OMA-TS-Client_Side_CS_FW-V1_0-20060209-C
Page 5 V(25)

	[image: image1.jpg]
	

	Client Side Content Screening Framework Specification　

	Candidate Version 1.0 – 09 Feb 2006

	Open Mobile Alliance

	OMA-TS-Client_Side_CS_FW-V1_0-20060209-C

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
5.
Framework Interfaces (Normative)
9
5.1
Content Scanning Interface
11
5.1.1
CSF-1
11
5.2
Error Retrieval Interface
12
5.2.1
CSF-7
12
6.
Supporting Interfaces (Informative)
14
6.1
Scan Engine Initialization Interface
14
6.1.1
CSF-2
14
6.2
Virus Database Update Interface
14
6.2.1
CSF-3
14
6.2.2
CSF-4
15
6.3
Scan Engine Configuration Interface
15
6.3.1
CSF-5
15
6.3.2
CSF-6
15
7.
Scan Interface Invocation Time (Informative)
17
Appendix A.
Implementer’s Note (Informative)
19
A.1
Framework Interfaces in C
19
A.1.1
Content Scanning Interface
19
A.1.2
Error Retrieval Interface
19
A.1.3
Scan Engine Initialization Interface
20
A.1.4
Virus Database Update Interface
21
A.1.5
Scan Engine Configuration Interface
22
Appendix B.
Change History (Informative)
24
B.1
Approved Version History
24
B.2
Draft/Candidate Version 1.0 History
24
Appendix C.
Static Conformance Requirements (Normative)
25
C.1
SCR for Client Side Content Screening Framework Client
25
C.1.1
SCR for Calling Enabler
25
C.1.2
SCR for Scan Engine
25
C.2
SCR for Client Side Content Screening Framework Server
25

Figures

10Figure 1: Interfaces of Client Side Content Screening Framework

20Figure 2: 32-bit error code format

Tables

10Table 1: Interfaces of Client Side Content Screening Framework

11Table 2: Document types

12Table 3: Severity Level

13Table 4: Error codes

18Table 5: CSFScanData (CSF-1) Invocation Priority

20Table 6: Error Codes

22Table 7: SVerInfo structure

1. Scope
This specification defines technical details of interfaces and interaction mechanism necessary for implementing the OMA Client Side Content Screening Framework to screen malicious content at the mobile terminal. The specification addresses specific requirements enumerated in [CSCSF-RD-v1] and adheres to the architecture described in [CSCSF-AD-v1]. Internal mechanism of the content scanning entity (such as the scan engine, scanning rules, and updating of such engine and rules) are out of the scope of the work.
2. References

2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.3, Open Mobile Alliance™, OMA-IOP-Process-V1_3, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[PRIVACY]
	“OMA Privacy Requirements for Mobile Services”, Version 1.0., Open Mobile Alliance™, OMA-RD_Privacy-V1_0, URL:http://www.openmobilealliance.org/

	[CSCSF-RD-v1]
	“OMA Client Side Content Screening Framework Requirements”, Version 1.0, Open Mobile Alliance™, OMA-RD-Client_Side_CS_FW-V1_0, URL:http://www.openmobilealliance.org/

	[CSCSF-AD-v1]
	“OMA Client Side Content Screening Framework Architecture”, Version 1.0, Open Mobile Alliance™, OMA-AD-Client_Side_CS_FW-V1_0, URL:http://www.openmobilealliance.org/

2.2 Informative References

	[OMA-DICT]
	“Dictionary for OMA Specifications”, Version 2.3, Open Mobile Alliance™, OMA-ORG-Dictionary-V2_3, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions
For the purposes of this document, the terms and definitions given in [OMA-DICT] apply and the following also apply:
	Client Side Content Screening
	Content screening performed at the mobile terminal.

	Client Side Content Screening Framework
	An abstract conceptual structure used as the basis for constructing interaction model between OMA/non-OMA enablers and content scanning functionality through a set of interfaces with the ultimate goal of bringing forth content screening capability to the mobile terminal.

	Content
	Data or code delivered to an end-user and/or end-user’s terminal.

