Doc# OMA-MAE-2007-0021R1-CR_RME_AD_general review[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-MAE-2007-0021R1-CR_RME_AD_general review
Change Request

Change Request

	Title:
	RME AD general review
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-MAE

	Doc to Change:
	OMA-AD-RME-V1_0_0-20070117-D

	Submission Date:
	28 Jan 2007>

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Gaëlle Martin-Cocher, Streamezzo, gaelle.martin-cocher@streamezzo.com

	Replaces:
	n/a

1 Reason for Change

This document contains a number of changes to different sections of the architecture document for RME that intend to respond to comments received during the informal review by the ARCH group and comments received offline.
2 Impact on Backward Compatibility

n/a
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The group is requested to approve the proposed changes.
6 Detailed Change Proposal
Change 1: Informative references
a. Informative References

	[ARCH-PRINC]
	“OMA Architecture Principles”, <doc ref>, URL:http://www.openmobilealliance.org/

	[ARCH-REVIEW]
	“OMA Architecture Review Process”, <doc ref>, URL:http://www.openmobilealliance.org/

	[OMA-DICT]
	“OMA Dictionary”, <doc ref>,URL:http://www.openmobilealliance.org/

	[OPENTYPE]
	ISO/IEC 14496-18, URL: http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40151&ICS1=35&ICS2=40&ICS3=

	[SVG-FONTS]
	“SVG Font Format”, URL: http://www.w3.org/TR/SVGMobile12/fonts.html

	[RME-RD]
	OMA Rich-Media Environment Requirement Document : http://member.openmobilealliance.org/ftp/Public_documents/BAC/MAE/Permanent_documents/OMA-RD-Rich-Media-Environment-V1_0-20050923-C.zip

	[RME-WP]
	OMA Rich-Media Environment With Paper, technology landscape : http://member.openmobilealliance.org/ftp/Public_documents/BAC/MAE/Permanent_documents/OMA-WP-Rich-Media-Environment-20060406-D.zip

	3GPP DIMS
	3GPP Dynamic Interactive Multimedia Scene: (Note: final reference to be added as soon as available)

Change 2: 3.2 Definitions
	Interface
	See [OMA-DICT].

	Delivery context
	Infrastructure protocols and packaging that allows the delivery of application data. By default provides Timing information.
 Note: This is unrelated to W3C definition of Delivery context.

	Initial Scene
	A scene to which no updates have been applied

	Non Timed delivery Context
	A delivery context not supplying timing information together with the data

	RME data
	RME specific data limited to initial scene or scene updates

	Scene
	The description of temporal and spatial layout of objects (included or by references) such as vector graphics, images, audios and their linking to each other

	Scene update
	Information defining modifications to a scene

	Scene Update mechanism
	A means to apply scene update to a scene

	Timed delivery Context
	A delivery context supplying timing information together with the data e.g.: a RTP connection or a 3GP file.

Change 3: 4 Introduction

Introduction
(Informative)

This document defines the architecture for the rich media environment to meet the requirements defined in the Rich Media Environment RD [RME-RD].

The Rich Media Environment addresses enhanced rich media services: including rich-media content and service creation, deployment, distribution and presentation.

Enhanced rich media services include:

· Services aggregating in a single interface various kinds of content (graphics, text, audio, video) allowing:

· The rendering and behaviour of the service on the device, or service end-point consuming the service, to meet the developer intent and adapting to the device’s characteristics (screen size, input capabilities, etc.)

· Progressive rendering and fast display of the service content to avoid periods of inactivity waiting for a service response.

· An intuitive and easy user interaction with the content for navigation.

· Accurate synchronisation of content, whether streamed or otherwise, and interaction.

· Receiving data from various networks or bearers simultaneously and presenting the relevant data in a single service interface.

· Service logic based on client server real-time interaction with:

· Dynamic content and presentation updates triggered by the service logic and/or by device originated, e.g. end-user, requests without reloading a complete interface to provide low latency and good quality of service.

· The ability to add data at any time in the delivery process, even to an already started progressive download, to decrease end-user latency.

· Managing data both on client and server side for storage and temporal usage and availability of data in conformance with the logic and delivery of the service.

· Packaging data in a convenient way to decrease network requests and server resources.

The intent of the rich-media environment is to enable services which are network, device, OS and codec independent.

Change 4: 5.2 Architectural Diagram

The diagram in Figure 1 shows the architecture of the RME Enabler, including the scope of the RME specification. The Content Provider and other enablers present on the device are also shown.
The architecture is described from a functional/logical view and the diagrams should be interpreted according to the following conventions:

· Boxes describe architectural components that provide a specific functionality. The components are abstract and need not to coincide with the implementation components.

· Arrows describe interfaces and points towards the component providing the API. The arrows are either unidirectional or bidirectional. Unidirectional or Bidirectional arrows indicate how the API will be used between the components. A bidirectional arrow corresponds to two reverse unidirectional arrows.

