OMA-WAP-ESMP–V1_0-20050517-C
Page 11 V(229)

	[image: image1.jpg]
	

	ECMAScript Mobile Profile

A Wireless Markup Scripting Language

	Candidate Version 1.0 – 17 May 2005

	Open Mobile Alliance

	OMA-WAP-ESMP–V1_0-20050517-C

	Continues the Technical Activities

Originated in the WAP Forum
	[image: image2.png]

	

	
	

 Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

121.
Scope

2.
References
13
2.1.
Normative References
13
2.2.
Informative References
14
2.3.
How to Read this Document
14
3.
Definitions and Abbreviations
16
3.1.
Conventions
16
3.2.
Definitions
16
3.3.
Abbreviations
17
4.
Introduction
18
4.1.
Why Scripting?
18
4.2.
Language Construction
18
4.3.
Language Differences
19
5.
Language Syntax
20
5.1.
Lexical Conventions
20
5.1.1.
Language and Character Set
20
5.1.2.
Whitespace and Line Terminator Characters
20
5.1.3.
Semicolon Usage
21
5.1.4.
Comments
21
5.1.5.
Language Tokens
21
5.1.6.
Identifiers
22
5.1.7.
Punctuators
22
5.1.8.
Literals
22
5.1.8.1.
Null
22
5.1.8.2.
Boolean
22
5.1.8.3.
Numeric
22
5.1.8.4.
String
23
5.1.8.5.
Regular Expression
23
5.2.
Variable and Data Types
24
5.2.1.
String Type
24
5.2.2.
Numeric Types
24
5.2.3.
Object Type
24
5.2.4.
Other Types
24
5.2.4.1.
Undefined
24
5.2.4.2.
Null
24
5.2.4.3.
Boolean
24
5.3.
Type Conversions
25
5.4.
Execution Contexts
26
5.4.1.
Variable Context
26
5.4.2.
Dynamically Created Code
27
5.5.
Language Syntax and Semantics
27
5.5.1.
Expressions
28
5.5.2.
Operators
28
5.5.3.
Grammar and Syntax
31
6.
Native (Built-in) Objects
33
6.1.
Object Relationships
33
6.2.
Object Management
33
6.2.1.
Version Property
33
6.2.2.
Object Enumeration
34
6.3.
Global Object (parent Object)
35
6.3.1.
Version History
35
6.3.2.
Properties
35
6.3.3.
Methods
35
6.3.3.1.
encodeURI()
36
6.3.3.2.
encodeURIComponent()
36
6.3.3.3.
decodeURI()
37
6.3.3.4.
decodeURIComponent()
37
6.3.3.5.
isFinite()
37
6.3.3.6.
isNaN()
38
6.3.3.7.
parseInt()
39
6.3.3.8.
parseFloat()
39
6.3.3.9.
toString()
40
6.3.3.10.
eval()
40
6.4.
Array Object
40
6.4.1.
Version History
41
6.4.2.
Properties
41
6.4.2.1.
length
41
6.4.3.
Methods
42
6.4.3.1.
concat()
42
6.4.3.2.
join()
43
6.4.3.3.
toString()
43
6.4.3.4.
pop()
43
6.4.3.5.
push()
44
6.4.3.6.
reverse()
44
6.4.3.7.
shift()
45
6.4.3.8.
slice()
45
6.4.3.9.
sort()
46
6.4.3.10.
splice()
47
6.4.3.11.
unshift()
48
6.5.
String Object
48
6.5.1.
Version History
48
6.5.2.
Properties
49
6.5.2.1.
length
49
6.5.3.
Methods
49
6.5.3.1.
toString()
49
6.5.3.2.
valueOf()
50
6.5.3.3.
charAt()
50
6.5.3.4.
charCodeAt()
51
6.5.3.5.
concat()
52
6.5.3.6.
indexOf()
52
6.5.3.7.
lastIndexOf()
53
6.5.3.8.
localeCompare()
54
6.5.3.9.
match()
54
6.5.3.10.
replace()
55
6.5.3.11.
search()
56
6.5.3.12.
slice()
56
6.5.3.13.
split()
57
6.5.3.14.
substring()
58
6.5.3.15.
toLowerCase(), toLocaleLowerCase()
58
6.5.3.16.
toUpperCase(), toLocaleUpperCase()
59
6.6.
RegExp Object
59
6.6.1.
Version History
59
6.6.2.
Pattern Summary
59
6.6.3.
Pattern Semantics
61
6.6.4.
Properties
61
6.6.4.1.
source
61
6.6.4.2.
global
62
6.6.4.3.
ignoreCase
62
6.6.4.4.
lastIndex
62
6.6.4.5.
multiline
62
6.6.5.
Methods
63
6.6.5.1.
exec()
63
6.6.5.2.
test()
63
6.6.5.3.
toString()
64
6.6.5.4.
compile()
64
6.7.
Boolean Object
64
6.7.1.
Version History
64
6.7.2.
Methods
64
6.7.2.1.
toString()
65
6.7.2.2.
valueOf()
65
6.8.
Number Object
65
6.8.1.
Version History
66
6.8.2.
Constants
66
6.8.2.1.
MAX_VALUE
66
6.8.2.2.
MIN_VALUE
66
6.8.2.3.
NaN
66
6.8.2.4.
NEGATIVE_INFINITY
66
6.8.2.5.
POSITIVE_INFINITY
66
6.8.3.
Properties
67
6.8.4.
Methods
67
6.8.4.1.
toExponential()
67
6.8.4.2.
toFixed()
68
6.8.4.3.
toLocaleString()
68
6.8.4.4.
toString()
69
6.8.4.5.
valueOf()
70
6.8.4.6.
toPrecision()
70
6.9.
Math Object
71
6.9.1.
Version History
71
6.9.2.
Properties and Constants
72
6.9.3.
Methods
72
6.9.3.1.
Integerizing Methods
72
6.9.3.2.
General Mathematical Methods
73
6.9.3.3.
Trigonometric Methods
73
6.9.3.4.
max()
73
6.9.3.5.
min()
74
6.9.3.6.
random()
75
6.10.
Date Object
75
6.10.1.
Version History
75
6.10.2.
Time Range
75
6.10.3.
Day Number and Time within Day
75
6.10.4.
Properties
76
6.10.5.
Methods
76
6.10.5.1.
getTime()
76
6.10.5.2.
getFullYear(), getUTCFullYear()
77
6.10.5.3.
getMonth(), getUTCMonth()
77
6.10.5.4.
getDate(), getUTCDate()
78
6.10.5.5.
getDay(), getUTCDay()
78
6.10.5.6.
getHours(), getUTCHours()
79
6.10.5.7.
getMinutes(), getUTCMinutes()
79
6.10.5.8.
getSeconds(), getUTCSeconds()
80
6.10.5.9.
getMilliseconds(), getUTCMilliseconds()
80
6.10.5.10.
getTimezoneOffset()
81
6.10.5.11.
parse()
81
6.10.5.12.
UTC()
82
6.10.5.13.
setTime()
82
6.10.5.14.
setFullYear(), setUTCFullYear()
83
6.10.5.15.
setMonth(), setUTCMonth()
83
6.10.5.16.
setDate(), setUTCDate()
84
6.10.5.17.
setHours(), setUTCHours()
84
6.10.5.18.
setMinutes(), setUTCMinutes()
85
6.10.5.19.
setSeconds(), setUTCSeconds()
85
6.10.5.20.
setMilliseconds(), setUTCMilliseconds
86
6.10.5.21.
toString(), toLocaleString(), toUTCString()
86
6.10.5.22.
toDateString(), toLocaleDateString()
87
6.10.5.23.
toTimeString(), toLocaleTimeString()
87
6.10.5.24.
valueOf()
88
6.11.
Error (Exception) Object
88
6.11.1.
Version History
88
6.11.2.
Constructor
89
6.11.3.
Properties
90
6.11.3.1.
name
90
6.11.3.2.
message
90
6.11.3.3.
code
91
6.12.
Native Error Objects
91
6.12.1.
Version History
91
6.12.2.
Native Error Types (Constants)
92
6.12.3.
Constructor
94
6.12.4.
Properties
94
6.12.4.1.
name
94
6.12.4.2.
message
95
6.12.4.3.
code
95
6.13.
Unsupported Native Objects
96
6.13.1.
Object object
96
6.13.2.
Function object
96
7.
The Language Environment
97
7.1.
Reference Programming Model
97
7.1.1.
Script Context
97
7.1.2.
Generic Browser Context
97
7.1.3.
Document Context
97
7.2.
Script Invocation Mechanisms
97
7.2.1.
Invocation via Navigation
97
7.2.2.
<script> Element Definition
97
7.2.2.1.
Inline Execution
98
7.2.2.2.
Event-based (Deferred) Execution
98
7.2.2.3.
File-based Execution
99
7.2.2.4.
Scheme-based execution
99
7.3.
Script Completion Mechanisms
100
7.3.1.
Normal Completion
100
7.3.2.
Aborted Completion
100
8.
Events
101
8.1.
XHTML Event Types
101
8.2.
Event Binding
101
8.3.
Event Object
101
8.3.1.
Event Properties
102
8.3.2.
Properties
102
8.3.2.1.
keyCode
102
8.3.2.2.
target
103
8.3.2.3.
timeStamp
103
8.3.2.4.
type
104
8.4.
Reference Processing Model
105
8.4.1.
Event Capture and Bubbling
105
8.4.2.
Event Cancellation
105
8.5.
Sample Code
105
9.
Browser Host Objects
108
9.1.
Global Object (window object)
108
9.1.1.
Properties
108
9.1.1.1.
history
109
9.1.1.2.
navigator
109
9.1.1.3.
location
109
9.1.1.4.
document
110
9.1.2.
Methods
110
9.1.2.1.
prompt()
110
9.1.2.2.
confirm()
111
9.1.2.3.
alert()
111
9.1.2.4.
setTimeout()
112
9.1.2.5.
clearTimeout()
113
9.2.
Navigator Object
114
9.2.1.
Version History
114
9.2.2.
Properties
114
9.2.2.1.
appName
114
9.2.2.2.
appVersion
115
9.2.2.3.
userAgent
115
9.3.
History Object
116
9.3.1.
Version History
116
9.3.2.
Properties
116
9.3.2.1.
length
116
9.3.3.
Methods
116
9.3.3.1.
back()
116
9.3.3.2.
forward()
117
9.3.3.3.
go()
118
9.4.
Location Object
119
9.4.1.
Version History
119
9.4.2.
Properties
119
9.4.2.1.
hash
119
9.4.2.2.
host
120
9.4.2.3.
href
120
9.4.2.4.
hostname
121
9.4.2.5.
pathname
121
9.4.2.6.
port
122
9.4.2.7.
protocol
122
9.4.2.8.
search
122
9.4.3.
Methods
123
9.4.3.1.
assign()
123
9.4.3.2.
reload()
124
9.4.3.3.
replace()
125
9.5.
Basic Document Object
125
9.5.1.
Version History
125
9.5.2.
Properties
126
9.5.2.1.
cookie
126
9.5.2.2.
domain
128
9.5.2.3.
referrer
128
9.5.2.4.
title
129
9.5.3.
Methods
129
9.5.3.1.
clear()
129
9.5.3.2.
open()
130
9.5.3.3.
close()
130
9.5.3.4.
write(), writeln()
131
9.6.
Host Object Extension Mechanism
132
10.
Browser XHTML DOM Objects
133
10.1.
XHTML Document Object
135
10.1.1.
Version History
135
10.1.2.
Properties
135
10.1.2.1.
forms
135
10.1.2.2.
length
136
10.1.2.3.
links
136
10.1.2.4.
images (OPTIONAL)
137
10.1.3.
Methods
137
10.2.
Link Element Object
137
10.2.1.
Version History
137
10.2.2.
Properties
138
10.2.2.1.
hash
138
10.2.2.2.
host
138
10.2.2.3.
href
139
10.2.2.4.
hostname
139
10.2.2.5.
pathname
140
10.2.2.6.
port
141
10.2.2.7.
protocol
141
10.2.2.8.
search
141
10.2.3.
Methods
142
10.3.
Image Element Object (OPTIONAL)
142
10.3.1.
Version History
142
10.3.2.
Properties
143
10.3.2.1.
border
143
10.3.2.2.
height
143
10.3.2.3.
hspace
144
10.3.2.4.
name
144
10.3.2.5.
src
144
10.3.2.6.
vspace
145
10.3.2.7.
width
145
10.3.3.
Methods
145
10.4.
Form Object
145
10.4.1.
Version History
146
10.4.2.
Properties
147
10.4.2.1.
action
147
10.4.2.2.
elements
147
10.4.2.3.
enctype
148
10.4.2.4.
length (of the forms array)
149
10.4.2.5.
length (of a form object)
149
10.4.2.6.
method
149
10.4.2.7.
name
150
10.4.3.
Methods
150
10.4.3.1.
reset()
150
10.4.3.2.
submit()
151
10.5.
Text Input Object
151
10.5.1.
Version History
151
10.5.2.
Properties
152
10.5.2.1.
defaultValue
152
10.5.2.2.
form
152
10.5.2.3.
maxLength
153
10.5.2.4.
name
153
10.5.2.5.
size
154
10.5.2.6.
type
154
10.5.2.7.
value
155
10.5.3.
Methods
155
10.5.3.1.
select()
155
10.5.3.2.
blur()
156
10.5.3.3.
focus()
156
10.6.
Textarea Input Object
156
10.6.1.
Version History
156
10.6.2.
Properties
157
10.6.2.1.
cols
157
10.6.2.2.
form
157
10.6.2.3.
name
158
10.6.2.4.
rows
158
10.6.2.5.
type
159
10.6.2.6.
value
160
10.6.3.
Methods
160
10.6.3.1.
blur()
160
10.6.3.2.
focus()
161
10.6.3.3.
select()
161
10.7.
Password Input Object
161
10.7.1.
Version History
161
10.8.
Radio Input Object
162
10.8.1.
Version History
162
10.8.2.
Properties
162
10.8.2.1.
checked
162
10.8.2.2.
defaultChecked
163
10.8.2.3.
form
163
10.8.2.4.
length
164
10.8.2.5.
name
164
10.8.2.6.
type
165
10.8.2.7.
value
166
10.8.3.
Methods
166
10.8.3.1.
click()
166
10.9.
Checkbox Input Object
167
10.9.1.
Version History
167
10.9.2.
Properties
167
10.9.2.1.
checked
167
10.9.2.2.
defaultChecked
168
10.9.2.3.
form
168
10.9.2.4.
name
169
10.9.2.5.
type
170
10.9.2.6.
value
171
10.9.3.
Methods
171
10.9.3.1.
click()
171
10.10.
Submit Object
171
10.10.1.
Version History
171
10.10.2.
Properties
172
10.10.2.1.
form
172
10.10.2.2.
name
172
10.10.2.3.
type
173
10.10.2.4.
value
174
10.10.3.
Methods
174
10.10.3.1.
click()
174
10.11.
Reset Object
175
10.11.1.
Version History
175
10.11.2.
Properties
175
10.11.3.
Methods
175
10.11.3.1.
click()
175
10.12.
Select Element Object
176
10.12.1.
Version History
176
10.12.2.
Properties
176
10.12.2.1.
form
176
10.12.2.2.
length
176
10.12.2.3.
name
177
10.12.2.4.
options
177
10.12.2.5.
selectedIndex
178
10.12.2.6.
size
178
10.12.2.7.
type
179
10.12.2.8.
value
179
10.12.3.
Methods
180
10.12.3.1.
add()
180
10.12.3.2.
remove()
181
10.13.
Option Element Object
181
10.13.1.
Version History
181
10.13.2.
Properties
182
10.13.2.1.
defaultSelected
182
10.13.2.2.
form
182
10.13.2.3.
label
183
10.13.2.4.
selected
183
10.13.2.5.
text
183
10.13.2.6.
value
184
10.13.3.
Methods
184
10.14.
Button Element Object
184
10.14.1.
Version History
184
10.14.2.
Properties
185
10.14.2.1.
form
185
10.14.2.2.
name
185
10.14.2.3.
type
186
10.14.2.4.
value
186
10.14.3.
Methods
187
10.14.3.1.
blur()
187
10.14.3.2.
click ()
187
10.14.3.3.
focus ()
188
10.15.
Screen Object (OPTIONAL)
188
10.15.1.
Version History
188
10.15.2.
Properties
189
10.15.2.1.
availHeight
189
10.15.2.2.
availWidth
189
10.15.2.3.
colorDepth
190
10.15.2.4.
height
190
10.15.2.5.
width
190
10.15.3.
Methods
191
11.
Browser DOM2 Core Objects
192
11.1.
DOMException Object
193
11.1.1.
Version History
193
11.1.2.
Properties
193
11.1.3.
Constants
193
11.2.
Node Object
194
11.2.1.
Version History
194
11.2.2.
Properties
195
11.2.2.1.
nodeName
195
11.2.2.2.
nodeValue
195
11.2.2.3.
nodeType
195
11.2.2.4.
parentNode
196
11.2.2.5.
childNodes
196
11.2.2.6.
firstChild
196
11.2.2.7.
lastChild
197
11.2.2.8.
previousSibling
197
11.2.2.9.
nextSibling
197
11.2.2.10.
attributes
198
11.2.2.11.
ownerDocument
198
11.2.2.12.
namespaceURI
198
11.2.2.13.
prefix
198
11.2.2.14.
localName
198
11.2.3.
Methods
198
11.2.3.1.
hasAttributes() [DI]
198
11.2.3.2.
hasChildNodes() [DI]
199
11.2.3.3.
insertBefore() [SM]
199
11.2.3.4.
replaceChild() [SM]
200
11.2.3.5.
removeChild() [SM]
200
11.2.3.6.
appendChild() [SM]
201
11.2.3.7.
cloneNode() [SM]
201
11.3.
DOM2 Document Object
202
11.3.1.
Version History
202
11.3.2.
Properties
203
11.3.3.
Methods
203
11.3.3.1.
createElement() [SM]
203
11.3.3.2.
createTextNode() [SM]
203
11.3.3.3.
getElementsByTagName() [DI]
204
11.3.3.4.
getElementById() [DI]
204
11.4.
NodeList Object
205
11.4.1.
Version History
205
11.4.2.
Properties
205
11.4.2.1.
length
205
11.4.3.
Methods
205
11.4.3.1.
item() [DI]
206
11.5.
Element Object
206
11.5.1.
Version History
206
11.5.2.
Properties
207
11.5.2.1.
tagName
207
11.5.3.
Methods
207
11.5.3.1.
getAttribute() [DI]
207
11.5.3.2.
setAttribute() [DM],[SM*]
208
11.5.3.3.
removeAttribute() [DM]
209
11.5.3.4.
getElementsByTagName() [DI]
209
11.5.3.5.
hasAttribute() [DI]
210
11.6.
Text (CharacterData) Object
210
11.6.1.
Version History
210
11.6.2.
Properties
211
11.6.2.1.
data
211
11.6.2.2.
length
211
11.6.3.
Methods
212
11.6.3.1.
appendData() [DM]
212
11.6.3.2.
deleteData() [DM]
212
11.6.3.3.
insertData() [DM]
213
11.6.3.4.
replaceData() [DM]
213
11.6.3.5.
substringData() [DI]
214
Appendix A.
Static Conformance Requirements
215
A.1
Encoder/ Compiler Conformance
215
Appendix B.
Change History (Informative)
221
Appendix C.
Mapping WMLScript Libraries to ECMAScript-MP Objects
223
Appendix D.
Differences between WMLScript and ECMAScript Mobile Profile (ESMP)
228
Appendix E.
Differences between ECMAScript Mobile Profile (ESMP) and ECMA-262
229