	Content Scanning
	The actual operation of looking at the data to determine whether it is a potential candidate for screening and level of severity if found to be as such. What this operation consist of would vary according to how content scanning functionality is implemented and falls outside the scope of this document.

	Content Scanning Functionality
	Content scanning performed for OMA/non-OMA enabler wishing to determine whether a content under consideration is undesirable or not. This performance is accessed by a set of interfaces specified by the content screening framework.

	Content Screening
	The act of protecting an end-user and/or end-user’s terminal from undesirable content by blocking access to the said content. This act may be in the form of warning message, confirmation of deletion, notification of deletion, silent deletion without notification, etc. Exact detail would vary according to severity level reported, I/O capability of mobile terminal, user preferences, etc.

	Mobile Terminal
	A device that receives content as part of its normal running operation.

	Scan Engine
	Component of client side content screening framework that performs content scanning service to OMA/non-OMA enablers related to end-user content delivery and/or processing.

	Screening Action
	The act of blocking an undesirable content (see ‘Content Screening’).

	Server Side Content Screening
	Content screening performed at the network by servers with content screening functionality.

E.g. Proxy server, mail server, firewall, etc.

3.3 Abbreviations
	OMA
	Open Mobile Alliance

4. Introduction

There is an urgent market demand for an effective countermeasure to the growing amount of malicious content delivered to mobile terminals before more lethal variants, such as self-spreading viruses and worms create havoc on networks and users as richer content become available. The goal of the OMA Client Side Content Screening Framework is to facilitate adaptation of existing, or the development of, client-side content screening technologies to the mobile environment, providing a timely solution for an effective countermeasure to these threats.
This specification defines the framework interfaces for use by OMA and non-OMA enablers residing in mobile terminals for utilizing content scanning functionality to detect and screen malicious content. Details on how such enablers interact with the content scanning functionality through these interfaces are also defined. Recommended interface invocation time, screening actions, and use of interfaces in particular execution environments are described as informative purpose.
5. Framework Interfaces
(Normative)
This section specifies technical details of framework interfaces of the client side content screening framework as identified in [CSCSF-AD-v1]. In order for OMA and non-OMA enablers to use the scan interface CSFScanData (CSF-1), a set of supporting interfaces is needed in order to provide the CSF-1 interface in mobile terminals. These supporting interfaces can be grouped into four types according to their functions, namely:

1. Scan Engine Initialization Interface

· CSF-2: CSFSystemInit

2. Virus Database Update Interface

· CSF-3: CSFScanUpdate

· CSF-4: CSFScanVersion

3. Scan Engine Configuration Interface

· CSF-5: CSFConfigSet

· CSF-6: CSFConfigGet

4. Error Retrieval Interface

· CSF-7: CSFGetLastError
Figure 1 shows the supporting interfaces in the context of architectural model of the client side content screening framework. The complete list of framework interfaces is shown in Table 1.

CSFScanData (CSF-1) SHALL be supported by the framework as it is this interface which returns the result of the scan to the calling enabler. CSFGetLastError (CSF-7) SHOULD be supported by the framework for the CSFScanData (CSF-1) interface to be meaningful in case of error.

Other interfaces, CSFSystemInit (CSF-2) through CSFConfigGet (CSF-6), are described in section 6 as informative interfaces.

[image: image2]
Figure 1: Interfaces of Client Side Content Screening Framework
	Interface ID
	Interface Name
	Description

	CSF-1
	CSFScanData
	Requests scanning of content.

	CSF-2
	CSFSystemInit
	Initializes scan engine.

	CSF-3
	CSFScanUpdate
	Triggers update of virus database.

	CSF-4
	CSFScanVersion
	Returns virus database version information.

	CSF-5
	CSFConfigSet
	Sets scan engine configuration variable.

	CSF-6
	CSFConfigGet
	Retrieves scan engine configuration variable.

	CSF-7
	CSFGetLastError
	Retrieves last error set by the scan engine.