· Dash arrows describe potential interfaces between the RME enabler and other applications or OMA enablers, that are not mandatorily requested to an implementation to be RME compliant. These interfaces can be optional or be part of a specific implementation. However, some interfaces between RME and some particular OMA enablers (e.g.: BCAST, DCD, PSTOR) may be defined in the TS

[image: image1.emf]

RME S erver

RME Client

Other OMA Enablers Content Providers (non OMA enablers)

RME Scope

Interface out - of - scope of RME

Interface in - scope of RME

RME - 01

RME - 05

RME - 02

Figure 1: Architecture of the RME Client and Server including the scope of RME

[image: image2.emf]

Delivery Context 3

RME - 03

RME - 05 (uDOM)

Client Side Scripting

De - compression

Error R esilience Protocol Re - sync and Tune - in

Scene Manager

Scene Handling Context

Delivery Context 2

RME - 04

Delivery Context 1

R ME Client

RME Server

Storage , Packaging and T ransport Formats and Protocol s

C ompression

RME - 0 1

RME - 0 2

Re - sync and Tune - in

Error R esilience

Scen e Description

Remote Interaction

Local User Interaction

Font Handling

Media Handling

High - level Timing

Scene update Handling Scene Re - Synch and Tune - in Caching and storage

RME - 05 (uDOM)

Low - level Timing Sto rage , packaging, and T ransport Formats and Protocol s

Change 5: 5.3 Functional Components and interfaces

The RME Enabler consists of the RME Client and the RME Server. As the RME Enabler is agnostic to transport protocols the communication between the server and client can utilize different protocols such as UDP, TCP, HTTP etc.
The client and server components are described in details in the following sections.
Change 6: 5.3.1.1 Introduction (informative)

Remove (informative) in the title.

Change 7: 5.3.1.2 RME Client Components – Scene Handling Context

The Scene Handling Context is defined as the component which interprets the RME data and associated media data and generates the displayed content. As further described below it provides the functionality for synchronization of the RME scene.
The Scene Handling Context is composed of two components:
· Scene Manager

· Client Side Scripting

The following sub-sections contain detailed descriptions of these two components and of the sub-components that composed them

Change 8: 5.3.1.2.1 Scene Manager
The Scene Manager is the main component of the RME Client. It is composed of the following functions:

· Scene Description - handles the description and rendering of the graphics constituting the RME Scene. It is responsible for the spatial layout, compositing and rendering of an RME Scene and acts as the Scene container by referencing or including other media data.

· Local User Interaction - enables the user to locally interact with the rich media content. It comprises of an event manager that enables the management of event creation, dispatching of events, registering and invoking the event listeners.

· Remote Interaction - handles the client-server communication. It is used for setting up data sessions, requesting data, transferring user data and events from the client to the server via RME-INT-03.

· Media Handler – – responsible for handling the relevant decoders supported by the terminal for raster image formats, as well as for the different audio and video streams formats transmitted along with RME scene and data..

· High-level Timing – handles the timing and synchronization of media elements present in the RME scene. The synchronization can be between any objects in the scene and it can also be between the scene and the application of updates to the scene.
· Font Handler – handles the fonts supported by the RME Enabler. The RME enabler is strongly recommended to support both the OpenType font format [OPENTYPE] and the SVG font format [SVG-FONTS]. RME should support a minimum set of SVG and/or OpenType fonts.
· Scene Update Management – applies the received updates to the current scene. Scene updates can be delivered to a client from a server without the client requesting it, or they can be requested from the client in a client pull scenario, either initiated by a user action or though timing. The Scene Update Mechanism receives the Scene Update via RME INT-04.

See section 5.4 Flows, for more detail on the different update scenarios.
· Scene Re-Synch and Tune-in – handles the tune in and resynchronization on the scene level.

· Caching and storage – handles the local storage of data e.g. user preferences and service data.

Change 9: 5.3.1.3 RME Client Components-delivery context level
This list below contains functions of the RME Enabler on the Delivery context level. These functions could be achieve by reusing the work of other OMA enablers or organizations, and its use will be defined within the OMA RME specification. Hence, this section only contains a brief overview of the functions that will be necessary.
Note that all these modules will not be necessary in all delivery contexts, e.g. Re-synchronization and Tune-in will not be necessary in a reliable delivery context.

· Low-level Timing – In cases where the transport protocol or the container format includes timing information, the Low-level Timing module extracts the timing information and passes this to the application level for use in the High-level Timing model. For example, in the case of RTP, the RTP timestamp, sequence numbers etc, associated with a data packet are sent to the application level for synchronization. In the case the media is packaged in a 3GP file (resident on the device, downloaded or progressively downloaded) the timing information in the 3GP file is extracted and delivered to the application layer together with the associated data.