1. Scope

Open Mobile Alliance (OMA) is a consortium of mobile industry companies working to define an industry-wide specification for developing applications that operate over wireless communication networks. The scope for the OMA is to define a set of specifications to be used by service applications. The wireless market is growing very quickly and reaching new customers and services. To enable operators and manufacturers to meet the challenges in advanced services, differentiation and fast/flexible service creation, OMA defines a set of protocols in transport, session and application layers. For additional information on the Wireless Application Environment, refer to [WAESPEC].

This specification describes the OMA wireless markup scripting language known as ECMAScript – Mobile Profile (ESMP). It is strongly based upon ECMAScript Release 3 [ECMA262] from the ECMA TC-39 Working Group. The same ECMA working group has also released a profile of the ECMAScript language for mobile devices [ECMA327]. The language has been modified to better support low bandwidth communication and thin clients. All changes from [ECMA327] are reflected in this specification and noted as static conformance requirements. ESMP should be used together with the OMA profile of the XHTML Markup Language [XHTMLMP] to provide added intelligence to the clients.

The specification will concentrate on three areas:

· Language differences between the ECMAScript Mobile Profile and Wireless Markup Scripting Language [WMLSCRIPT]

· Language syntax differences between [ECMA262] and ECMAScript Mobile Profile.

· The environment in which ECMAScript – Mobile Profile executes.

2. References

2.1. Normative References

	CREQ
	“Specification of WAP Conformance Requirements”, WAP Forum(, WAP-221-CREQ, URL: http://www.wapforum.org/

	DOM2CORE
	“Document Object Model (DOM) Level 2 Core Specification”, Version 1.0, W3C Recommendation, 13 November, 2000, URL: http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

	DOM2EVENTS
	“Document Object Model (DOM) Level 2 Events Specification”, Version 1.0, W3C Recommendation, 13 November, 2000, URL: http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113

	DOM2HTML
	“Document Object Model (DOM) Level 2 HTML Specification”, Version 1.0, W3C Recommendation, 9 January, 2003, URL: http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109

	ECMA262
	Standard ECMA-262, “ECMAScript Language Specification – Edition 3”, December 1999, URL: ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf

	ECMA327
	Standard ECMA-327, “ECMAScript 3rd Edition Compact Profile”, June 2001, URL: ftp://ftp.ecma.ch/ecma-st/Ecma-327.pdf

	HTML401
	“HTML 4.01 Specification”, W3C Recommendation, 24 December, 1999, URL: http://www.w3.org/TR/html401/

	HTTPSM
	“HTTP State Management Specification”, WAP Forum(, WAP-223-HTTPSM, URL: http://www.wapforum.org/

	IEEE754
	“IEEE Std 754-1985 Revision of Reaffirmed 1990 IEEE Standard for Binary Floating-Point Arithmetic Recognized as an American National Standard (ANSI) IEEE Std 754”, URL: http://standards.ieee.org/reading/ieee/std/busarch/754-1985.pdf (restricted access).