Table 1: Interfaces of Client Side Content Screening Framework
5.1 Content Scanning Interface
5.1.1 CSF-1
5.1.1.1 Name

CSFScanData
5.1.1.2 Description
This interface is used by enabler related to end-user content delivery and/or processing for content scanning. The input comprises of data and type of the content that needs to be scanned. The output comprises of result of the scan, status code, name of the threat, and severity level.

Upon invocation, scan engine performs scanning of the forwarded content and returns the result to the calling enabler. The caller screens the content if it was determined to be malicious based on the result from the scan engine. When the content is found to be malicious, it SHOULD be screened by the caller in order to protect the end-user and/or end-user’s terminal. This screening action MAY be in the form of simple warning message, confirmation of deletion, notification of deletion, or even silent deletion without any notification whatsoever. Exact detail is implementation dependent and would vary according to severity level reported, I/O capability of mobile terminal, user preferences, etc.
5.1.1.3 Input

Data of the content SHALL be provided by the invoking enabler as input to the interface.

Type of the content MAY be provided by the invoking enabler as input to the interface (see Table 2). Scan engine MAY use the type of content to assist the scanning process if the information is provided as input.
	Document type
	Meaning
	Expected action

	0
	Unknown
	Scan data for malicious content with no assumption on document type.

	1
	HTML
	Scan for malicious content in HTML.

	2
	URL address
	Scan for URL with malicious content.

	3
	Email address
	Scan for email-address with malicious intent.

	4
	Phone number
	Scan for phone number with malicious intent.

	5
	Text data
	Scan text data for malicious content.

Table 2: Document types
5.1.1.4 Output

Result of the scan SHALL be returned by the scan engine as output of the interface as one of follows:

0 if benign.

1 if malicious.

Status code SHALL be returned by the scan engine as output of the interface.

0 if success.

-1 if failure.
Name of threat detected MAY be returned by the scan engine as output of the interface.
Severity level MAY be returned by the scan engine as output of the interface when the result of the scan is found to be malicious. Severity level specifies the level of threat posed by a content that was found to be malicious and recommended screening action for the calling enabler. See table below for exact details.

	Severity level
	Meaning
	Recommended screening behavior
	Note

	0
	Low
	Process with a warning.
	This severity level may be assigned to content previously considered malicious.

	1
	Medium Low
	Prompt the user before processing.
	Ask the user if he/she wants the enabler to process the content.

	2
	Medium
	Do not process the content.
	e.g. Content may not need to be deleted as it may just be inappropriate for the particular device.

	3
	Medium High
	Do not process the content and prompt user for removal if stored.
	Ask the user if he/she wants the enabler to remove the content.

	4
	High
	Do not process the content and automatically remove if stored.
	

Table 3: Severity Level
5.2 Error Retrieval Interface
5.2.1 CSF-7
5.2.1.1 Name

CSFGetLastError
5.2.1.2 Description
This interface returns the last-error code set by the scan engine.
5.2.1.3 Input
None.
5.2.1.4 Output
The last error code set by the scan engine SHALL be returned as output of the interface. See table 4 for list of platform independent error codes.

	Error Code
	Description

	0
	Success, not an error.

	1
	Operation cancelled.

	2
	Failed to access data (e.g. read failed).

	3
	Invalid input parameter.

	4
	Insufficient resource (e.g. out of memory)

	5
	Internal error.

Table 4: Error codes

6. Supporting Interfaces
(Informative)
This section specifies informative interfaces of the client side content screening framework that are usually required in client terminals for supporting normative interfaces defined in the previous section. They are provided for guidance only.

6.1 Scan Engine Initialization Interface

6.1.1 CSF-2
6.1.1.1 Name

CSFSystemInit
6.1.1.2 Description
This interface performs initialization of the scan engine and is invoked (e.g. during boot-time) before other CSF interfaces. Specifically, validation and environment initialization of data kept at persistent storage locations of a mobile terminal are performed. These data are commonly virus database, configuration settings, and synchronization objects used by the scan engine. The exact data are implementation dependent.

6.1.1.3 Input
None.
6.1.1.4 Output

Status code:

0 if success.

