OMA-AD-Rich_Media_Environment-V1_0-20070117-D
Page 25 V(26)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Rich Media Environment Architecture

	Draft Version 1.0 – 17 January 2006

	Open Mobile Alliance

	OMA-AD-Rich_Media_Environment-V1_0-20070117-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope (Informative)

52.
References

52.1
Normative References

52.2
Informative References

63.
Terminology and Conventions

63.1
Conventions

63.2
Definitions

63.3
Abbreviations

74.
Introduction (Informative)

74.1
Planned Phases

84.2
Security Considerations

95.
Architectural Model

95.1
Dependencies

95.2
Architectural Diagram

115.3
Functional Components and Interfaces

115.3.1
RME Client

135.3.2
RME Server

135.3.3
RME Interfaces

145.3.4
Timing model

155.3.5
Interfaces to Other Enablers

165.4
Flows

165.4.1
Sub Use Cases

175.4.2
Loading of an Initial Scene

175.4.3
Single source delivery

185.4.4
Multi source delivery

195.4.5
Local interaction

215.4.6
Flows of the High-level Use Cases

25Appendix A.
Change History (Informative)

25A.1
Approved Version History

25A.2
Draft/Candidate Version <current version> History

26Appendix B.
<Additional Information>

26B.1
App Headers

26B.1.1
More Headers

Figures

9Figure 1: Architecture of the RME Client and Server including the scope of RME.

10Figure 2 Functional compositions of the RME Client and the RME Server.

Tables

13Table 1: Example Table

1. Scope
(Informative)

The Rich Media Environment addresses enhanced rich media services: defining the environment from rich-media content and service creation, through deployment, distribution and presentation.

The objective of this document is the definition of the architecture for the rich media environment to meet the requirements defined in the Rich Media Environment RD [RME-RD].
2. References

2.1 Normative References

	[OSE]
	“OMA Service Environment”
URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RME-RD]
	“Rich Media Environment Requirements”, Open Mobile Alliance, OMA-RD_Rich-Media-Environment-V1_0, URL:http://www.openmobilealliance.org/

	
	

	
	

2.2 Informative References

	[ARCH-PRINC]
	“OMA Architecture Principles”, <doc ref>, URL:http://www.openmobilealliance.org/

	[ARCH-REVIEW]
	“OMA Architecture Review Process”, <doc ref>, URL:http://www.openmobilealliance.org/

	[OMA-DICT]
	“OMA Dictionary”, <doc ref>,URL:http://www.openmobilealliance.org/

	[OPENTYPE]
	ISO/IEC 14496-18, URL: http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40151&ICS1=35&ICS2=40&ICS3=

	[SVG-FONTS]
	“SVG Font Format”, URL: http://www.w3.org/TR/SVGMobile12/fonts.html

	
	

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Interface
	See [OMA-DICT].

	Delivery context
	Transport infrastructure that provides the application centric part with data.

	Initial Scene
	A scene to which no updates have been applied

	Non Timed delivery Context
	A delivery context not supplying timing information together with the data e.g.: a RTP connection or a 3GP file.

	RME data
	RME specific data limited to initial scene or scene updates

	Scene
	The description of temporal and spatial layout of objects (included or by references) such as vector graphics, images, audios and their linking to each other

	Scene update
	Information defining modifications to a scene

	Scene Update mechanism
	A means to apply scene update to a scene

	Timed delivery Context
	A delivery context supplying timing information together with the data e.g.: a RTP connection or a 3GP file.

	
	

	
	

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	xxx
	xxx

	
	

4. Introduction
(Informative)

This document defines the architecture for the rich media environment to meet the requirements defined in the Rich Media Environment RD [RME-RD].

The Rich Media Environment addresses enhanced rich media services: including rich-media content and service creation, deployment, distribution and presentation.

Enhanced rich media services include:

· Services aggregating in a single interface various kinds of content (graphics, text, audio, video) allowing:

· the rendering and behaviour of the service on the device, or service end-point consuming the service, to meet the developer intent and adapting to the device’s characteristics (screen size, input capabilities, etc.)

· progressive rendering and fast display of the service content to avoid periods of inactivity waiting for a service response.

· An intuitive and easy user interaction with the content for navigation.

· Accurate synchronisation of content, whether streamed or otherwise, and interaction.