	RFC2109
	“HTTP State Management Mechanism”, D. Kristol, L. Montulli, February 1997, URL: http://www.ietf.org/rfc/rfc2109.txt

	RFC2119
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:
http://www.ietf.org/rfc/rfc2119.txt

	RFC2396
	“Uniform Resource Locators (URL)”, T. Berners-Lee, R. Fielding, L. Masinter, August 1998, URL: http://www.ietf.org/rfc/rfc2396.txt

	UNICODE
	“The Unicode Standard, Version 3.0”, Addison-Wesley, January 2000,ISBN 0-201-61633-5 URL: http://www.unicode.org/unicode/standard/standard.html

	WAESPEC
	“Wireless Application Environment Specification - Version 2.1”, Open Mobile Alliance(. OMA-WAP-299-WAESpec-V2_1. URL:http://www.openmobilealliance.org/

	WMLSCRIPT
	“WMLScript Language Specification”, WAP Forum(, WAP-193-WMLS, URL: http://www.wapforum.org/

	WINA
	“WAP WINA Process Document”, WAP Forum(, WAP-212-WINAProcess, URL: http://www.wapforum.org/

	XHTML
	“XHTML™ 1.0: The Extensible HyperText Markup Language - A Reformulation of HTML 4 in XML 1.0”, W3C Recommendation 26 January 2000, URL: http://www.w3.org/TR/2000/REC-xhtml1-20000126

	XHTMLMOD
	“Modularization of XHTML™” , W3C Recommendation, 10 April 2001, URL: http://www.w3c.org/TR/2001/REC-xhtml-modularization-20010410

	XHTMLMP
	“XHTML Mobile Profile 1.1”, Open Mobile Alliance(. OMA-WAP-XHTMLMP-V1_1. URL: http://www.openmobilealliance.org/

2.2. Informative References

	GOODMAN
	“JavaScript Bible, 4th Edition”, Danny Goodman, 2001, Hungry Minds. Inc., ISBN 0-7645-3342-8

	MCFARLANE
	“Professional JavaScript”, Nigel McFarlane et al., 1999, Wrox Press Ltd., ISBN 1-861002-70-X

	MICROSOFT
	“Microsoft Developers Network (MSDN) – Jscript”, 2002, URL: http://msdn.microsoft.com/library/

	NETSCAPE
	“Client-side Javascript Reference, v1.3”, Netscape Communications Corporation, 1999, URL: http://developer.netscape.com/docs/manuals/js/client/jsref/index.htm

	WCSS
	“WAP CSS Specification”, WAP Forum(, WAP-239-WCSS, URL: http://www.wapforum.org/

	WML1
	“Wireless Markup Language - Version 1.3”, WAP Forum(, WAP-191-WML, URL:http://www.wapforum.org/

	WMLSL
	“WMLScript Standard Libraries Specification”, WAP Forum(, WAP-194-WMLSL, URL:http://www.wapforum.org/

	WOOTTON
	“JavaScript – Programmer’s Reference”, Cliff Wootton, 2001, Wrox Press Ltd., ISBN 1-861004-59-1

	XHTMLBASIC
	“XHTML Basic - W3C Recommendation 19 December 2000”, URL: http://www.w3.org/TR/2000/REC-xhtml-basic-20001219

2.3. How to Read this Document

This section is informative.

This specification draws heavily upon a number of existing standards, and assumes familiarity with:

· The ECMAScript Language Specification [ECMA262]

· Document Object Model (DOM) Level 2 Core Specification [DOM2CORE]
This specification is written for two audiences. First and foremost, it is directed towards implementers of ECMAScript Mobile Profile. Secondly, it is written to be a reference for developers. As stated elsewhere in this document ECMA262 is the normative basis for the language syntax. To reduce clutter, normative statements relative to ECMA262 (per RFC2119) are made only when there is a difference between this specification and ECMA262. While this specification is not written as a tutorial, examples may be given, and informative text from relevant specifications may be included. The examples are not exhaustive, and are generally informative only. These examples do not stand as the normative definition, but are there to support normative prose.

In all cases where there may be a question or ambiguity in the specification, source standards always take precedent, unless explicitly noted otherwise.

Where possible reference pointers to base standards are given. They are noted as:

Reference: Reference Document Chapter

Statements which cause the generation of, or are a part of, a static conformance requirement are noted with a boxed, drop shadowed statement:

This statement MUST be construed as a static conformance requirement.
Notes which relate the specification to WMLScript are noted as:

WMLScript Note: A note about wmlscript

References to implementations from Netscape or Microsoft may be referred to by either company name (i.e. Netscape), product name (i.e. Internet Explorer or IE) or scripting name (i.e. Javascript or Jscript). These are used interchangeably.
3. Definitions and Abbreviations

3.1. Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” (Section 1) and “Introduction” (Section 4) are normative, unless they are explicitly indicated to be informative.
3.2. Definitions

Client - a device (or application) that initiates a request for connection with a server.

Content - subject matter (data) stored or generated at an origin server. Content is typically displayed or interpreted by a user agent in response to a user request.

Content Encoding - when used as a verb, content encoding indicates the act of converting a data object from one format to another. Typically the resulting format requires less physical space than the original, is easier to process or store and/or is encrypted. When used as a noun, content encoding specifies a particular format or encoding standard or process.

Content Format – actual representation of content.

Device - a network entity that is capable of sending and receiving packets of information and has a unique device address. A device can act as both a client and a server within a given context or across multiple contexts. For example, a device can service a number of clients (as a server) while being a client to another server.

ECMAScript Mobile Profile - a scripting language used to program the mobile device. ECMAScript Mobile Profile is a syntactic subset of the ECMAScript scripting language defined in ECMA262. It includes object extensions from both JavaScript and W3C specified functionality.

JavaScript - a de facto standard language that can be used to add dynamic behaviour to HTML documents. JavaScript is one of the originating technologies of ECMAScript.

Origin Server - the server on which a given resource resides or is to be created. Often referred to as a Web server or an HTTP server.

Resource - a network data object or service that can be identified by a URL. Resources may be available in multiple representations (e.g. multiple languages, data formats, size and resolutions) or vary in other ways.

Server - a device (or application) that passively waits for connection requests from one or more clients. A server may accept or reject a connection request from a client.

User - a user is a person who interacts with a user agent to view, hear or otherwise use rendered content.

User Agent - a user agent (or content interpreter) is any software or device that interprets markup language such as XHTML, script language, such as ECMAScript or resources. This may include textual browsers, voice browsers, search engines, etc.

Web Server - a network host that acts as an HTTP server.
WML - the Wireless Markup Language is a hypertext markup language used to represent information for delivery to a narrowband device, e.g. a phone.

3.3. Abbreviations

	API
	Application Programming Interface

	DOM
	Document Object Model

	ECMA
	European Computer Manufacturer Association

	EFI
	External Functionality Interface

	ESMP
	ECMAScript Mobile Profile

	HTML
	HyperText Markup Language

	HTTP
	Hypertext Transfer Protocol

	IE
	Internet Explorer

	OMA
	Open Mobile Alliance

	RFC
	Request For Comments

	URL
	Uniform Resource Locator

	UTF
	UCS Transformation Format

	W3C
	World Wide Web Consortium

	WAP
	Wireless Application Protocol

	WINA
	WAP Interim Naming Authority

	WWW
	World Wide Web

	XHTMLMP
	XHTML - Mobile Profile

4. Introduction

This section is informative.

The OMA has recognized that convergence between the wired Web and wireless devices, as targeted by the WAP architecture, is an important step toward bringing wireless devices into the mainstream. As a part of the convergence process, OMA has redefined the markup language that is to be used by WAP devices [XHTMLMP]. This specification is the redefinition of the scripting language that accompanies that markup.

Goals for this scripting language are:

· The language specified can be executed from within common browsers found on the wired web (i.e. Netscape Communicator and Microsoft Internet Explorer).

· The language must maintain the standard programming paradigms that are associated with wired implementations of script.

· The language must represent a minimal functional implementation, to support small devices.

· The language must be extensible, allowing for the support of future extensions either standard or proprietary.

· The language should support enough runtime discovery mechanisms to support error management through version control, and to support identification of optional, extended or proprietary features.

4.1. Why Scripting?

ECMAScript Mobile Profile is designed to provide general scripting capabilities for the mobile applications environment. Specifically, ECMAScript Mobile Profile is used to complement the XHTML markup language [XHTMLMP]. XHTMLMP is based on the W3C Extensible Hypertext Markup Language [XHTML]. It is designed to be used for specifying application content for small screen, narrowband devices like cellular phones and pagers. This content can be represented with text, images, selection lists etc. Formatting and styling [WCSS] can be used to make the user interfaces more readable as long as the client device used to display the content can support it. However, all this content is static and there is no way to extend the language without modifying the markup itself. The following list contains some capabilities that are not supported by XHTML:

· The ability to check the validity of user input (forms validation)

· The ability to apply mathematic and procedural logic locally to document data.

· Providing access to facilities of the device. For example, on a phone, allow the programmer to make phone calls, send messages, add phone numbers to the address book, access the SIM card etc.

· The ability to generate messages and dialogs locally, reducing the need for expensive round-trip for alerts, error messages, confirmations etc.

· The ability to handle events

· The ability to allow the dynamic creation and/or modification of documents on the client.

ECMAScript Mobile Profile is designed to overcome these limitations and to provide programmable functionality that can be used over narrowband communication links and in clients with limited capabilities.

4.2. Language Construction

ECMAScript Mobile Profile (ESMP) is actually a combination of a number of standards and technologies. The basis of ESMP is the scripting language codified by ECMA as ECMA262. This provides the syntax and language semantics. The language is a general purpose scripting language that can be applied in many environments. Since the mobile applications environment is oriented toward small wireless devices, we subset the language by further including ECMA327 (ECMAScript Compact Profile) as specified by ECMA. This specification allows us to remove a small number of ECMAScript features which are deemed too memory or compute intensive for the wireless environment.

As pointed out in the ECMA262 specification, the language has no context specified in which to execute. So ESMP must provide the execution environment. The context is provided as a set of “host objects” which make available access to the markup document which contains the script, and access to the host environment in which that document executes. Specifically, access to the document is provided by including a subset of the W3C Document Object Model interface DOM2CORE and DOM2HTMLto the markup document. And access to the environment is given by importing four common compatible objects taken from JavaScript (history object, navigator object, location object and the document object).

Since ECMA262, DOM2HTML and DOM2CORE are supported by the major web browsers on the wired web, ESMP represents a proper subset of these browsers. Thus scripts written to run in the ESMP environment should function (taking into account version etc.) on the wired web.

[image: image3.wmf]Host Environment Context

Document Context

Language

Syntax

ECMA

-

262

(with ECMA

-

327 exclusions)

4.3. Language Differences

Specific differences between WMLScript [WMLSCRIPT] and ECMAScript Mobile Profile, and between ECMAScript Mobile Profile and [ECMA262] are detailed in Appendix D and Appendix E.

5. Language Syntax

Unless explicitly stated [ECMA262] is normative for the definition of the syntax used in ECMAScript Mobile Profile.

