts is performed via interfaces RME INT-03 and RME INT-04. RME INT-05 is the interface between the scripting module and the main component of the RME Client, the Scene Manager.
5.3.1.1 RME Client Components – Scene Handling Context
The Scene Handling Context of the RME Client can be divided into the following components:

· Scene Manager
· Parser/decoder
· Client Side Scripting

The following sub-sections contain more detailed descriptions of the components.
5.3.1.1.1 Scene Manager

The Scene Manager is the main component of the RME Client. It is responsible for the following functions:
· Scene Description - handles the description and rendering of the graphics constituting the RME Scene. It is responsible for the spatial layout, compositing and rendering parts of an RME Scene and RME data and acts as the Scene container. It references or includes the media data of e.g. streams and files containing images etc that make up the rich media presentation.

· Local User Interaction - enables the user to locally interact with the rich media content. It comprises of an event manager that enables the management of event creation, dispatching of events, registering and invoking the event listeners.
· Remote Interaction - handles the client-server communication. It is used for setting up data sessions, requesting data, transferring user data and events from the client to the server via RME-INT-03.
· Media Handler – responsible of handling the relevant decoders supported by the terminal for raster image formats, as well as for the different audio and video streams formats transmitted along with RME scene and data.

· High-level Timing – handles the timing and synchronization of media elements present in the RME scene. The synchronization can be between any objects in the scene and it can also be between the scene and the application of updates to the scene. Different ways to synch the Scene Updates with the RME scene timeline or with AV stream or files can be used
·
·
· Font Handler – note: see already agreed text in the AD document
· Scene Update Mechanism Handler - Scene Updates can be delivered to a client from a server without the client requesting it, or they can be requested from the client in a client pull scenario, either initiated by a user action or though timing. The

· Scene Update mechanism Handler receives the Scene Update via RME INT-04.

· Scene Re-Synch and Tune-in – handles the tune in and resynchronization on the scene level.
· Caching and storage – handles the local storage of data e.g. user preferences and service data..
1. Parser

The RME Client contains a Parser component which handles the parsing of the RME data formats.

5.3.1.1.2 Client Side Scripting

The RME Client contains a module for handling Client Side Scripting. It enables complex manipulation of the Scene and provides a powerful application development environment to the content creator. Communication between the Scene Manager and the Client Side Scripting is performed via RME INT-05.

5.3.1.2 RME Client Components – Delivery context level
This list below contains parts of the RME Client on the Delivery context level that are specific to RME. These components will reuse the work of other OMA enablers or organizations, and its use will be defined within the OMA RME specification. Hence, this section only contains a brief overview of the components that will be necessary. Note that all these modules will not be necessary in all delivery contexts, e.g. Re-synchronization and Tune-in will not be necessary in a reliable delivery context.
· Low-level Timing – In cases where the transport protocol or the container format includes timing information, the Low-level Timing module extracts the timing information and passes this to the application level for use in the High-level Timing model. For example, in the case of RTP, the RTP timestamp, sequence number etc, associated with a data packet are sent to the application level for synchronization. In the case the media is packaged in a 3GP file (resistant on the device, downloaded or progressively downloaded) the timing information in the 3GP file is extracted and delivered to the application layer together with the associated data.
· Protocol Re-synchronization and Tune-in – Techniques for re-synchronization of a stream that has gone out of sync due to packet loss and/or tuning in to a broadcast channel/rich-media stream.

· Error Resilience – Techniques for error recovery when using unreliable delivery protocols e.g. FEC and re-transmission techniques.

· De-compression – De-compression of the compressed RME data if compression is used and if decompression is required.

· Storage Packaging and Transport Protocols/Formats – Protocols and formats for packaging, de-packaging, storing and delivering the RME data to the client, e.g. RTP payload formats etc.

4.4.2

·
·
·
·
·
4.4.3 RME Server
An RME Server supplies the RME Client with rich media data. The data specific to RME are Initial Scenes and Scene Updates. Other data that may be provided by a RME server and will make up the rich media service are script files, images and audio and video media., Initial Scene, Scene Updates, script and media can be referenced from different servers using the corresponding media attributes in the scene description. They can be synched to the RME scene timeline and each other using the high level and low level timing components.
An RME Server that creates RME data on the fly must conform to the client-server interfaces RME INT-01 and RME INT-02.
The RME server components are:

· Aggregation: provides aggregation mechanism of RME scene and data along with other media that make up the Rich-media presentation into a packaging/storage/packet format.
· Protocol Re-synchronization and Tune-in – is identical to the RME client context delivery level component.
· Error Resilience – is identical to the RME client context delivery level component.
· Compression – Compression of the RME data
· Storage packaging and Transport Protocols/Formats – identical to the RME client context delivery level component

4.4.4 Content Creation (informative)

Simplified, Content Creation consists of two parts:

· Defining the Initial Scene(s) – including defining the spatial layout, media elements to include, timing, interactivity, scripting etc
· Defining the Scene Updates – including timing where relevant
The content creation described here is only conceptual and the interface between the server and content creation is out of scope for this specification.