-1 if failure.
6.2 Virus Database Update Interface
6.2.1 CSF-3
6.2.1.1 Name

CSFScanUpdate

6.2.1.2 Description
This interface triggers the scan engine to perform update of its virus database.
6.2.1.3 Input
None.
6.2.1.4 Output

Status code:

0 if success.

-1 if failure.
6.2.2 CSF-4
6.2.2.1 Name

CSFScanVersion

6.2.2.2 Description
This interface obtains version information of the virus database.

6.2.2.3 Input

None.
6.2.2.4 Output

Virus database version information.

Scan engine version information.
Status code:

0 if success.

-1 if failure.
6.3 Scan Engine Configuration Interface
6.3.1 CSF-5
6.3.1.1 Name

CSFConfigSet
6.3.1.2 Description
This interface sets a value for the specified scan engine configuration variable (e.g. to turn on or off the scanner). Only one request can be made at one time. Each variable can only take one value.
6.3.1.3 Input
Name of the scan engine configuration variable.
6.3.1.4 Output
New configuration setting/value for the variable specified.
Status code:

0 if success.

-1 if failure.
6.3.2 CSF-6
6.3.2.1 Name

CSFConfigGet
6.3.2.2 Description
This interface retrieves a value for the specified scan engine configuration variable. Only one request can be made at one time. Each variable can only take one value.
6.3.2.3 Input

Name of the scan engine configuration variable.
6.3.2.4 Output
Value of the specified scan engine configuration variable.
Status code:
0 if success.

-1 if failure.
7. Scan Interface Invocation Time
(Informative)
Client side content screening framework provides identification of malicious content before a client enabler processes or renders a given content. The scanning of the content is transparent to the user until the scan engine detects a malicious content. Table 2 specifies recommended scanning time according to type of content and client enablers. Note that multiple invocations of the scan interface are not necessary. What is important is that scanning takes place early in the priority list.
	Recommended CSFScanData (CSF-1) Invocation Time
	Content Type
	Enablers

	1. After receiving
	XHTML

Email message

SMS message

MMS message

Instruction code

Multimedia data
	Browser

Message Handler

File installer

HTTP protocol handler

Data exchange

	2. Before storing
	XHTML

Email message

SMS message

MMS message

Instruction code

Multimedia data
	Browser

Message Handler

Phone

File installer

HTTP protocol handler

Data exchange

	3. Before rendering (or execution)
	XHTML

Email message

SMS message

MMS message

Instruction code

Multimedia data
	Browser

Message Handler

	4. Before forwarding to other enablers
	Instruction code

Multimedia data
URL address
	Browser

Message Handler

File installer

HTTP protocol handler

Data exchange

	5. Before requesting
	URL address

Email address

Phone number

	Browser

Message Handler

File installer

HTTP protocol handler

Data exchange

Phone

Table 5: CSFScanData (CSF-1) Invocation Priority
Appendix A. Implementer’s Note
(Informative)

This section is provided as informative purpose to assist implementors of client side content screening framework by describing the framework interfaces in particular execution environments. Note that CSFScanOpen() and other calls are considered as platform dependent functions.
A.1 Framework Interfaces in C

A.1.1 Content Scanning Interface

A.1.1.1 CSFScanData
Description

This interface is used by enabler related to end-user content delivery and/or processing for content scanning. Upon invocation, scan engine performs scanning of the fowarded content and returns the result to the calling enabler. The caller screens the content if it was determined to be malicious based on the result from the scan engine. The caller specifies scanner action, scan target data type(s), a set I/O functions to access the data, and an optional callback function for information retrieval. The result of the scan is returned in a caller provided data structure.
Prototype

int CSFScanData(CSFSCAN_HANDLE hScan,

 SScanParamxe "SScanParam"* pParam,

 SScanResultxe "SScanResult"* pResult);

Parameters

hScan

· [in] Scan engine handle obtained from a call to the CSFScanOpen() function.

pParam

· [in] Pointer to a structure containing data scan parameters.

pResult

· [out] Pointer to a structure containing data scan results.
Return Value (status code)
0 if successful, -1 otherwise.