5.1. Lexical Conventions

5.1.1. Language and Character Set

Reference: ECMA-262 Section 6

ECMAScript Mobile Profile program source text consists of a sequence of code points from the [UNICODE] character set. New code points may be added to the [UNICODE] standard so ECMAScript Mobile Profile implementations must accept any value in the allowed (but possibly unallocated) range specified in the [UNICODE] standard.

At a minimum, ECMAScript Mobile Profile implementations MUST support the UTF-8 and UTF-16 encoding of code points into bit patterns for the source text.

The program source encoding does not imply anything about an ECMAScript Mobile Profile implementation's internal representation of strings. Note: This is a change from [ECMA262] which says it only supports UTF-16 input.

As long as the source text character set and encoding can be mapped to and from UNICODE (e.g., ASCII), other character sets and encodings may be supported. It is intended that documents containing ECMAScript Mobile Profile need not conform to a very limited set of characters and encodings to be acceptable.

An ECMAScript Mobile Profile implementation's internal representation of text (e.g., strings) is not constrained in any way by this specification. However, the specification of certain language features (e.g., string.charCodeAt()) mandates exposure of a specific 16-bit representation. Note: This is also a change from [ECMA262] which says it only supports 16 bit characters internally.

 Implementations MUST support character level indexing for appropriate methods, independent of internal character length.

When "characters" are output, the encoding for output depends on the output destination. For example, output to an existing document usually adopts the existing encoding of the document. Controlling output encoding is not a part of this specification and will generally be implied by the output destination or take on a setting by default.

ECMAScript Mobile Profile is a case-sensitive language. All language keywords, variables, objects, methods and properties must use the proper capitalization of letters.
5.1.2. Whitespace and Line Terminator Characters

Reference: ECMA-262 Section 7.2

Whitespace and line terminator characters are used to improve source text readability and to separate tokens from each other, but are otherwise insignificant. Whitespace may occur within literal strings and is therein considered significant.

	Whitespace::
	
	
	

	
	Symbol
	Character Represented
	Codepoint

	
	<TAB>
	Tab
	\u0009

	
	<VT>
	Vertical Tab
	\u000B

	
	<FF>
	Form Feed
	\u000C

	
	<SP>
	Space
	\u0020

	
	<NBSP>
	Non-breaking Space
	\u00A0

	
	<USP>
	Unicode space separators
	\u2000-\u200A

Reference: ECMA-262 Section 7.3

Line terminators may not occur within literal strings or tokens.

	Line Terminator::
	
	
	

	
	Symbol
	Character Represented
	Codepoint

	
	<LF>
	Line Feed
	\u000A

	
	<CR>
	Carriage Return
	\u000D

	
	<ULS>
	Unicode Line Separator
	\u2028

	
	<UPS>
	Unicode Paragraph Separator
	\u2029

5.1.3. Semicolon Usage

Unlike ECMAScript [ECMA262], semicolons MUST be included as statement separators, and are required following ECMAScript Mobile Profile language statements.

5.1.4. Comments

Reference: ECMA-262 Section 7.4

The language defines two comment constructs: line comments (i.e., start with // and end in the end of the line) and block comments (i.e., consisting of multiple lines starting with /* and ending with */).

//This is a single line comment example.

/* This is an example of a multi-line block comment that extends for a few lines. This is typical of a ‘C’ style comment. */

It is illegal to have nested block comments.

5.1.5. Language Tokens

Reference: ECMA-262 Section 7.5

Reserved words, keywords and future reserved words are as defined in [ECMA262].

5.1.6. Identifiers

Reference: ECMA-262 Section 7.6

Identifiers are as defined in [ECMA262].

WMLScript Note: ‘$’is a valid character in a ECMAScript Mobile Profile identifier, whereas it was illegal in WMLScript. [WMLSCRIPT]

Examples of legal identifiers:

aVar $speed NEW_ADDRESS skram_ttenneb myLoopCnt myloopcnt $$BigVar$$

Note: myLoopCnt and myloopcnt are different variables since identifiers are case sensitive.

Examples of illegal identifiers:

while for if 4things 35345 dotted.var

Note: while, for and if are reserved words.

5.1.7. Punctuators

Reference: ECMA-262 Section 7.7

Punctuators are as defined in [ECMA262].

5.1.8. Literals

5.1.8.1. Null

Reference: ECMA-262 Section 7.8.1

Null literals are as defined in [ECMA262].

5.1.8.2. Boolean

Reference: ECMA-262 Section 7.8.2

Boolean literals are as defined in [ECMA262].

Boolean Literal::

true

false

WMLScript Note: In WMLScript these literals were capitalized. [WMLSCRIPT]

5.1.8.3. Numeric

Reference: ECMA-262 Section 7.8.3

Numeric literals are as defined in [ECMA262].

WMLScript Note: Literals referred to as “binary” literals in WMLScript [WMLSCRIPT] are referred to as HexIntegerLiterals in ECMAScript. [ECMA262]

5.1.8.4. String

Reference: ECMA-262 Section 7.8.4

String literals are as defined in [ECMA262].

WMLScript Note: Slash is no longer an escapable character and octal encoding is no longer supported. [WMLSCRIPT
For those characters that are not representable with strings, ECMAScript Mobile Profile supports special escape sequences by which these characters can be represented:

	Sequence
	Character represented
	Code Point
	Symbol

	\’
	Apostrophe or single quote
	\u0027
	'

	\"
	Double quote
	\u0022
	"

	\\
	Backslash
	\u005C
	\

	\/
	Slash
	\u002F
	/

	\b
	Backspace
	\u0008
	<BS>

	\f
	Form feed
	\u000C
	<FF>

	\n
	Newline
	\u000A
	<LF>

	\r
	Carriage return
	\u000D
	<CR>

	\t
	Horizontal tab
	\u0009
	<TAB>

	\xhh
	The character with the encoding specified by two hexadecimal digits hh (Latin-1 ISO8859-1)
	
	

	\uhhhh
	The Unicode character with the encoding specified by the four hexadecimal digits hhhh.
	
	

5.1.8.5. Regular Expression

Reference: ECMA-262 Section 7.8.5

Regular expression Literals are as defined in [ECMA262].

5.2. Variable and Data Types

5.2.1. String Type

Reference: ECMA-262 Section 8.4

The string type is as defined in [ECMA262].

5.2.2. Numeric Types

Reference: ECMA-262 Section 8.5

The numeric data type is a 64-bit IEEE-754 floating number as defined in [ECMA262]. For OMA devices, precision need only be displayed to 14 decimal digits (even though IEEE-754 64-bit floats guarantee ~21 digits).

The language MUST support the display of numbers to a minimum of 14 digits of accuracy.
It is important to note that the [ECMA262] does not specify actual internal numeric representations, only that the numbers stored act as if they are indistinguishable from full IEEE-754 64 bit floats. Hence, the requirement from [ECMA262] is to maintain accuracy, and to provide a uniform external representation, not to mandate internal format. Script language implementers are free to use any appropriate mathematical language optimisations for the purposes of saving space or reducing computing requirements.

5.2.3. Object Type

Reference: ECMA-262 Section 8.6

The Object type is as defined in [ECMA262].

5.2.4. Other Types

5.2.4.1. Undefined

Reference: ECMA-262 Section 8.1

The Undefined type is as defined in [ECMA262].

The Undefined type has exactly one value, called “undefined”. Any variable that has not been assigned a value has the value “undefined”.
5.2.4.2. Null

Reference: ECMA-262 Section 8.2

The Null type is as defined in [ECMA262].

The Null type has exactly one value, called “null”.
5.2.4.3. Boolean

Reference: ECMA-262 Section 8.3

The Boolean type is as defined in [ECMA262].

The Boolean type represents a logical entity having two values, called “true” and “false”.

5.3. Type Conversions

ECMAScript Mobile Profile is a weakly typed language and like both WMLScript[WMLSCRIPT] and ECMAScript [ECMA262] performs automatic type conversion as needed. Variables may contain values of any standard type:

· Undefined

· Null

· Boolean

· String

· Number

· Object

Reference: ECMA-262 Section 9

Operators described in ECMAScript conversions operate as specified in [ECMA262].

Legal conversions of data types are summarized in the following table.

	From
	
	
	
	

	
	To Boolean
	To Number
	To String
	To Object

	Undefined
	‘false’
	NaN (not-a-number)[IEEE754]
	“undefined”
	Error Exception

	Null
	‘false’
	+0 (zero)
	“null”
	Error Exception

	Boolean ‘true’
	
	1.
	“true”
	Creates a new boolean object with the value ‘true’

	Boolean ‘false’
	
	+0. (zero)
	“false”
	Creates a new boolean object with the value ‘false’

	Number ‘0’ (zero)
	‘false’
	
	“0”
	Creates a new number object with the value +0 (zero)

	Number (non-zero)
	‘true’
	Floating point value with at least 14 digits of total precision.
	See ECMA-262 Section 9.8.1
	Creates a new number object with the value of the starting number.

	Empty string
	‘false’
	+0 (zero)
	
	Creates a new String object with the value of “” (the null string)

	Non-empty string
	‘true’
	See ECMA-262 Section 9.3.1
	
	Creates a new String object with the value of the starting string.

	Object
	‘true’
	Object dependant
	Object dependant
	

5.4. Execution Contexts

Reference: ECMA-262 Section 10

Execution context is inherited from the XHTML context. The top-level execution context in which the ECMAScript Mobile Profile code operates is defined as the context of the calling document. ECMAScript Mobile Profile cannot be called from outside an existing document context.

5.4.1. Variable Context

Reference: ECMA-262 Section 10.1.3

Variable instantiation is as defined in [ECMA262].

5.4.2. Dynamically Created Code

Reference: ECMA-262 Section 10.1.2

Reference: ECMA-327 Section 5.1

As defined by the ECMAScript Compact Profile [ECMA327] support for eval() is optional, and is not required for conformance to ECMAScript – Mobile Profile. In those cases where the eval() method is not supported, an EvalError exception shall be thrown as per [ECMA327].

As defined by the ECMAScript Compact Profile [ECMA327] support for the dynamic creation of functions is optional, and is not required for conformance to ECMAScript Mobile Profile.

Support for the eval() function either directly or in support of dynamic function compilation is OPTIONAL (“NOT REQUIRED for implementation” per [ECMA327]) in ECMAScript Mobile Profile.

If eval() is not supported ECMAScript – Mobile Profile MUST throw an EvalError exception when eval() is called.

5.5. Language Syntax and Semantics

Reference: ECMA-262 Section 11

Operator semantics are as described in [ECMA262] section 11. The language semantics are defined in terms of expressions and operators:

· Expressions

· primary expressions

· left-hand-side expressions

· postfix expressions

· Operators

· unary operators

· mulplicative operators

· additive operators

· shift operators

· relational operators

· equality operators

· binary bitwise operators

· binary logical operators

· conditional operator

· Assignment operators

· comma operator

NOTE: Regarding the comma operator: For the assignment x=1,2,3, ECMA-262 states that x will get 3. However, there is an inconsistency with the Netscape and IE browsers, which will assign x=1 in this case.

5.5.1. Expressions

Reference: ECMA-262 Sections 11.1,11.2,11.3

Expressions are as defined in [ECMA262].

5.5.2. Operators

Reference: ECMA-262 Sections 11.4,11.5,11.6,11.7,11.8,11.9,11.10,11,12,11.13,11.14

Operators are as defined in [ECMA262].