4.4.5 RME Interfaces
This section describes the interfaces between the functional components in the RME architecture. The interfaces are shown in figure 2. The descriptions identify which information is transferred and when necessary, the format used to transport the information is also identified.

RME INT-01- Bidirectional Client-Server Interface
The RME INT-01 is a two way interface between the client and server. The RME enabler is bearer agnostic and the information between the server and client can be exchanged using many different communication channels. The data from the server consists of initial scene data, scene updates and data used to populate the scene objects, whereas data to the server consist of data requests (e.g. http get). The data will be package in various transport/packaging and storage format depending on the delivery context and bearers.
RME INT-02- Unidirectional Client-Server Interface

The RME INT-02 is a unidirectional interface from the server to the client. The interface is used for broadcast and multicast where no communication from the client to the server is available.

·
·
·

·
·
·
·

RME INT-03 – Scene Handling context to the Delivery Context Interface
The RME INT-03 interface is the only out bound interface from the Scene Manager. The interface carries information destined both to the server and the Delivery Context.
The client communicates with the server to support several functions on the device. For example:

· To achieve dynamic user interaction

·
· To set up and maintain various data connections

· To request content specific data from the server.
The communication with the Delivery Context is used to maintain the following functions:

· requesting a new connection

· requesting synching of an existing connection

RME INT-04 – Delivery context to the Scene Handling context Interface

RME INT-04 is a unidirectional interface from the Delivery Context to the Scene Handling Context. The interface is used for transferring:

· Initial Scene which contains the description of the initial scene.

· Scene Updates from the delivery context to the Scene Update Handling.

· Scripts to the Client Side Scripting.
· Data used by Scene objects containing other media such as video, audio, event, font and still images.

RME INT-05 – Client Side Scripting to Scene Manager Interface

RME INT-05 is an interface allowing script delivered to the client to manipulate the Scene via the SVG uDOM interface to the Scene DOM-tree. The interface is also an external interface of the RME-enabler and can be used for e.g. browsers to interact with the RME-enabler.

4.4.6 Interfaces to Other Enablers (informative)
The RME Enabler shall be conformant with other enablers such as the ones listed below. However, it is not mandatory for an RME Enabler to include or interface with these components in order to be a conformant RME Enabler.

Other OMA enablers that the RME Enabler optionally should be able to use are:

· Browser - For browsing and discovering of RME services
The interface to the browser can be the RME-INT-05 or another API e.g; “Netscape API” for a plug-in integration.
· DRM - For protecting the RME data and/or associated Audio and Video streams
· BCAST - As a delivery option for point to multipoint RME data.

· PUSH - TBD
· Etc…

4.5 Flows

4.5.1 Sub level Functionality
The requirements document for RME in OMA contains the following use cases:

· I&E, Karaoke

· P2P, live chat, rich-media blog service

· I&E, Interactive mobile TV services (mosaic, interactive voting service, personalized menu)

· Active wall paper services

· Rich mobile application
The use cases have some functionality in common. For instance all use cases load a rich media scene. By creating a sub level functionality for loading a scene and let all use cases point to this, it is sufficient to describe the flow for loading a scene once. By analyzing the use cases a set of sub level functionality, use cases are constructed. By combining these sub level functionality in various ways all use cases in the RD can be realized. Below is a list of the identified sub level functionality (SUB).

SUB 1 Loading of an Initial Scene. This use case covers loading of an Initial Scene either from local storage or via a network.
SUB 2 Single source streamed delivery. This use case covers the loading of an Initial Scene and accompanying Scene Updates from one source. Streamed delivery or progressive download can be used. The source can either be a container file that includes timing information or a network stream. For the case of network streams the use case handles both broadcast and unicast.
SUB 3 Multi source downloadable delivery. This use case handles the setup of a downloadable delivery used to supply updates to a Scene already present on the device
. The Scene Updates can be contained in a file or in memory locally on the device or can be delivered using a download protocol, for example HTTP, MMS or FLUTE.

SUB 4 Multi source streamed delivery.
This use case covers the setup of a streamed delivery used to supply Scene Updates to a Scene already loaded on the device. The Scene Updates can be contained either locally
or on the network.