A.1.2 Error Retrieval Interface
A.1.2.1 CSFGetLastError
Description

This interface is used for retrieving error information when a CSF interface fails.
Prototype

CSFErrorCode CSFGetLastError(CSFLIB_HANDLE hLib);

Parameter

hLib

[in] CSF library handled returned by CSFLibraryOpen.

Return Value

[out] 32-bit error code value.

Table 6 lists a set of error codes to be reported using the CSFGetLastError interface which returns a 32-bit value formed by combining a component code with an error code (see Figure 2). The last error set by the scan engine when an interface fails is retrieved using CSFGetLastError interface, and an appropriate action is to be taken by the invoking enablers.

	Component
	Error
	Description

	Code
	Value1
	Code
	Value2
	

	Default
	00h
	CSF_ERR_SUCCESS
	000000h
	Success; not an error

	Default
	00h
	CSF_ERR_CANCELLED
	000001h
	Operation cancelled.

	Default
	00h
	CSF_ERR_DATA_ACCESS
	000002h
	Failed to access data (e.g. read failed).

	Default
	00h
	CSF_ERR_INVALID_PARAM
	000003h
	Invalid input parameter.

	Default
	00h
	CSF_ERR_INSUFFICIENT_RSC
	000004h
	Insufficient resource (e.g. out of memory)

	Default
	00h
	CSF_ERR_INTERNAL
	000005h
	Internal error.

Table 6: Error Codes

[image: image3.wmf]31

component code

0

error code

24

8

16

Figure 2: 32-bit error code format

A.1.3 Scan Engine Initialization Interface

A.1.3.1 CSFSystemInit
Description

Verifies and initializes system environment information.

Prototype

int CSFSystemInit(void);

Parameters

None.

Return Value

0 if successful, -1 otherwise.
A.1.4 Virus Database Update Interface
A.1.4.1 CSFScanUpdate
Description

This interface triggers the scan engine to perform update of the virus database.
Prototype

int CSFScanUpdate(CSFSCAN_HANDLE hScan,

SUpdateParam* pParam);

Parameters

hScan
· [in] CSF scan handle obtained using the CSFScanOpen() function.

pParam

· [in] Pointer to an update parameter structure containing a callback function pointer for update cancellation/abort and progress status update.
Return Value

0 if successful, -1 otherwise.
A.1.4.2 CSFScanVersion
Description

This interface obtains version information of the virus database.

Prototype

int CSFScanVersion(CSFSCAN_HANDLE hScan,

SVerInfo* pVer);

Parameter

hScan
· [in] Scan engine handle obtained using the CSFScanOpen() function.

pVer
· [out] Pointer to SVerInfo structure described below. Null-character (‘\0’) terminated strings are stored in the fields of this structure.
	#define CSF_VERSION_MAX 16

typedef struct

{

char szVer[CSF_VERSION_MAX];
char szEngineVer[CSF_VERSION_MAX];
} SVerInfo;

Table 7: SVerInfo structure
Return Value

0 if successful, -1 otherwise.
A.1.5 Scan Engine Configuration Interface
A.1.5.1 CSFConfigSet
Description

This interface sets a value for the specified scan engine configuration variable (e.g. to turn on or off the scanner). Only one request can be made at one time. Each variable can only take one value.
Prototype

int CSFConfigSet(CSFCONFIG_HANDLE hConfig,
char const* pszName,
char const* pszValue);
Parameters

hConfig
· [in] Configuration handle returned by the CSFConfigOpen() function.

pszName

· [in] NULL terminated configuration variable name.

pszValue

· [int] NULL terminated new configuration setting/value for the variable specified

Return Value

0 if successful, -1 otherwise.
A.1.5.2 CSFConfigGet
Description

This interface retrieves a value for the specified scan engine configuration variable. Only one request can be made at one time. Each variable can only take one value.
Prototype

int CSFConfigGet(CSFCONFIG_HANDLE hConfig

char const* pszName,
char* pBuffer,
unsigned int uSize);

Parameter

hConfig

· [in] Configuration handle returned by the CSFConfigOpen() function.

pszName

· [in] null terminated configuration variable name.

pBuffer

· [out] null terminated configuration setting/value for the variable specified

uSize

· [in] Length of pBuffer in bytes.
Return Value

0 if successful, -1 otherwise.
Appendix B. Change History
(Informative)

B.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

B.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-Client_Side_CS_FW-V1_0
	13 Apr 2005
	All
	1st Draft as per OMA-MAE-2005-0058-TS_Client_Side_CS_FW.