· Protocol Re-synchronization and Tune-in – handles re-synchronization of a stream that has gone out of sync due to packet loss and/or for tuning in to a broadcast or unicast rich media stream.

· Error Resilience – handles error recovery when using unreliable delivery protocols using e.g. FEC and re-transmission techniques.

· De-compression – handles De-compression of the compressed RME data if compression is used or needed.

· Storage and Transport Protocols/Formats – handles protocols and formats in order to store and deliver the RME data to the client, e.g. RTP payload formats etc.

Change 10: 5.3.2 RME Server
An RME Server supplies the RME Client with rich media data. The data specific to RME are Initial Scenes and Scene Updates. Other data that may be provided by the server and will make up the rich media service are script files, images and audio and video media. Initial Scene, Scene Updates, scripts and media can be referenced from different servers using the corresponding media attributes in the scene description. They can be synched to the RME-scene timeline and each other using high level and low level timing components

An RME Server that creates RME data on the fly must conform to the client-server interfaces and data formats transported on the client server interfaces RME-01 and RME-02.
The RME server functions are:

· Protocol Re-synchronization and Tune-in – functionality that provides tune-in points in the data flow.
· Error Resilience – functionality that provides error resilience data to the client.
· Compression – Functionality to compression the RME data.
· Storage, packaging and Transport Protocols/Formats – handles the protocols and transport formats.

Change 11: 5.3.3 RME Interfaces
This section describes the interfaces between the components in the RME architecture. The interfaces are shown in figure 2. The descriptions identify which information is transferred and when necessary, the format used to transport the information is also identified.
RME-01- Bidirectional Client-Server Interface

The RME-01 is used for bi-directional communication between a server and a client. This interface is used to provide data from the RME server (consisting of initial scene data, scene updates and data used to populate the scene objects) to the RME client, and data from the RME client to the RME server (consisting of data requests and settings of preferences). The RME enabler is bearer agnostic and the information between the RME server and RME client can be exchanged using various packaging and storage format depending on the delivery context and bearers.

RME-02- Unidirectional Client-Server Interface

The RME-02 is a unidirectional interface exposed by the RME client. The interface is used for broadcast and multicast use cases where no communication from the client to the server is available. The data provided trough this interface are initial scene data, scene updates and data used to populate the scene objects.
RME-03 – Unidirectional Scene Handling Context to the Delivery Context interface
The RME-03 interface is exposed by the Scene Manager to the delivery context. This interface is used from the Scene Manager to deliver information destined both to the RME server and the Delivery Context.

The client communication with the server shall support the following:
· Send user data to the server

· Send preferences on server

· Request data from server such as scene updates, scene object data or RME data.

· Requesting a new channel
The communication with the Delivery Context is used to maintain the following functions:

· Requesting a new data channel

· requesting synchronization of an existing data channel
RME-04 – Unidirectional Delivery Context Interface to Scene Handling Context
RME-04 is a unidirectional interface exposed by the Delivery Context to the Scene Handling Context. The interface is used for transferring:

· Initial Scene data which contains the description of the initial scene.

· Scene Updates from the delivery context to the Scene Update Handling.

· Scripts to the Client Side Scripting.
· Data used by Scene objects containing other media such as video, audio and still images.

RME-05 – Client Side Scripting to Scene Manager Interface

RME-05 is an interface exposed by the Scene manager, allowing script delivered to the client to manipulate the Scene. The interface is defined as an extension of the SVG uDOM and is an interface to the Scene DOM-tree. This interface can also be used by external components (e.g. browsers) to interact with the RME client..

�Don’t understand this definition

�Document won’t lose any content if this sentence is deleted.

�I would prefer to call these things “functions” to distinguish from “components” which are replaceable units (with defined interfaces into/out of them). Else you use same word (component) to refer to definable/separable/replaceable unit and to non-separable units.

�Does the info go to the DC which then forwards it to server? Or is it directly to server?

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

_1232387201.doc

[image: image1]

RME Server

RME Client

Other OMA Enablers

Content Providers (non OMA enablers)

RME Scope

Interface out-of-scope of RME

Interface in-scope of RME

RME -01

RME -02

RME -05

_1231572024.doc

[image: image1]

Delivery Context 3

RME-03

RME-05 (uDOM)

Scene update Handling

Scene�Description

Remote�Interaction

Local User�Interaction

Font Handling

Media Handling

Client Side Scripting

Caching and storage

De-compression

Storage, packaging, and Transport Formats and Protocols

Error Resilience

Protocol Re-sync and�Tune-in

RME-05 (uDOM)

Scene Manager

Scene Handling Context

Scene Re-Synch and Tune-in

Low-level Timing

Delivery Context 2

RME-04

Delivery Context 1

RME Client

RME Server

Storage, Packaging and Transport Formats and Protocols

Compression

RME-01

RME-02

Re-sync and�Tune-in

Error Resilience

High-level Timing