SUB 5 Local interaction. This use case covers interaction with the Scene handled locally on the device e.g. user interaction or timed interaction. Interaction with other enablers on the device e.g. the SMS application is also included in this use case.

SUB 6 Remote interaction. User interaction with the server causing changes to Scene and/or changes the state on the server.
SUB 7 Multi source combined (streamed and downloadable) delivery. This use case covers the setup of a streamed delivery used to supply Scene and Scene Updates and additional update provided in download mode for immediate or later display (MMS, Flute file download)

General comment: how this apply to a new scene ?
 in the case a service at a point in time provide a new scene, SUB 1 does not apply. So what are the flows ?
4.5.2 Flows of the High-level Use Cases

This section shows how the high level use cases in the requirements document realized by the sub level functionality. Further analysis can then be focused on the sub level functionality.

5.4.2.1 Use Case I&E, Karaoke

SUB 1: Loading of an Initial Scene (Selection of the service)

SUB 5: Local interaction (Browsing of the song catalogue)

SUB 2, SUB 3, and/or SUB 4: Single source streamed delivery, Multi source downloadable delivery and/or Multi source streamed delivery (Provision of content from service provider)

SUB 6: Remote interaction (Selects language)

SUB 2 or SUB 4: Single source streamed delivery or Multi source streamed delivery (Display and synchronization of content)

SUB 5: Local interaction (Changing the volume)

SUB 6: Remote interaction (Media control)

SUB 5: Local interaction (Send SMS and receive MMS – receive MMS is outside of the RME enabler)

SUB 5: Local interaction (Saving data on the device)

5.4.2.2 Use Case P2P, live chat, rich-media blog service

SUB 1: Loading of an Initial Scene (Receives an MMS with a link to the service)

SUB 5 and SUB 6: Local interaction (Enters personal information) and Remote Interaction (Uploads and stores the personal information on the server)

SUB 6: Remote interaction (Browsing and selection of data)

SUB 5: Local interaction (Interfacing with the SMS application)

SUB 6: Remote interaction (Send SMS)

SUB 5 and SUB 6: Local interaction (Enters chat messages) and Remote Interaction (Sends chat messages)

SUB 2, SUB 3, SUB 4 or SUB 6: Single source streamed delivery, Multi source downloadable delivery, Multi source streamed delivery and/or Remote Interactions (Retrieve alerts of incoming messages)

SUB 6: Remote interaction (Change chat channel)

SUB 6: Remote interaction (Make phone call through service provider – service specific)

SUB 6: Remote interaction (Add/remove contact from server database)

SUB 2, SUB 3, SUB 4 or SUB 6: Single source streamed delivery, Multi source downloadable delivery, Multi source streamed delivery and/or Remote Interactions (Retrieve list of active chatters)

SUB 5 and SUB 6: Local interaction and Remote Interaction (Validation of user data)

Alternative Flow:

SUB 1, SUB 5 and SUB 6: Loading of a scene, Local interaction and Remote interaction (User requests to chat)

SUB 5: Local interaction (User enters message)

SUB 6: Remote interaction (Message is sent over HTTP to the service provider)

SUB 3 or SUB 6: Multi source downloadable delivery or Remote interaction (Service provider sends the message out to the receiver – HTTP assumed)

5.4.2.3 Use Case I&E, Interactive mobile TV services

Mosaic main page:

SUB 1: Loading of an Initial Scene (The user accesses of the menu)

SUB 3, SUB 4 or SUB 6: Multi source downloadable delivery, Multi source streamed delivery and/or Remote interactions (The menu is updated with new data)

SUB 5: Local interaction (Updates are stored locally)

SUB 6: Remote interaction (Channel selection)

SUB 5, SUB 6: Local interaction or Remote interaction (Storage of user data)

Interactive voting service:

SUB 2, SUB 3, SUB 4, SUB 6 and/or SUB 5: Single-streamed update, Multi source downloadable delivery, Multi source streamed delivery and/or Remote interactions and/or Local interaction (Synchronization of video and text)

SUB 2, SUB 3, SUB 6 or SUB 6: Single-streamed update, Multi source downloadable delivery, Multi source streamed delivery or Remote interactions and/or Remote interaction (Retrieval of alert)

SUB 1: Loading of scene (The user accesses a rich media service)

SUB 5 or SUB 6: Local interaction or Remote interaction (Reduction of the video area)

SUB 6: Remote interaction (Channel selection)