The following section contains a summary of the language operators available and possible return values.

Unary Operators

	Operator
	Result Type
	Description
	Note

	delete
	Boolean
	deletes referent
	ECMA-262 Section 11.4.1

	void
	undefined
	converts unary operand to undefined type.
	ECMA-262 Section 11.4.2

	typeof
	string
	returns a description of the referent type
	WMLScript Note: WMLScript returned integers

ECMA-262 Section 11.4.3

	++
	number
	increments value of referent by 1
	ECMA-262 Section 11.4.4

	--
	number
	decrements value of referent by 1
	ECMA-262 Section 11.4.5

	+ (unary)
	number
	converts unary operand to a number.
	ECMA-262 Section 11.4.6

	- (unary)
	number
	negates numeric referent
	ECMA-262 Section 11.4.7

	~
	number (integer)
	bitwise complement of integer
	ECMA-262 Section 11.4.8

	!
	boolean
	reverses Boolean sense of referent
	ECMA-262 Section 11.4.9

Additive and Multiplicative Operators

	Operator
	Result Type
	Description
	Note

	*
	number
	multiplication
	ECMA-262 Section 11.5.1

	/
	number
	division
	ECMA-262 Section 11.5.2

	%
	number
	remainder
	ECMA-262 Section 11.5.3

	+
	number
	addition
	ECMA-262 Section 11.6.1,11.6.3

	-
	number
	subtraction
	ECMA-262 Section 11.6.2,11.6.3

Bitwise Shift, Relational and Equality Operators

	Operator
	Result Type
	Description
	Note

	<<
	number (integer)
	bitwise left shift
	ECMA-262 Section 11.7.1

	>>
	number (integer)
	signed bitwise right shift
	ECMA-262 Section 11.7.2

	>>>
	number (integer)
	unsigned bitwise right shift
	ECMA-262 Section 11.7.3

	<
	Boolean, undefined
	relational less-than comparison
	ECMA-262 Section 11.8.1

	>
	Boolean, undefined
	relational greater-than comparison
	ECMA-262 Section 11.8.2

	<=
	Boolean, undefined
	relational less-than or equal comparison
	ECMA-262 Section 11.8.3

	>=
	Boolean, undefined
	relational greater-than or equal comparison
	ECMA-262 Section 11.8.4

	instanceof
	Boolean
	tests whether left-hand variable is an object of the specified type
	ECMA-262 Section 11.8.6

	in
	Boolean
	tests whether a property is in an object
	WMLScript Note: This was not in WMLScript

ECMA-262 Section 11.8.7

	==
	Boolean
	tests for equality (allows conversions)
	ECMA-262 Section 11.9.1,11.9.3

NOTE: IE and Netscape will return FALSE if left side of == is NULL or undefined. (ECMA-262 says return TRUE)

	!=
	Boolean
	tests for inequality (allows conversions)
	ECMA-262 Section 11.9.2,11.9.3

	===
	Boolean
	tests for “strict” equality (type must match, else failure)
	ECMA-262 Section 11.9.4,11.9.6

NOTE: IE and Netscape will return FALSE if left side of === is NULL or undefined. (ECMA-262 says return TRUE)

	!==
	Boolean
	tests for “strict” inequality (type must match, else failure)
	ECMA-262 Section 11.9.5,11.9.6

 Logical, Conditional and Simple Assignment

	Operator
	Result Type
	Description
	Note

	&
	number (integer)
	bitwise ‘AND’ of two integers
	ECMA-262 Section 11.10

	^
	number (integer)
	bitwise ‘XOR’ of two integers
	ECMA-262 Section 11.10

	|
	number (integer)
	bitwise ‘OR’ of two integers
	ECMA-262 Section 11.10

	&&
	boolean
	logical ‘AND’ of two expressions
	ECMA-262 Section 11.11

	||
	boolean
	logical ‘OR’ of two expressions
	ECMA-262 Section 11.11

	? :
	any
	conditional expression
	ECMA-262 Section 11.12

	=
	any
	simple assignment
	ECMA-262 Section 11.13

	,
	any
	comma – multiple evaluation
	ECMA-262 Section 11.14

 Compound Assignment

	Operator
	Result Type
	Description
	Note

	*=
	number
	assignment after multiply
	ECMA-262 Section 11.13.2

	/=
	number
	assignment after division
	ECMA-262 Section 11.13.2

	%=
	number
	assignment after modulo
	ECMA-262 Section 11.13.2

	+=
	number
	assignment after addition
	ECMA-262 Section 11.13.2

	-=
	number
	assignment after subtraction
	ECMA-262 Section 11.13.2

	<<=
	number (integer)
	assignment after bitwise right shift
	ECMA-262 Section 11.13.2

	>>=
	number (integer)
	assignment after bitwise left shift
	ECMA-262 Section 11.13.2

	>>>=
	number (integer)
	assignment after bitwise left shift with zero fill
	ECMA-262 Section 11.13.2

	&=
	number (integer)
	bitwise ‘AND’ with assignment
	ECMA-262 Section 11.13.2

	^=
	number (integer)
	bitwise ‘XOR’ with assignment
	ECMA-262 Section 11.13.2

	|=
	number (integer)
	bitwise ‘OR’ with assignment
	ECMA-262 Section 11.13.2

5.5.3. Grammar and Syntax

Reference: ECMA-262 Section 12

Statements are as defined in [ECMA262].

Reference: ECMA-327 Section 5.3

In accordance with the ECMAScript Compact Profile [ECMA327] conforming implementations support for the with statement (ECMA-262 section 12.10) is OPTIONAL. If with is not supported, use of a with statement results in a syntax error.
6. Native (Built-in) Objects

Native or built-in objects are those facilities built into the language that support basic language constructs and mechanisms. All of the native ECMAScript Mobile Profile objects are defined in [ECMA262].

Reference: ECMA-327 Section 5.2

As specified in [ECMA327] a conforming implementation of ECMAScript Mobile Profile SHOULD NOT support addition, deletion or assignment to the properties of built-in objects, other than the global object. If the implementation does not allow modifications to built-in objects, then it SHALL throw a ReferenceError exception (See section 6.11) when evaluating such modifications.
6.1. Object Relationships

Reference: ECMA-262 Section 10.1.5, 15.1

All objects are the properties of the unique global object, which is instantiated prior to entering any execution context. In this implementation of ECMAScript the global object may be referred to as ‘self’, ‘top’, ‘parent’, or ‘window’.

[image: image4.wmf]Global Object

(parent Object)

Date

Object

Error Object

RegExp

Object

Number

Object

String

Object

Array

Object

Math

Object

Boolean

Object

Note: Unless object constructors have “interesting” or “unique” syntax, their existence will be taken for granted and not described as part of any object method descriptions.

6.2. Object Management

6.2.1. Version Property

All native (built-in) objects MUST contain an enumerable, read-only version property.

This property is a string. The version property string will be of the following format:
M.m.I.i

Where:

M = Major release number, corresponding to the scripting major release number. For this document the major release number is 1. The owner of this value is OMA and WINA [WINA].

m = minor release number, corresponding to documented changes or bug fixes mandated by OMA. Objects will start with the value 1 and increment for any change documented by OMA. The owner of this value is OMA and WINA [WINA].

I = Implementers Release number, corresponding to the implementation version of the object. Implementers are encouraged to start with the value 1 and increment whenever syntax and/or semantics of an object are changed. The owner of this value is the implementer of the script specification.

i = Implementers minor number. Implementers should increment this value whenever making a change to an object implementation. The owner of this value is the implementer of the script specification. This value may be used for relating behaviours to specific implementation builds. Actual utilization of this field is up to the implementer.

OMA controlled values (M.m) will only be updated if the above-mentioned criteria are met. Thus an object that is initially released as 1.1[.x.x] will remain 1.1 unless there is either a major new release of the language or there is a documented change in the functioning of the object in question.

Current defined versions for each object are specified in this document, along with a history of version changes for each object. They can be found in the chapters for each object and look like:

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	1.2
	fooMethod(), property1
	This is an example of a change from OMA

 Note: This is an extension to [ECMA262].

An implementation SHOULD make best effort to deal with versioning issues.

The actual support, in the field, for multiple versions and the identification of situations where there are either version incompatibilities or cause for execution failure based upon version is the responsibility of the implementation.

6.2.2. Object Enumeration

All non-native objects MUST be enumerable.

Note: This is an extension to [ECMA262]. This allows any object extension to be visible and its existence to be testable using standard ECMAScript constructs.

All standard ECMAScript Mobile Profile objects (objects defined in this specification) SHOULD be enumerable. This is an extension to [ECMA262].

Sample code:

<html>

 <head>

 <script type="text/ecmascript">

 function showContainedObjects(obj,objName) {

 document.write("-- " + objName,".version=",obj.version," --
");

 for (var i in obj) {

 if(typeof(obj[i]) == "object" && obj[i] != null)

 document.write(objName + "." + i + " = " + obj[i] + "
");

 }

 }

 </script>

 </head>

 <body>

 <p>

 Current window(top) properties:

 <p></p>

 <script type="text/ecmascript">

showContainedObjects(top, "top");

 </script>

 </p>

 </body>

</html>

6.3. Global Object (parent Object)

Reference: ECMA-262 Section 10.1

All utility built-in functions are properties of the global object. Built-in properties of the global object are READ-ONLY and DONTDELETE. Properties of the global object introduced by declarations (ECMA262 section 10.1.3) may be modified but not deleted. The global object may be referred to directly as “top”, “parent”, “self”, or “window” (for compatibility with IE and Netscape).

6.3.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.3.2. Properties

There is no constructor property for the global object. The global object is not directly callable.

6.3.3. Methods

A number of utility methods are associated directly with the global object.

6.3.3.1. encodeURI()

	Syntax:
	encodeURI(URI)

	Argument List:
	URI – a complete URI

	Description:
	encodes a complete URI, with knowledge of what parts of the URI to encode, and what parts, such as the “://” not to encode, as defined by RFC2396. In general the special URI characters, when used as such are not encoded. These include:

; / ? : @ & = + $,

This function is I18N aware. It replaces the escape() function.

	Return Value Type:
	a URI encoded string, with appropriate characters encoded into escaped octet sequences

	Errors or Exceptions:
	throws a URIError exception if code point is invalid

	Example(s):
	var encStr=encodeURI(“http://www.foo.skram/card?dest=#ben dave”);

//encStr=”http://www.foo.skram/card?dest=#ben%20dave”

	Reference
	ECMA-262 Section 15.1.3.3

6.3.3.2. encodeURIComponent()

	Syntax:
	encodeURIComponent(pieceOfURI)

	Argument List:
	pieceOfURI – a string fragment to be encoded

	Description:
	encodes a string according to URI encoding rules [RFC2396], but unaware of the URI separators

	Return Value Type:
	a UTF-8 encoded string

	Errors or Exceptions:
	throws a URIError exception if code point is invalid

	Example(s):
	var encString = encodeURIComponent(“http://www.foo.skram/card?dest=#ben”);

//encString =http%3A%2F%2Fwww.foo.skram%2Fcard%3Fdest%3D%23ben

	Reference
	ECMA-262 Section 15.1.3.4

6.3.3.3. decodeURI()

	Syntax:
	decodeURI(URI)

	Argument List:
	URI – a URI string encoded via encodeURI()

	Description:
	Unescapes encoded URI strings according to the URI separator rules in RFC2396. It replaces the unescape() function.