· Receiving data from various networks or bearers simulaneously and presenting all relevant the relevant data in a single service interface.

· Service logic based on client server real-time interaction with:

· Dynamic content and presentation updates triggered by the service logic and/or by device originated, e.g. end-user, requests without reloading a complete interface to provide low latency and good quality of service.

· The ability to add data at any time in the delivery process, even to an already started progressive download, to decrease end-user latency.

· Managing data both on client and server side for storage and temporal live cycle of data in conformance with the logic and delivery of the service.

· Packaging data in a convenient way to decrease network requests and server resources.

The intent of the rich-media environment is to enable services which are network, device, OS and codec independent.

4.1 Planned Phases

<< Specify where this architecture is within the projected phases (e.g. phase 1.0, phase 2.0, etc.). If the current phase is greater than phase 1.0, briefly describe how this version of the architecture differs from the previous version. It may be appropriate to include a separate sub-section for the various phases.

If no additional phases are planned beyond this architecture then state so.

DELETE THIS COMMENT >>

4.2 Security Considerations

<<Describe possible security considerations that may arise due to the architecture proposed. Particularly please consider the following issues:

Does the AD introduce any functionality that may require a review by the Security Group?

Does the AD define or make use of any security features? (e.g. Authentication, Encryption, etc). If so please list potential security threats that lead to the introduction of these security features. Please reference the relevant security sections

Is any security functionality needed by the enabler and considered outside the scope of the AD? If this is the case please state in this section.

DELETE THIS COMMENT >>

5. Architectural Model

5.1 Dependencies

.

5.2 Architectural Diagram

The diagram in Figure 1 shows the architecture of the RME Enabler, including the scope of the RME specification. The Content Provider and other enablers present on the device are also shown.
The architecture is described from a functional/logical view and the diagrams should be interpreted according to the following conventions:

· Boxes describe architectural components that provide a specific functionality. The components are abstract and need not coincide with the implementation components.

· Arrows describes interfaces and points towards the component providing the API. The arrows are either unidirectional or bidirectional. A bidirectional arrow should be interpreted such that both interfacing components provides APIs to each other and is a short hand for two unidirectional arrows.

[image: image2.emf]

RME S erver

Content Provider

RME Client

Other OMA Enablers

RME Scope

Interface out - of - scope of RME

Interface in - scope of RME

RME INT - 01

RME INT - 05

RME INT - 02

Figure 1: Architecture of the RME Client and Server including the scope of RME.

In Figure 2, the functional composition of the RME Client is shown.

[image: image3.emf]

Delivery Context 3

RME INT - 03

RME INT - 05 (uDOM)

Client Side Scripting

De - compress ion

Error R esilience Protocol Re - sync and Tune - in

Scene Manager

Scene Handling Context

Delivery Context 2

RME INT - 04

Deliver y Context 1

RME Client

RME Server

Storage , Packaging and T ransport Formats and Protocol s

C ompression

RME INT - 0 1

RME INT - 0 2

Re - sync and Tune - in

Error R esilience

Scen e Description

Remote Interaction

Local User Interaction

Font Handling

Media Hand l ing

High - level Timing

Scene update Handling Scene Re - Synch and Tune - in Caching and storage

RME INT - 05 (uDOM)

Low - level Timing Storage , packaging, and T ransport Formats and Protocol s

Figure 2 Functional compositions of the RME Client and the RME Server.

5.3 Functional Components and Interfaces
The RME Enabler adds the functionality that is specific for RME and re-uses existing enablers for functionality that is common between RME and already existing enablers or specifications. The RME Enabler consists of the RME Client and the RME Server. As the RME Enabler is agnostic to transport protocols the communication between the server and client can utilize different protocols such as UDP, TCP, HTTP etc,.
The client and server components are described in details in the following sections.

5.3.1 RME Client

5.3.1.1 Introduction (Informative)
The RME Client resides on, typically, the mobile terminal and provides the capability to display RME data, handle dynamic updates to the RME Scene as well as handling interaction with the client itself (local interaction) and with the RME server (remote interaction).

The RME Client is divided into two parts: Scene Handling Context and Delivery Context. A number of different delivery contexts can be used to deliver the RME data to and from the server.

Requests and receipt of RME data between the Scene Handling Context and different Delivery Contexts is performed via interfaces RME INT-03 and RME INT-04. RME INT-05 is the interface between the scripting module and the main component of the RME Client, the Scene Manager.