SUB 2, SUB 3, SUB 4, SUB 6 and/or SUB 5: Single-streamed update, Multi source downloadable delivery, Multi source streamed delivery and/or Remote interactions and/or Local interaction (Appearance of two buttons)

SUB 5 and SUB 6: Local interaction and Remote interaction (User selects a button, data is sent to service provider using HTTP)

SUB 5: Local interaction (Buttons disappear)

SUB 5 or SUB 6: Local interaction or Remote interaction (Full-screen video)

SUB 2, SUB 3, SUB 6 or SUB 6: Single-streamed update, Multi source downloadable delivery, Multi source streamed delivery or Remote interactions and/or Remote interaction (Retrieval of vote result)

SUB 2, SUB 3, SUB 4, SUB 6 and/or SUB 5: Single-streamed update, Multi source downloadable delivery, Multi source streamed delivery and/or Remote interactions and/or Local interaction (Appearance of a SMS button)

SUB 5: Local interaction (Writes and sends SMS)

SUB 2: Single-streamed update (Delivery of text and images in a single connection)

Personalized menu:

SUB 5 and SUB 6: Local interaction or Remote interaction (Browsing of menu, selection and personalization)

SUB 5: Local interaction (Storage of data)

SUB 2, SUB 3, SUB 6 or SUB 6: Single-streamed update, Multi source downloadable delivery, Multi source streamed delivery or Remote interactions and/or Remote interaction (Retrieval of news data, including personalization of the data)

SUB 6: Remote interaction (User data saved on server)

SUB 5: Local interaction (Storage of data)
5.4.2.4 Use Case Active wall paper services

SUB 1: Loading of an Initial Scene (Retrieval of the application from network or locally)

SUB 5, SUB 6 and SUB 5: Local Interaction, Remote Interactions and Local interaction (Use of local and remote resources to set up service)

SUB 2, SUB 3, SUB 4 or SUB 6: Single source streamed delivery, Multi source downloadable delivery, Multi source streamed delivery and/or Remote Interactions (Retrieve content)

SUB 6: Remote interaction (Notification of new data from the server)

SUB 6 and SUB 5: Remote interaction and Local interaction (Customization of the service)

5.4.2.5 Use Case Rich mobile application

SUB 1: Loading of an Initial Scene (Download and start of the application)

SUB 3, SUB 4 or SUB 6: Multi source downloadable delivery, Multi source streamed delivery and/or Remote Interactions (Retrieve content)

SUB 5: Local interaction (Browse the content locally)

SUB 6: Remote interaction (Notification of new data from the server) [Elin]: Done using polling from client regularly or WAPpush etc

SUB 6 and SUB 5: Remote interaction and Local interaction (Customization of the service)

4.5.3 Flows of the Sub Level Functionality

5.4.3.1 Loading of an Initial Scene

The flow for loading an Initial Scene is initiated by some event, typically a user event, and ends when the scene is displayed on the device. The figure below shows the interaction between the architectural components.

[image: image5.emf] : User

 : SceneManager : Delivery

1 : showScene()

2 : loadURL()

3 : scene

The Scene Manager is invoked with a request to download data from an URL. The URL can point to a file either local on the device or external. The delivery mechanism retrieves the file and delivers it to the Scene Manager which performs the display of the Initial Scene.

5.4.3.2 Single source streamed delivery

The single source streamed delivery flow starts with an action causing the Scene Manager to tune in to a data stream containing an Initial Scene and Scene Updates and does not end until the connection is stopped. The flow is valid both when the data is obtained from a container file on the device
and when the data is obtained from a network stream. In the case of a network stream this flow is valid for both the unicast and broadcast delivery. The figure below shows the interaction between the different functional components.

[image: image6.emf] : User

 : SceneManager : Delivery

1 : showScene()

2 : tune-inURL()

3 : scene

4 : updateData

The flow starts when the Scene Manager is invoked with a request to show a Scene that is located in a container file or a network stream. The Scene Manager calls the Delivery context components with a request to tune-in to the given URL. The Re-sync and Tune-in component in the Delivery context processes the stream to find a random access point (RAP). The RAP, which contains a complete Scene, is forwarded to the Scene Manager, which displays the Scene. The Delivery context components continuous to analyze the incoming data and forwards incoming Scene Updates to Scene Update mechanism handler. In case of data losses in the stream, re-synchronization is performed by the Re-sync and Tune-in component by forwarding a new RAP to Scene Manager.

5.4.3.3 Multi source downloadable delivery

This flow assumes that a Scene is already loaded and displayed by the Scene Manager
. The flow start when some action, possibly by an user, causes the Scene Manager to down load a/multiple files containing Scene Updates. The flow ends when all Scene Updates in the file are processed.
The figure below shows the interaction between the different functional components.