	Return Value Type:
	an unencoded URI

	Errors or Exceptions:
	throws a URIError exception if the code points defined by %XXX are out of bounds

	Example(s):
	var decStr=decodeURI(http://www.foo.skram/card?dest=#ben%20dave);

//decStr="http://www.foo.skram/card?dest=#ben dave"

	Reference
	ECMA-262 Section 15.1.3.1

6.3.3.4. decodeURIComponent()

	Syntax:
	decodeURIComponent(aString)

	Argument List:
	aString – a string with UTF-8 octet encodings embedded in it

	Description:
	blindly decodes UTF-8 octet encoded strings

	Return Value Type:
	a string with the UTF-8 octet encodings (%XXX) restored to the character that it represents

	Errors or Exceptions:
	throws a URIError exception if the code points defined by %XXX are out of bounds

	Example(s):
	var decStr=decodeURLComponent(

 "http%3A%2F%2Fwww.foo.skram%2Fcard%3Fdest%3D%23ben%20dave");

// decStr = "http://www.foo.skram/card?dest=#ben dave"

	Reference
	ECMA-262 Section 15.1.3.2

6.3.3.5. isFinite()

	Syntax:
	isFinite(value)

	Argument List:
	value – input to which toNumber is applied.

	Description:
	built-in function that checks for the infinity value.

	Return Value Type:
	Boolean - true if the value is a valid number, false if value is NaN or one of the infinity values.

	Errors or Exceptions:
	None

	Example(s):
	testVal = isFinite(12.5); //returns true

testVal = isFinite(NaN); //returns false

	Reference:
	ECMA-262 15.1.2.5

6.3.3.6. isNaN()

	Syntax:
	isNaN(value)

	Argument List:
	value – input to which isNaN() is applied.

	Description:
	checks value for the Not-a-Number value

	Return Value Type:
	Boolean

true if value = = the Not-a-Number (NaN) value or if the value is not a number primitive, or undefined .

false if value is a valid number, infinity, a boolean or null

	Errors or Exceptions:
	None

	Example(s):
	testVal = isNaN(“53”); // returns false

testVal = isNAN(“34GF2”); //returns true

testVal = isNaN(false); //return false

testVal = isNaN(“false”); //returns true

testVal = isNaN(23.01E+12); //returns false

	Reference:
	ECMA-262 Section 15.1.2.4

6.3.3.7. parseInt()

	Syntax:
	myNumb = parseInt(InputString, radix)

	Argument List:
	InputString – string to be converted

radix –integer radix applied to the conversion string. If radix is undefined then the string is converted according the leading characters, ‘0’=octal, ‘0x,0X’=hexadecimal. Otherwise assume decimal.

	Description:
	parses an input string into an integer value. parseInt() will scan only until it encounters an invalid integer number character

	Return Value Type:
	number primitive or NaN if the string cannot be resolved

	Errors or Exceptions:
	If the string cannot be resolved as an integer then NaN is returned

	Example(s):
	anInt = parseInt(“654.321”); //anInt = 654

anInt = parseInt(“9A4”,16); //anInt = 2468

anInt = parseInt(“321 oz.”); //anInt = 321

anInt = parseInt(“hi there”); //anInt = NaN

	Reference:
	ECMA-262 Section 15.1.2.2

WMLScript Note: The WMLScript version of this function did not support a radix parameter.

6.3.3.8. parseFloat()

	Syntax:
	myFloat = parseFloat(InputString)

	Argument List:
	InputString – string to be converted to a floating point number

	Description:
	parses an input string into a float point value. parseFloat() will scan only until it encounters an invalid floating point number character. White space at the beginning of the input string is stripped.

	Return Value Type:
	number primitive or NaN if the string cannot be resolved

	Errors or Exceptions:
	If the input string cannot be resolved as a floating point number then NaN is returned

	Examples(s):
	aFloat = parseFloat(“+987.0123”); /* aFloat = 987.012 (assume only 6 digits of accuracy) */
afloat=parseFloat(“ -9.342JUNK”); //afloat=-9.342

afloat = parseFloat(“M213213.1”); //afloat=NaN

	Reference:
	ECMA-262 Section 15.1.2.3

6.3.3.9. toString()

The toString method is inherited by all native object types. Built-in class toString handlers may be different than the generic global method.

	Syntax:
	mystr = Object.toString() [See also String(), array.toString()]

	Argument List:
	

	Description:
	returns a string primitive representation of the receiving Object

	Return Value Type:
	string primitive

	Errors or Exceptions:
	None

	Examples(s):
	var a; var b;

b=a.toString(); //b=”undefined”

a=345;

b=a.toString(); //b=”345”

a=true;

b=a.toString(); //b=”true”

	Reference:
	ECMA-262 Section 9.8

Note: this is similar to the String() method of the String object, which is really a String object constructor.

6.3.3.10. eval()

Reference: ECMA-262 Section 10.1.2, 15.1.2.1

Support for the eval() method is OPTIONAL (“NOT REQUIRED to be implemented per [ECMA327]) in ECMAScript Mobile Profile. See Section 5.4.2.

6.4. Array Object

Reference: ECMA-262 Section 15.4

An array is an indexed collection of references to other objects or values. It is a set of properties, owned by an object, that can be accessed by name or by index position in the containing array.

An array may be constructed either by the function call Array(….) or by the explicit array object creation new Array(….) . Both are equivalent.

6.4.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.4.2. Properties

6.4.2.1. length

	Syntax:
	array.length

	Type:
	Number (integer)

	Description:
	The length property of an array is 1+ the largest index assigned to a property in that array.

Array indexing is zero based.

	Errors or Exceptions:
	None

	Example(s):
	var months = new Array(“Jan”,”Feb”,Mar”,”Apr”,”May”,”Jun”,”Jul”,”Aug”,”Sep”,”Oct”,”Nov”,”Dec”);

cnt = months.length; //cnt = 12

	Reference
	ECMA-262 Section 15.4.3, 15.4.5.2

6.4.3. Methods

6.4.3.1. concat()

	Syntax:
	bigArray = firstArray.concat([array1 [, array2 [, …]]])

	Argument List:
	array1 – the array to be concatenated to the firstArray object

array2 etc. – 2nd, 3rd etc. arrays also to be concatenated.

	Description:
	Allows the joining of two or more arrays into a new, combined array object (bigArray – resultant array object). If no array parameters are specified, then the method creates a new duplicate array.

	Return Value Type:
	Array Object

	Errors or Exceptions:
	None

	Example(s):
	var arrayNums = new Array(23.5,345.2,55.5);

var arrayChars = new Array(“x”,”y”,”z”);

var mixedArray = arrayNums.concat(arrayChars);

//mixedArray = 23.5,345.2,55.5, “x”,”y”,”z”

	Reference
	ECMA-262 15.4.4.4

6.4.3.2. join()

	Syntax:
	newVar = myArray.join([delimiterString])

	Argument List:
	delimiterString – the separator string used to separate array elements in the output string. If the string is not specified (undefined), it is set to the comma character (“,”).

	Description:
	Joins the contents of array entries into a single string

	Return Value Type:
	a String

	Errors or Exceptions:
	None

Note: if the returned string is empty, an empty string will be returned (not a NULL).

	Example(s):
	myArray = new Array("This", "is", "a", "collection", "of", "words");

str1 =myArray.join();//str1=”This,is,a,collection,of,words”;

str=myArray.join(“ ”);//str=”This is a collection of words”;

	Reference
	ECMA-262 Section 15.4.4.5

6.4.3.3. toString()

Array.toString() is identical to Array.join(“,”). NOTE: IE and Netscape will use comma as the separator regardless of delimiterString passed.
6.4.3.4. pop()

	Syntax:
	anArray.pop()

	Argument List:
	

	Description:
	Gets the last array value in an array (array[length-1]), deletes the value in the array and returns the value. Decreases array.length by 1

	Return Value Type:
	Any

	Errors or Exceptions:
	If the array is empty “undefined” is returned.

	Example(s):
	var bytecodeArray = new Array(“nop”,”lda 1”,”mult”,”dup”);

var nextcode = bytecodeArray.pop(); //nextcode = “dup”

//bytecodeArray=“nop”,”lda 1”,”mult”

	Reference
	ECMA-262 Section15.4.4.6 See also push(), shift() and unshift()

6.4.3.5. push()

	Syntax:
	anArray.push(value)

	Argument List:
	value – the value to be added to the end of an array

	Description:
	appends a value to the end of an array, increases the array.length by 1

	Return Value Type:
	The new length of the array is returned

	Errors or Exceptions:
	None

	Example(s):
	var bytecodeArray = new Array(“nop”,”lda 1”,”mult”,”dup”);

len = bytecodeArray.push(“b_and”); //len=5

//bytecodeArray=“nop”,”lda 1”,”mult”,”dup”,”b_and”

	Reference
	ECMA-262 Section15.4.4.7 See also pop(), shift() and unshift()

6.4.3.6. reverse()

	Syntax:
	anArray.reverse()

	Argument List:
	

	Description:
	The elements of an array are rearranged, so as to reverse their order.

	Return Value Type:
	The object is returned.

	Errors or Exceptions:
	If the array is empty, the reverse method does nothing.

	Example(s):
	var ordArray = new Array(1,2,3,4,5,6);

ordArray.reverse(); //ordArray= 6,5,4,3,2,1

	Reference
	ECMA-262 Section15.4.4.8

6.4.3.7. shift()

	Syntax:
	anArray.shift()

	Argument List:
	

	Description:
	Removes the first value of an array, shifting down all indexes

	Return Value Type:
	Any – the value shifted out of the array

	Errors or Exceptions:
	returns undefined if the array is empty

	Example(s):
	var bytecodeArray = new Array(“nop”,”lda 1”,”mult”,”dup”);

var nextcode = bytecodeArray.shift(); //nextcode = “nop”

//bytecodeArray=”lda 1”,”mult”,”dup”

	Reference
	ECMA-262 Section15.4.4.9

6.4.3.8. slice()

	Syntax:
	newArray = anArray.slice(startIndex [, endIndex])

	Argument List:
	startIndex – number (integer)

endIndex – optional number (integer), if not included it defaults to the full array

	Description:
	takes an array and returns a new array with the elements at startIndex up to but not including the optional element pointed to by endIndex.

If startIndex, or endIndex is a negative number (integer) it is treated as length+index.

If the endIndex is greater than the length of the array, then the full array is considered.

	Return Value Type:
	Array

	Errors or Exceptions:
	If the array is empty the function returns undefined.

If the startIndex is undefined or its value is greater than the length of the array, then the function returns undefined.

	Example(s):
	var tArray = new Array(0,1,2,3,4,5,6);

var slArray= tArray.slice(3); //slArray=3,4,5,6

var slArray= tArray.slice(1,3); //slArray=1,2

var slArray= tArray.slice(-4); //slArray=3,4,5,6

	Reference
	ECMA-262 Section15.4.4.10

6.4.3.9. sort()

	Syntax:
	anArray.sort([compareFunc]);

	Argument List:
	compareFunc(elem1,elem2) – an optional function that returns a value, either negative, zero, or positive when comparing two elements (elem1,elem2) of the source array.