5.3.1.2 RME Client Components – Scene Handling Context

The Scene Handling Context is defined as the high level component which interprets the RME data and associated media data and generates the displayed content. As further described below it provides the functionality for synchronization of the RME scene.
The Scene Handling Context of consists of :

· Scene Manager

· Client Side Scripting

The following sub-sections contain more detailed descriptions of the components.

Ed note: Add text.

5.3.1.2.1 Scene Manager

The Scene Manager is the main component of the RME Client. It is divided into the following functional components:
(Note: The components are only responsible for providing the functionality; there is no requirement on how the functionality is implemented.)
· Scene Description - handles the description and rendering of the graphics constituting the RME Scene. It is responsible for the spatial layout, compositing and rendering of an RME Scene and acts as the Scene container by referencing or including other media data.

· Local User Interaction - enables the user to locally interact with the rich media content. It comprises of an event manager that enables the management of event creation, dispatching of events, registering and invoking the event listeners.

· Remote Interaction - handles the client-server communication. It is used for setting up data sessions, requesting data, transferring user data and events from the client to the server via RME-INT-03.

· Media Handler – – responsible for handling the relevant decoders supported by the terminal for raster image formats, as well as for the different audio and video streams formats transmitted along with RME scene and data..

· High-level Timing – handles the timing and synchronization of media elements present in the RME scene. The synchronization can be between any objects in the scene and it can also be between the scene and the application of updates to the scene.
· Font Handler – handles the fonts supported by the RME Enabler. The RME enabler is strongly recommended to support both the OpenType font format [OPENTYPE] and the SVG font format [SVG-FONTS]. RME should support a minimum set of SVG and/or OpenType fonts.
· Scene Update Management – applies the received updates to the current scene. Scene updates can be delivered to a client from a server without the client requesting it, or they can be requested from the client in a client pull scenario, either initiated by a user action or though timing. The Scene Update Mechanism receives the Scene Update via RME INT-04.

See section 5.4 Flows, for more detail on the different update scenarios.
· Scene Re-Synch and Tune-in – handles the tune in and resynchronization on the scene level.

· Caching and storage – handles the local storage of data e.g. user preferences and service data.

5.3.1.2.2 Client Side Scripting

The RME Client contains a module for handling Client Side Scripting. It enables powerful manipulations of the Scene and provides a powerful application development environment to the content creator. Communication between the Scene Manager and the Client Side Scripting is performed via RME INT-05.

5.3.1.3 RME Client Components – Delivery context level

This list below contains parts of the RME Enabler on the Delivery context level that are specific to RME. These components will reuse the work of other OMA enablers or organizations, and its use will be defined within the OMA RME specification. Hence, this section only contains a brief overview of the components that will be necessary. Note that all these modules will not be necessary in all delivery contexts, e.g. Re-synchronization and Tune-in will not be necessary in a reliable delivery context.

· Low-level Timing – In cases where the transport protocol or the container format includes timing information, the Low-level Timing module extracts the timing information and passes this to the application level for use in the High-level Timing model. For example, in the case of RTP, the RTP timestamp, sequence number etc, associated with a data packet are sent to the application level for synchronization. In the case the media is packaged in a 3GP file (resident on the device, downloaded or progressively downloaded) the timing information in the 3GP file is extracted and delivered to the application layer together with the associated data.

· Protocol Re-synchronization and Tune-in – handles re-synchronization of a stream that has gone out of sync due to packet loss and/or for tuning in to a broadcast or unicast rich media stream.

· Error Resilience – handles error recovery when using unreliable delivery protocols using e.g. FEC and re-transmission techniques.

· De-compression – handles De-compression of the compressed RME data if compression is used or needed.

· Storage and Transport Protocols/Formats – handles protocols and formats for storing and delivering the RME data to the client, e.g. RTP payload formats etc.