[image: image7.emf] : User : SceneManager : Delivery

1 : update()

2 : loadURL()

3 : updateData

The Scene Manager commands Delivery to retrieve data at certain URL. The URL can point to a file either local on the device or external to the device. Delivery extracts the data and forwards it to Scene Updates, which applies the changes to the Scene.

5.4.3.4 Local interaction

The flow for local interaction assumes that the Scene Manager contains and displays a Scene. The flow starts when some action causes the Scene Manager to interact with either itself or another enabler on the device. The figure below shows three different cases for local interaction

· Actions handled by the Scene Manager itself (1)

· Actions that causes a script to execute and via the uDOM affect the Scene Manager (2-3)

· Actions that cause a script to execute which uses other enablers on the device (4-5)

[image: image8.emf] : SceneManager : ClientSideScripting : Device

1

2 : activateScript()

3 : updateData

4 : activateScript()

5 : enablerAction()

5.4.3.5 Multi source streamed delivery

This flow assumes that a Scene is loaded and displayed by the Scene Manager. The flow starts when some action, possibly a user action, causes the Scene Manager to request an update stream. The flow ends when the update stream is closed and all updates are applied. The figure below shows the interaction between the functional components.

[image: image9.emf] : User : SceneManager : Delivery

1 : update()

2 : loadURL()

3 : updateData

The Scene Manager commands Delivery to retrieve data at a certain URL. The URL can point to a file either local on the device or external to the device. Delivery extracts the data and forwards it to Scene Updates, which applies the changes to the Scene
5.4.3.6 Remote interaction

This flow assumes that a Scene is loaded and displayed by the Scene Manager.
The figure below shows one example of a Remote interaction between the functional components.

[image: image10.emf] : SceneManager : ClientSideScripting : Delivery

1 : activateScript()

2 : putData()

Some action causes the Scene Manager to activate a script
which sends data to the server.

Normative

The RME Client MUST includesupport:

An Execution of ECMA Script Engine conformant to the [ref]

Normative

The Scene Manager MUST support:

The SVG Tiny 1.2 Specification [ref]

The SVG Tiny 1.2 Extensions handling extensions to the SVG Tiny 1.2 Specification that will be defined in the RME Specification. The extensions MUST be conformant to SVG Tiny 1.2 as described in the SVG Tiny 1.2 Specification extensibility section [ref].

�Should be later in the document

�We don’t think this is part of the AD

�We need to work more on this one.

�Why is it already present on the device ?

�How do we do with a pure stream where the initial scene or new scene is not on the device ?

�???

�The flows need to be review to integrate this sub functionality and some flows needs to be developed.

�I have not yet reviewed this section.

�We have not reviewed totally this section.

�Which use case does it cover ?

�It should be Initial scene and scene update as per the definitions

�Why ?

�This assumes that the updates are knowned in advances. Which is not the case.

What about multiple progressive download from various servers ?

�We don’t have any requirement to use script. Local interaction can also be done using command which is going to be the major use cases.

�Why ?

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 18)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 18)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

_1219816119.doc

[image: image1]

Normative

The part XYZ :

MUST conform to the ABC Specification.

_1226741216.doc

[image: image1]

Delivery Context 3

RME INT-03

RME INT-05 (uDOM)

Scene update Mechanism Handlering

Scene�Description

Remote�Interaction

Local User�Interaction

Font Handlering

Media Handlering

Client Side Scripting

Caching and storage

De-compression

Storage Packaging and Transport Formats and Protocols

Error Resilience

Protocol Re-sync and�Tune-in

Aggregation

RME INT-05 (uDOM)

Scene Manager

Scene Handling Context

Scene Re-Synch and Tune-in

Parsing and/or decoding (e.g.: XML/Binary)

Low-level Timing

Delivery Context 2

RME INT-04

Delivery Context 1

�

RME Client

RME Server

Storage Packaging and Transport Formats and Protocols

Compression or encoding

RME INT-01

RME INT-02

Re-sync and�Tune-in

Error Resilience

High-level Timing

[image: image2.emf]

Compression

_1219817646.doc

[image: image1]

Normative

The Initial Scene data transferred on RME INT-01 SHALL be :

An SVG document compliant with SVG Tiny 1.2 Specification and the SVG Tiny 1.2 Extensions as defined in the RME Specification.

_1217839114.doc

[image: image1]

RME Server

Content Provider

RME Client

Other OMA Enablers

RME Scope

Interface out-of-scope of RME

Interface in-scope of RME

RME INT -01

RME INT -02