If compareFunc() is not specified, sorting occurs based on character string value sort order.

	Description:
	a general array sort method where the comparison function may be supplied by the developer, based upon the contents of the array to be sorted.

	Return Value Type:
	the initial array, with the contents sorted according to the presented comparison function

	Errors or Exceptions:
	A TypeError exception is thrown if a specified compareFunc cannot be found. (This is an extension to ECMA-262.)

	Example(s):
	var myArray = new Array(0,5,6,2,1);

function myCompare(a,b) {return a-b;};

myArray.sort(myCompare); //myArray= 0,1,2,5,6

	Reference
	ECMA-262 Section 15.4.4.11

6.4.3.10. splice()

	Syntax:
	newArray = someArray.splice(startIndex,deleteCount [, item1 [, item2 [, …]]])

	Argument List:
	startIndex – number(integer)

deleteCount – number (integer)

itemX – optional data elements of any type which replace deleted elements

	Description:
	Splice deletes specified array elements inside an array, starting at startIndex for a count of deleteCount replacing these elements with the optionally supplied items, if given, putting the result into the original array
A new array with the removed elements is created in the assigned array if specified.
Note: if the deleteCount is zero and there are items specified in the optional item fields, these items will be inserted into the original array at the startIndex position.

	Return Value Type:
	Original and new array objects

	Errors or Exceptions:
	None

	Example(s):
	var stArray = new Array; (1,2,3,4);

var delArray = stArray.splice(2,2,100);

//stArray = [1,2,100];

//delArray = [3,4];

	Reference
	ECMA-262 Section15.4.4.12

6.4.3.11. unshift()

	Syntax:
	someArray.unshift([item1 [,item2 [, …]]]))

	Argument List:
	itemn = elements of any type

	Description:
	zero or more items are prepended to the start of an array such that their order within the array is the same as the argument list order.

Note: No new array is created.

	Return Value Type:
	returns the count of items prepended to the target

	Errors or Exceptions:
	None

	Example(s):
	var bytecodeArray = new Array(“nop”,”lda 1”,”mult”,”dup”);

cnt = bytecodeArray.unshift(“incr”); //cnt=1

//bytecodeArray=”incr”,“nop”,”lda 1”,”mult”,”dup”

	Reference
	ECMA-262 Section15.4.4.13

6.5. String Object

Reference: ECMA-262 Section 15.5

The String object in ECMAScript Mobile Profile provides the storage and methods for manipulating strings. All string functions that use indexes into strings assume that the indexes are to codepoints (characters), independent of the internal encoding used.

6.5.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.5.2. Properties

6.5.2.1. length

	Syntax:
	someString.length

	Type:
	Number(integer)

	Description:
	– Value that is the character length of the target string

The target must be a string, or else the string specific property will not be returned, and the result can be surprising.

	Errors or Exceptions:
	None

	Example(s):
	“WAPForum”.length; //an 8 is returned

“”.length // a zero is returned

	Reference
	ECMA-262 Section 15.5.4

6.5.3. Methods

6.5.3.1. toString()

This is a description of the string specific instantiation of the toString method. Note: every native object has an instantiation of the toString method.

	Syntax:
	strObj.toString()

	Argument List:
	

	Description:
	returns the string value of the String object.

	Return Value Type:
	string value

	Errors or Exceptions:
	A TypeError exception is thrown if the target object cannot be converted to a string.

	Example(s):
	var strObj = new String(“This is an Object!”);

val=strObj.toString(); //val = “This is an Object!”; [but its not, its just a string value]

	Reference
	ECMA-262 Section 15.5.4.2

6.5.3.2. valueOf()

This section describes the String object specific version of the valueOf() method. It should not be confused with other instantiations of this method.

	Syntax:
	myStrObj.valueOf()

	Argument List:
	

	Description:
	returns the string value of the String object.

The argument must be a String object for the method to return a string.

	Return Value Type:
	string value

	Errors or Exceptions:
	None

	Example(s):
	var theStringObj = new String(“Yo Ho Ho”);

var chant = theStringObj.valueOf();

//chant=“Yo Ho Ho”; (which is a simple string value)

	Reference
	ECMA-262 Section 15.5.4.3

Note: In the case of strings the valueOf() method and the toString() method are identical.

6.5.3.3. charAt()

	Syntax:
	someString.charAt(pos)

	Argument List:
	pos – number (integer) which is the index into the target string.

	Description:
	returns a single character string pointed to by the position argument. Index is zero based.

	Return Value Type:
	a single character string value

	Errors or Exceptions:
	if pos < 0 or greater than the length of the target string then the empty string is returned

	Example(s):
	“Help me”.charAt(3); // returns “p”

	Reference
	ECMA-262 Section 15.5.4.4

6.5.3.4. charCodeAt()

	Syntax:
	targetStr.charCodeAt(position)

	Argument List:
	position – number (integer)

	Description:
	returns the code point value of the character in the target string, pointed to by the index (position) argument. Index is zero based.

	Return Value Type:
	number (integer in the range 0 to 216 –1)

	Errors or Exceptions:
	If there is no Unicode character in the target, pointed to by the index, or pos< 0 then NaN is returned

	Example(s):
	val = “WAP(”.charCodeAt(3); //returns the Unicode encoding value (2122)

	Reference
	ECMA-262 Section 15.5.4.5

6.5.3.5. concat()

	Syntax:
	targetStr.concat([str1 [,str2 [, …]]])

	Argument List:
	str1-strN – zero or more String objects or values

	Description:
	concatenates zero or more string values to the target string

	Return Value Type:
	string value

	Errors or Exceptions:
	None

	Example(s):
	var speech =“For score”.concat(“and ”, “seven years ”, “ago”);

//speech=”For score and seven years ago”;

var strObj = new String(“Three blind mice, ”);

strObj.concat(“see how they run.”);

//strObj = “Three blind mice, see how they run.” (an object)

	Reference
	ECMA-262 Section 15.5.4.6

Note: The string “+” operator is more often used for the same purpose.

6.5.3.6. indexOf()

	Syntax:
	targetStr.indexOf(searchString [,position])

	Argument List:
	searchString – a String object or string value

position – number (integer), optional

	Description:
	searches for the first substring match of the searchString in the targetStr, optionally starting at the position defined by the second argument. If the second argument is not specified (“undefined”), then the search starts from index 0 (zero).

	Return Value Type:
	-1 if there is no match

number(integer) - index of the first match found. Index is zero based.

	Errors or Exceptions:
	If position < 0, or position > (string length -1), then NaN is returned.

	Example(s):
	var sstr=”big”;

ret = “It’s Big, really big. Big,big,big”.indexOf(sstr);

// ret = 17

	Reference
	ECMA-262 Section 15.5.4.7

6.5.3.7. lastIndexOf()

	Syntax:
	targetStr.lastIndexOf(searchString [,position])

	Argument List:
	searchString – a String object or string value

position – number (integer), optional

	Description:
	searches for the last substring match of the searchString in the targetStr, optionally starting at the position defined by the second argument, searching backwards toward index 0. If the second argument is not specified (“undefined”), then the search starts from the end of the string.

	Return Value Type:
	-1 if there is no match

number(integer) - index of the first match found. Index is zero based.

	Errors or Exceptions:
	If position < 0, or position > (string length -1), then NaN is returned.

	Example(s):
	var sstr=”big”;

ret = “It’s Big, really big. Big,big,big”.lastIndexOf(sstr);

// ret = 30

	Reference
	ECMA-262 Section 15.5.4.8

6.5.3.8. localeCompare()

	Syntax:
	thisString.localeCompare(thatString)

	Argument List:
	thatString – a [converted] string or String Object

	Description:
	compares two strings, in a locale dependant way, to determine sort order.

thisString comes before thatString ; return a negative value

thisString is equivalent to thatString; return zero

thisString comes after thatString; return a positive value

	Return Value Type:
	number (integer) negative, zero or positive to denote comparison

0 denotes canonical equivalence by the Unicode [UNICODE] standard

positive (usually 1) denotes “thisString” comes after “thatString” in sort order

negative (usually –1) denotes “thatString” comes after “thisString” in sort order

	Errors or Exceptions:
	None

	Example(s):
	“this”.localeCompare(“that”); //returns a positive value

	Reference
	ECMA-262 Section 15.5.4.9

6.5.3.9. match()

	Syntax:
	myString.match(regExp)

	Argument List:
	regExp – a pattern or RegExp Object representing a valid regular expression

	Description:
	Find all matches in the target string, as defined by the regular expression, and return them in an array whose length is equal to the number(integer) of matches found.

The method target (myString) is a string value or String object.

	Return Value Type:
	Array with its length set to the number(integer) matches returned in the array.

	Errors or Exceptions:
	Matches with the empty string (“”) are legal.

	Example(s):
	var resArray = new Array;

resArray = "Do da ditty do ".match(/\bd.\b/ig);

//resArray[0] = “Do”

//resArray[1] = “da”

//resArray[2] = “do”

//resArray.length = 3

	Reference
	ECMA-262 Section 15.5.4.10

6.5.3.10. replace()

ECMAScript Mobile Profile does not support the use of a function as the second parameter, even though it is supported in [ECMA262].

	Syntax:
	targetString.replace(searchRegExp, replaceStr)

targetString.replace(searchStr,replaceStr)

	Argument List:
	searchRegExp – a regular expression object

searchStr – a [converted] string or String object

replaceStr – a string value with special character meanings as defined below

	Description:
	find the substring match(es) defined by the search expression or string and replace it with the string or expression defined by replaceStr. Certain $ (dollar) sequences have special meaning in the replacement string

Dollar Sequence

Replacement text

$$

Escape for dollar sign

$&

The matched substring

$`

The portion of the string that precedes the matched string.

$(
The portion of the string that follows the matched string.

$n

the nth parentheses captured string

$nn

the nnth parentheses captured string where nn is a two digit decimal number 01-99

	Return Value Type:
	a String value

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.5.4.11

6.5.3.11. search()

	Syntax:
	aString.search(aRegExp)

	Argument List:
	aRegExp – a regular expression object

	Description:
	searches for the first occurrence of the string specified by the regular expression within the target string, and returns an index to that substring.

	Return Value Type:
	number (integer)

	Errors or Exceptions:
	-1 if no pattern match was found

	Example(s):
	val = “$200.88 97% John Smith”.search(/\b\d*%\b/); //val=8

	Reference
	ECMA-262 Section 15.5.4.12

6.5.3.12. slice()

	Syntax:
	targetString.slice(start,[end])

	Argument List:
	start – number(integer)

end – number(integer) or “undefined”

	Description:
	returns the substring defined by indexes ‘start’ and ‘end’. If ‘start’ is negative it indexes back from the end of the target string. If ‘end’ is negative, it indexes from the beginning of the target string. If ‘end’ is not specified (“undefined”) the index is through the end of the target string.

	Return Value Type:
	string value

	Errors or Exceptions:
	If ‘start’ is undefined, the result may be surprising.

	Example(s):
	“slice-of-life”.slice(6,8); //returns “of”

	Reference
	ECMA-262 Section 15.5.4.13

6.5.3.13. split()

	Syntax:
	aString.split(regExpSeparator [,limit])

aString.split(strSeparator [, limit])

	Argument List:
	regExpSeparator – a regular expression object, which is to be interpreted as a regular expression or,

strSeparator – a string which is to be interpreted as a literal string.

limit – optional number(integer)

	Description:
	returns an array into which are stored substrings from the result of splitting the target string. Substrings are determined by searching from left to right for occurances of the separator, as defined by a regular expression or string value. The number of array elements may be optionally limited by setting the ‘limit’ parameter.