5.3.2 RME Server

An RME Server supplies the RME Client with rich media data. The data specific to RME are Initial Scenes and Scene Updates. Other data that may be provided by the server and will make up the rich media service are script files, images and audio and video media. Initial Scene, Scene Updates, scripts and media can be referenced from different servers using the corresponding media attributes in the scene description. They can be synched to the RME-scene timeline and each other using high level and low level timing components

An RME Server that creates RME data on the fly must conform to the client-server interfaces and data formats transported on the client server interfaces RME-INT-01 and RME-INT-02.
The server components are:

· Protocol Re-synchronization and Tune-in – functionality that provides tune-in points in the data flow.
· Error Resilience – functionality that provides error resilience data to the client.
· Compression – Functionality to compression the RME data.
· Storage, packaging and Transport Protocols/Formats – handles the protocols and transport formats.

5.3.3 RME Interfaces

This section describes the interfaces between the functional components in the RME architecture. The interfaces are shown in figure 2. The descriptions identify which information is transferred and when necessary, the format used to transport the information is also identified.

RME INT-01- Bidirectional Client-Server Interface

The RME INT-01 is a two way interface between the client and server. The interface is used for point-to-point communication between a server and a client. The data from the server consists of initial scene data, scene updates and data used to populate the scene objects, whereas data to the server consist of data requests and settings of preferences. The RME enabler is bearer agnostic and the information between the server and client can be exchanged using various packaging and storage format depending on the delivery context and bearers..

RME INT-02- Unidirectional Client-Server Interface

The RME INT-02 is a unidirectional interface from the server to the client. The interface is used for broadcast and multicast where no communication from the client to the server is available.
RME INT-03 – Unidirectional Scene Handling Context to the Delivery Context interface
The RME INT-03 interface is the only out bound interface from the Scene Manager. The interface carries information destined both to the server and the Delivery Context.

The client communication with the server shall support the following:
· Send user data to the server

· Send preferences on server

· Request data from server such as scene updates, scene object data or RME data.

· Requesting a new channel
The communication with the Delivery Context is used to maintain the following functions:

· Requesting a new data channel

· requesting synchronization of an existing data channel
RME INT-04 – Unidirectional Delivery Context Interface to Scene Handling Context
RME INT-04 is a unidirectional interface from the Delivery Context to the Scene Handling Context. The interface is used for transferring:

· Initial Scene data which contains the description of the initial scene.

· Scene Updates from the delivery context to the Scene Update Handling.

· Scripts to the Client Side Scripting.
· Data used by Scene objects containing other media such as video, audio and still images.

RME INT-05 – Client Side Scripting to Scene Manager Interface

RME INT-05 is an interface allowing script delivered to the client to manipulate the Scene via the SVG uDOM interface to the Scene DOM-tree. The interface is also an external interface of the RME-enabler and can be used for e.g. browsers to interact with the RME-enabler.

5.3.4 Timing model

Ed note: Need to add a description of how the low-level timing and high-level timing relates to transport timing and application timing. It also need to be defined how the timing of updates are handled in various scenarios.

5.3.5 Interfaces to Other Enablers

The RME Enabler shall be conformant with other enablers such as the ones listed below. However, it is not mandatory for an RME Enabler to include or interface with these components in order to be a conformant RME Enabler.

Other OMA enablers that the RME Enabler optionally should be able to use are:

· Browser – The interface must allow the RME client to be invoked from the browser. The interface must allow the browser to invoke the RME client .

.
· DRM - For protecting the RME date and/or associated audio and video streams.

· BCAST - As a delivery option for point to multipoint RME data.

· PUSH - TBD
· Etc…

Ed Notes: this section needs to be detailed.

·
5.4 Flows

5.4.1 Sub Use Cases

The requirements document for RME in OMA contains the following use cases:

· I&E, Karaoke

· P2P, live chat, rich-media blog service

· I&E, Interactive mobile TV services (mosaic, interactive voting service, personalized menu)

· Active wall paper services

· Rich mobile application
The use cases have some functionality in common. For instance all use cases load a rich media scene. By creating a sub use case for loading a scene and let all use cases point to this, it is sufficient to describe the flow for loading a scene once. By analyzing the use cases a set of sub use cases are constructed. By combining these sub use cases in various ways all use cases in the RD can be realized. Below is a list of the identified sub use cases (SUB). Detailed description and flows of the sub use cases follows in the next section.

Ed note: name change on sub use case if found.
SUB 1 Loading of an Initial Scene. This use case covers loading of an Initial Scene either from local storage or via a network.
SUB 2 Single source delivery. This use case covers the loading of an Initial Scene and accompanying Updates from one source.
SUB 3 Multi source delivery. This use case handles the setup of an update source from which Scene Updates are retrieved.