	
	26 Aug 2005
	5, 6, 7, Appendix A
	Change Request:

OMA-MAE-2005-0103R04-CR-to-TS_Client_Side_CS_FW

	
	17 Oct 2005
	3.2, 5.2, A1.2
	Change Requests:

OMA-MAE-2005-0269-TS_Client_Side_CS_FW-CR-Error

OMA-MAE-2005-0270R01-TS_Client_Side_CS_FW-CR-Terms

	
	17 Nov 2005
	2, 5, 6, Appendix C
	Change Request:

OMA-MAE-2005-0327R02-TS_Client_Side_CS_FW-CR-SCR
Editorial Revision:

5, 6: Fixed format problem in subsection numbering scheme.

	
	18 Jan 2006
	2.1, 2.2, C.1, C.2
	Revised according to consistency review report:
OMA-CONRR-Client_Side_CS_FW-V1_0-20060117-D

	Candidate Versions

OMA-TS-Client_Side_CS_FW-V1_0
	09 Feb 2006
	n/a
	Status changed to Candidate by TP

 TP doc.ref# OMA-TP-2006-0059-Client_Side_CS_FW-V1_0_for_Candidate_approval

Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].
C.1 SCR for Client Side Content Screening Framework Client
C.1.1 SCR for Calling Enabler
	Item
	Function
	Reference
	Status
	Requirement

	CSCSF-CE-001
	Invoke CSFScanData (CSF-1) interface to request scanning of content.
	5.1
	M
	CSCSF-SE-001 AND

CSCSF-CE-003

	CSCSF-CE-002
	Invoke CSFGetLastError (CSF-7) interface to retrieve last error code set by scan engine.
	5.2
	O
	CSCSF-SE-002

	CSCSF-CE-003
	Provide content data as input to CSFScanData (CSF-1) interface.
	5.1
	M
	CSCSF-CE-001

	CSCSF-CE-004
	Provide content type as input to CSFScanData (CSF-7) interface.
	5.2
	O
	CSCSF-CE-001

C.1.2 SCR for Scan Engine
	Item
	Function
	Reference
	Status
	Requirement

	CSCSF-SE-001
	Support for CSFScanData (CSF-1) interface
	5.1
	M
	CSCSF-SE-003 AND

CSCSF-SE-004

	CSCSF-SE-002
	Support for CSFGetLastError (CSF-7) interface
	5.2
	O
	CSCSF-SE-007

	CSCSF-SE-003
	Provide result of the scan as output of CSFScanData (CSF-1) interface.
	5.1
	M
	CSCSF-SE-001

	CSCSF-SE-004
	Provide status code as output of CSFScanData (CSF-1) interface.
	5.1
	M
	CSCSF-SE-001

	CSCSF-SE-005
	Provide name of threat detected as output of CSFScanData (CSF-1) interface.
	5.1
	O
	CSCSF-SE-001

	CSCSF-SE-006
	Provide severity level as output of CSFScanData (CSF-1) interface.
	5.1
	O
	CSCSF-SE-001

	CSCSF-SE-007
	Provide last error code as output of CSFGetLastError (CSF-7) interface.
	5.2
	O
	CSCSF-SE-002

C.2 SCR for Client Side Content Screening Framework Server

No server requirements exist for Client Side Content Screening Framework.
CSF-1 … CSF-7

Name of interfaces offered (following the interface naming convention)

Indicates that enabler uses functions of other enabler outside the framework

Indicates that enabler uses functions of other enabler within the framework that is needed for providing essential functions of the framework.

CSF-2 CSF-3 … CSF-7

User Interface

Content Source

CSF-1

Content Screening Framework

Scan Engine

Indicates that enabler uses functions of other enabler within the framework that is essential to the framework.

Enabler A

(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]
(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]

_1108455180.vsd