SUB 4 Local interaction. This use case covers interaction with the Scene handled locally on the device e.g. user interaction or timed interaction using script. Interaction with other enablers on the device e.g. the SMS application is also included in this use case.

SUB 5 Remote interaction. User interaction with the server causing changes to Scene and/or changes the state on the server.

5.4.2 Loading of an Initial Scene

The sub use case “Loading an Initial Scene” is initiated by some event, typically a user event, and ends when the RME scene is displayed on the device. The data describing the scene can be retrieved from any accessible source e.g. a file on the local file system, a file downloaded from a server, a unicast or broadcast stream. The source may only contain an Initial Scene and not Scene Updates. The scene could however contain video objects and other referenced objects that contain their own communication channels and thus are updated although the scene is the same. In the case of streams where tune-in is necessary this is handled by the Delivery Context. The figure below shows the interaction between the architectural components.

[image: image4.emf] : User

 : SceneManager : DeliveryContext

1 : showScene()

2 : loadURL()

3 : InitialScene

The Scene Manager is invoked with a request to show a Scene based on data from a specified URL. The URL can point to any source described above. The delivery context both at the client and server sides, manages the transfer of the request and the response to the URLs. The delivery mechanism retrieves the data and delivers it to the Scene Manager which performs the processing and rendering of the Initial Scene.

5.4.3 Single source delivery

The single source streamed delivery flow starts with an action causing the Scene Manager to tune in to a data source containing an Initial Scene and Scene Updates and does not end until the connection is stopped. The number of Scene Updates and Initial Scenes in the data is arbitrary. The flow is valid both, when the data is obtained from a container file or a regular file located either on the device or on a RME server and when the data is obtained from a unicast or broadcast stream. The figure below shows the interaction between the different functional components. The difference from the Loading of an Initial Scene use case is that the data channel is kept open to receive updates after the initial scene is loaded whereas it was closed in the previous use case.
[image: image5.emf] : User

 : SceneManager : DeliveryContext

1 : showScene()

2 : loadURL()

3 : InitialScene

4 : SceneUpdate

The flow starts when the Scene Manager is invoked with a request to show RME data based on data from a specified URL. The URL can point to any source as described above. The Scene Manager calls Delivery Context (both client and server side) with a request to tune-in to the given URL. The Delivery Context processes the stream to find a tune in point. The scene contained in the tune-in point is forwarded to the Scene Manager, which displays the Scene. Delivery Context continuous to analyze the incoming data and forwards incoming Scene Updates and Scenes and associated media data to Scene Manager. In case of data losses re-synchronization is performed by the Delivery Context which forwards data contain in a successive tune-in point to the Scene Manager.

5.4.4 Multi source delivery

This flow assumes that a Scene is already loaded and displayed by the Scene Manager. The Scene can be loaded due to either the sub use case “Single Source Delivery” or “Loading of an Initial Scene”. The flow start when some action, possibly by an user, causes the Scene Manager to retrieve RME data from a specified URL. The URL can point to any file local or remote or to a unicast or broadcast stream. The flow ends when all Scene Updates are consumed and/or the connection to the source is closed possibly by the end user. The figure below shows the interaction between the different functional components.

[image: image6.emf] : User : SceneManager : DeliveryContext

1 : update()

2 : loadURL()

3 : SceneUpdate

The Scene Manager commands Delivery Context (both client and server side) to retrieve data at a certain URL. The URL can be any source described above. Delivery Context extracts the data and forwards it to Scene Manager, which applies the changes to the RME scene.

5.4.5 Local interaction

The flow for local interaction assumes that the Scene Manager contains and displays a Scene. The flow starts when some action causes the Scene Manager to interact with either itself or another enabler on the device. The figure below shows three different cases for local interaction

· Actions handled by the Scene Manager itself e.g.: events (1)
· Actions that causes a script to execute and via the uDOM affect the Scene Manager (2-3)

· Actions that cause a script to execute which uses other enablers on the device (4-5)

· Actions that invoke other enablers on the device without script (6-7)

The list of possible actions are not exhaustive.
[image: image7.emf] : SceneManager : ClientSideScripting : Device

1

2 : activateScript()

3 : updateData

4 : activateScript()

5 : enablerAction()

Ed Notes: the schema needs to be updated to include (6 -7)

5.4.3.6 Remote interaction

This flow assumes that a Scene is loaded and displayed by the Scene Manager.

The figure below shows one example of a Remote interaction between the functional components.

[image: image8.emf] : SceneManager : ClientSideScripting : Delivery

1 : activateScript()

2 : putData()

Some action causes the Scene Manager to activate a script which sends data to the server.

Ed Notes: this section needs to be review to include non script remote interaction.
5.4.6 Flows of the High-level Use Cases

This section shows how the high level use cases in the requirements document realized by the sub use cases. Further analysis can then be focused on the sub use cases.

5.4.2.1 Use Case I&E, Karaoke

SUB 1: Loading of an Initial Scene (Selection of the service)

SUB 4: Local interaction (Browsing of the song catalogue)

SUB 2, SUB 3, and/or: Single source delivery, Multi source delivery (Provision of content from service provider)

SUB 5: Remote interaction (Selects language)

SUB 2 or SUB 3: Single source delivery or Multi source delivery (Display and synchronization of content)

SUB 4: Local interaction (Changing the volume)

SUB 5: Remote interaction (Media control)

SUB 4: Local interaction (Send SMS and receive MMS – receive MMS is outside of the RME enabler)

SUB 4: Local interaction (Saving data on the device)

5.4.2.2 Use Case P2P, live chat, rich-media blog service

SUB 1: Loading of an Initial Scene (Receives an MMS with a link to the service)

SUB 4 and SUB 5: Local interaction (Enters personal information) and Remote Interaction (Uploads and stores the personal information on the server)

SUB 5: Remote interaction (Browsing and selection of data)

SUB 4: Local interaction (Interfacing with the SMS application)

SUB 5: Remote interaction (Send SMS)

SUB 4 and SUB 5: Local interaction (Enters chat messages) and Remote Interaction (Sends chat messages)

SUB 2, SUB 3, or SUB 5: Single source delivery, Multi source delivery, Remote Interactions (Retrieve alerts of incoming messages)

SUB 5: Remote interaction (Change chat channel)

SUB 5: Remote interaction (Make phone call through service provider – service specific)

SUB 5: Remote interaction (Add/remove contact from server database)

SUB 2, SUB 3, or SUB 5: Single source delivery, Multi source delivery, and/or Remote Interactions (Retrieve list of active chatters)

SUB 4 and SUB 5: Local interaction and Remote Interaction (Validation of user data)

Alternative Flow:

SUB 1, SUB 4 and SUB 5: Loading of a scene, Local interaction and Remote interaction (User requests to chat)

SUB 4: Local interaction (User enters message)

SUB 5: Remote interaction (Message is sent over HTTP to the service provider)

SUB 3 or SUB 5: Multi source delivery or Remote interaction (Service provider sends the message out to the receiver – HTTP assumed)

5.4.2.3 Use Case I&E, Interactive mobile TV services

Mosaic main page:

SUB 1: Loading of an Initial Scene (The user accesses of the menu)

SUB 3, or SUB 5: Multi source delivery, and/or Remote interactions (The menu is updated with new data)

SUB 4: Local interaction (Updates are stored locally)

SUB 5: Remote interaction (Channel selection)

SUB 4, SUB 5: Local interaction or Remote interaction (Storage of user data)

Interactive voting service:

SUB 2, SUB 3, SUB 4, and/or SUB 5: Single source delivery, Multi source delivery, and/or Remote interactions and/or Local interaction (Synchronization of video and text)

SUB 2, SUB 3, SUB 5 or SUB 5: Single source delivery, Multi source delivery, or Remote interactions and/or Remote interaction (Retrieval of alert)

SUB 1: Loading of scene (The user accesses a rich media service)

SUB 4 or SUB 5: Local interaction or Remote interaction (Reduction of the video area)

SUB 5: Remote interaction (Channel selection)

SUB 2, SUB 3 and/or SUB 5: Single source delivery, Multi source delivery, and/or Remote interactions and/or Local interaction (Appearance of two buttons)

SUB 4 and SUB 5: Local interaction and Remote interaction (User selects a button, data is sent to service provider using HTTP)

SUB 4: Local interaction (Buttons disappear)

SUB 4 or SUB 5: Local interaction or Remote interaction (Full-screen video)

SUB 2, SUB 3, or SUB 5: Singlesource delivery, Multi source delivery or Remote interactions and/or Remote interaction (Retrieval of vote result)

SUB 2, SUB 3, , SUB 5 and/or SUB 4: Single source delivery, Multi source delivery and/or Remote interactions and/or Local interaction (Appearance of a SMS button)

SUB 4: Local interaction (Writes and sends SMS)

SUB 2: Single source delivery (Delivery of text and images in a single connection)

Personalized menu:

SUB 4 and SUB 5: Local interaction or Remote interaction (Browsing of menu, selection and personalization)

SUB 4: Local interaction (Storage of data)

SUB 2, SUB 3 or SUB 5: Single source delivery, Multi source delivery or Remote interactions and/or Remote interaction (Retrieval of news data, including personalization of the data)

SUB 5: Remote interaction (User data saved on server)

SUB 4: Local interaction (Storage of data)

5.4.2.4 Use Case Active wall paper services

SUB 1: Loading of an Initial Scene (Retrieval of the application from network or locally)

SUB 4, SUB 5 and SUB 4: Local Interaction, Remote Interactions and Local interaction (Use of local and remote resources to set up service)

SUB 2, SUB 3, or SUB 5: Single source delivery, Multi source deliveryand/or Remote Interactions (Retrieve content)

SUB 5: Remote interaction (Notification of new data from the server)

SUB 5 and SUB 4: Remote interaction and Local interaction (Customization of the service)

5.4.2.5 Use Case Rich mobile application

SUB 1: Loading of an Initial Scene (Download and start of the application)

SUB 3, SUB 4 or SUB 5: Multi source deliveryand/or Remote Interactions (Retrieve content)

SUB 4: Local interaction (Browse the content locally)

SUB 5: Remote interaction (Notification of new data from the server) [Ed note: Done using polling from client regularly or WAPpush etc.]
SUB 5 and SUB 4: Remote interaction and Local interaction (Customization of the service)

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version

	OMA-AD-Rich_Media_Environment-V1_0-200ymmdd-A
	
	

	
	
	

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-AD-Rich_Media_Environment20060626-V1_0
	05 Jun 2006
	all
	Base AD, template suitably completed + scope and intro

	
	26 Jun 2006
	5.3
	List of functional components

	OMA-AD-Rich_Media_Environment20061023-V1_0
	23 October 2006
	2.2, 3 and 5.3
	References, Definitions and font handler

	OMA-AD- Rich_Media_Environment20061214-V1_0
	14 december 2006
	3.1, 5.2, 5.3
	Description of the main AD components and flows.

	OMA-AD-RME_V1_0-20070117-D
	17 January 2007
	2.2
	Add a reference to OT font

	Candidate Version

OMA-AD-Rich_Media_Environment-V1_0
	Dd Month, yyyy
	n/a
	

Appendix B. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

B.1 App Headers

B.1.1 <More text>

B.1.2 More Headers

<More text>

B.1.2.1 More Headers

<More text>

	
	Column 1
	Column 2

	Row 1
	Grid 1,1 data
	Grid 1,2 data

	Row 2
	Grid 2,1 data
	Grid 2,2 data

Table 1: Example Table

(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ArchDoc-20060101-I]
(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ArchDoc-20060101-I]

_1227556890.doc

[image: image1]

RME Server

Content Provider

RME Client

Other OMA Enablers

RME Scope

Interface out-of-scope of RME

Interface in-scope of RME

RME INT -01

RME INT -02

RME INT -05

_1227611205.doc

[image: image1]

Delivery Context 3

RME INT-03

RME INT-05 (uDOM)

Scene update Handling

Scene�Description

Remote�Interaction

Local User�Interaction

Font Handling

Media Handling

Client Side Scripting

Caching and storage

De-compression

Storage, packaging, and Transport Formats and Protocols

Error Resilience

Protocol Re-sync and�Tune-in

RME INT-05 (uDOM)

Scene Manager

Scene Handling Context

Scene Re-Synch and Tune-in

Low-level Timing

Delivery Context 2

RME INT-04

Delivery Context 1

RME Client

RME Server

Storage, Packaging and Transport Formats and Protocols

Compression

RME INT-01

RME INT-02

Re-sync and�Tune-in

Error Resilience

High-level Timing