	Return Value Type:
	Array object

	Errors or Exceptions:
	If ‘limit’ equals 0, an empty array is returned.

	Example(s):
	resArray = new Array;

resArray= “Hola”.split(“”); //resArray has one character at each array location

resArray= “This,is weird”.split(/[,]/);

//resArray[0]=”This” resArray[1]=”is” resArray[2]=”weird”

	Reference
	ECMA-262 Section 15.5.4.14

6.5.3.14. substring()

	Syntax:
	targetStr.substring(start [,end])

	Argument List:
	start – number(integer)

end – number(integer) or “undefined” if not specified

	Description:
	returns a string defined by the indexes start and end. If either start or end is negative or NaN, it is set to zero (0). If start > end then they are swapped. If end is “undefined” it is set to string.length

	Return Value Type:
	a string value

	Errors or Exceptions:
	none

	Example(s):
	“sadlkjfouiewr”.substring(4,8); //returns “kjfo”

“sadlkjfouiewr”.substring(8,4); //returns “kjfo”

	Reference
	ECMA-262 Section 15.5.4.15

6.5.3.15. toLowerCase(), toLocaleLowerCase()

[ECMA262] defines two string methods toLowerCase() and toLocaleLowerCase(). The method toLocaleLowerCase() is the same as toLowerCase() except that it is I18N aware. In ECMAScript Mobile Profile, both these methods are synonyms and are I18N aware (act as toLocaleLowerCase()).

	Syntax:
	myString.toLowerCase()

yourString.toLocaleLowerCase()

	Argument List:
	

	Description:
	Takes the String object, or any object that can evaluate to a string and converts the string to all lowercase characters as defined by the Unicode Character Database [UNICODE] for the host environment’s current locale.

The method target (myString, yourString) is a String object.

	Return Value Type:
	string value

	Errors or Exceptions:
	none

Results may be language dependant

	Example(s):
	

	Reference
	ECMA-262 Section15.5.4.16, 15.5.4.17

6.5.3.16. toUpperCase(), toLocaleUpperCase()

[ECMA262] defines two string methods toUpperCase() and toLocaleUpperCase(). The method toLocaleUpperCase() is the same as toUpperCase() except that it is I18N aware. In ECMAScript Mobile Profile, both these methods are synonyms and are I18N aware (act as toLocaleUpperCase()).

	Syntax:
	someStringObject.toUpperCase();

aStringObject.toLocaleUpperCase();

	Argument List:
	

	Description:
	Takes the String object, or any object that can evaluate to a string and converts the string to all uppercase characters as defined by the Unicode Character Database [UNICODE] for the host environment’s current locale.

The method target (someStringObject,aStringObject) is a String object.

	Return Value Type:
	String value

	Errors or Exceptions:
	none

Results may be language dependant

	Example(s):
	myStr = “TempestB”.toUpperCase(); //myStr = “TEMPESTB”

	Reference
	ECMA-262 Section15.5.4.18, 15.5.4.19

6.6. RegExp Object

Reference: ECMA-262 Section 15.10

Regular expressions as defined in [ECMA262] are supported in ECMAScript Mobile Profile.

6.6.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.6.2. Pattern Summary

Patterns are denoted as “/ pattern string /”.

The following metacharacters can be used as elements in the pattern string:

Matching characters

	Character
	Meaning

	\b
	word boundary

	\B
	word non-boundary

	\d
	numeral (as defined by Unicode definition of current charset)

	\D
	any character except numeral (as defined by Unicode definition of current charset)

	\s
	a white space

	\S
	a non-white space

	\w
	letter, numeral or underscore (as defined by Unicode definition of current charset)

	\W
	any character that is not a letter, numeral or underscore (as defined by Unicode definition of current charset)

	.
	any character except a newline

	^
	Pattern is anchored to the beginning of a line.

	$
	Pattern is anchored to the end of a line.

	\
	Escapes the meaning of a subsequent special pattern character when it precedes one. May be used to escape the meaning of:

. \ $ ^ * + ? () [] { } |

Count and range modifiers

	Character
	Meaning

	[…]
	range or set delimiter

	[^ …]
	negation range or set

	*
	zero or more times modifier for previous character

	?
	zero or one time modifier for previous character

	+
	one or more times modifier for previous character

	[n]
	exactly ‘n’ times modifier for previous character

	[n,]
	‘n’ or more times modifier for previous character

	[n,m]
	at least ‘n’, but not more than ‘m’ times modifier for previous character

regular expression modifiers

	Character
	Meaning

	g
	global search modifier

	i
	ignorecase modifier

	m
	multiline modifier – not supported

6.6.3. Pattern Semantics

Reference: ECMA-263 Section 15.10.2

Pattern semantics are as defined in [ECMA262].

6.6.4. Properties

Each instance of a regexp object inherits the following properties from the regexp prototype:

6.6.4.1. source

	Syntax:
	aRegExpObj.source

	Type:
	String value, read-only

	Description:
	This is the original pattern string of the regular expression object

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.10.7.1

6.6.4.2. global

	Syntax:
	aRegExpObj.global

	Type:
	Boolean, read-only

	Description:
	–Property that shows the state of the global modifier (“g”) of this object

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.10.7.2

6.6.4.3. ignoreCase

	Syntax:
	aRegExpObj.ignoreCase

	Type:
	Boolean, read-only

	Description:
	This is the state of the ignoreCase modifier (“i”) of this object

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.10.7.3

6.6.4.4. lastIndex

	Syntax:
	aRegExpObj.lastIndex

	Type:
	Number (integer)

	Description:
	–Property that specifies the index in the target string, at which to start the next match.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.10.7.5

6.6.4.5. multiline

The property ‘multiline’ and associated modifier ‘m’ are not supported in ECMAScript Mobile Profile.
6.6.5. Methods

6.6.5.1. exec()

	Syntax:
	regExpObj.exec(targetString)

	Argument List:
	targetString – [converted] String object or string value against which the regular expression match is applied

	Description:
	Performs a regular expression match of “targetString” against the regular expression and returns an array object containing the results of the match.

	Return Value Type:
	Array Object

	Errors or Exceptions:
	“null” is returned if there is no match

	Example(s):
	var myRExp = /\b\d*\b/g;

var myArray = new Array;

myArray = myRExp.exec(“joe 100 fred 106 ralph 97 greg 102 “);

//myArray[0]=100 myArray[1]=106 myArray[2]=97 myArray[3]=102

	Reference
	ECMA-262 Section 15.10.6.2

6.6.5.2. test()

	Syntax:
	aRegExpObj.test(someString)

	Argument List:
	someString – a [converted] string or String object

	Description:
	Tests whether a match exists or not. This is equivalent to

RegExp.exec(“someString”) != null;

	Return Value Type:
	Boolean

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.10.6.3

6.6.5.3. toString()

This is the description of toString() method specific to the regular expression object.

	Syntax:
	myRegExpObj.toString()

	Argument List:
	

	Description:
	returns a string which is in the form of a regular expression pattern generated from the pattern which is part of the regular expression object. “/” chars are concatenated at the beginning and end of the pattern, and the appropriate modifiers (“g”,”i”) are appended if true.

The method target (myRegExpObj) is a regular expression object.

	Return Value Type:
	a string value

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.10.6.4

6.6.5.4. compile()

The compile() function is not supported.

6.7. Boolean Object

Reference: ECMA-262 Section 15.6

6.7.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.7.2. Methods

6.7.2.1. toString()

This is a description of the boolean object specific instantiation of the toString() method. Note: Every native object has an instantiation of the toString method.

	Syntax:
	aBool.toString()

	Argument List:
	

	Description:
	converts the Boolean value or object to the string “true” or “false” based on the input value

The method target (aBool) is an object of the type Boolean.

	Return Value Type:
	string value

	Errors or Exceptions:
	none

	Example(s):
	var mySwitch = new Boolean(1);

aStr = mySwitch.toString(); //aStr = “true”

	Reference
	ECMA-262 Section 15.6.4.2

6.7.2.2. valueOf()

This is a description of the boolean object specific instantiation of the valueOf() method.

	Syntax:
	myBool.valueOf()

	Argument List:
	

	Description:
	coerces a Boolean object into a Boolean value

The method target (myBool) is an object of the type Boolean.

	Return Value Type:
	Boolean value

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.6.4.3

6.8. Number Object

Reference: ECMA-262 Section 15.7

The number object is a container for useful constants and functions that may need to be constructed.

6.8.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.8.2. Constants

6.8.2.1. MAX_VALUE

Reference: ECMA-262 Section 15.7.3.2

	64-bit Double Precision Floating Point
	~21024 (~1.797693134862316e+308)

6.8.2.2. MIN_VALUE

Reference: ECMA-262 Section 15.7.3.3

	64-bit Double Precision Floating Point
	~2-1024 (~5.562684646268e-309)

6.8.2.3. NaN

Reference: ECMA-262 Section 15.7.3.4

The value of aNumber.NaN is NaN. The assignment of a particular bit pattern representing NaN is implementation specific.

6.8.2.4. NEGATIVE_INFINITY

Reference: ECMA-262 Section 15.7.3.5

The value of aNumber.NEGATIVE_INFINITY is -∞. The assignment of a particular bit pattern representing -∞ is implementation specific.

6.8.2.5. POSITIVE_INFINITY

Reference: ECMA-262 Section 15.7.3.6

The value of aNumber.POSITIVE_INIFINITY is +∞. The assignment of a particular bit pattern representing +∞ is implementation specific.

6.8.3. Properties

No special properties are specified for the Number object.

6.8.4. Methods

6.8.4.1. toExponential()

Note: The fractionDigits value in [ECMA262] is defined as being between 0 and 20 inclusive. In this implementation, the language is only required to support a fractionDigits value between 0 and 13 inclusive.

	Syntax:
	aNumber.toExponential([fractionDigits])

	Argument List:
	fractionDigits – a number (integer) [range is implementation dependant]

	Description:
	converts a number to display in exponential format with ‘fractionDigits’ to the right of the decimal point. Missing digits are zero filled.

	Return Value Type:
	string value

	Errors or Exceptions:
	If the input number is NaN then “NaN” is returned

Only 14 digits of output accuracy are guaranteed across implementations.

If ‘fractionDigits’ < 0 or ‘fractionDigits > supported implementation (at least 13) a RangeError exception is thrown.

	Example(s):
	

	Reference
	ECMA-262 Section 15.7.4.6

6.8.4.2. toFixed()

Note: The fractionDigits value in [ECMA262] is defined as being between 0 and 20 inclusive. In this implementation, the language is only required to support a fractionDigits value between 0 and 13 inclusive.

	Syntax:
	aNumber.toFixed([fractionDigits])

	Argument List:
	fractionDigits – a number (integer) [range is implementation dependant]

	Description:
	converts a number to display in fixed format placing ‘fractionDigits’ digits after the decimal point. Missing digits to the right of the decimal point are zero filled. Rounding accuracy is not guaranteed beyond 14 decimal digits total.

If fractionDigits is not specified, 0 (zero) is assumed

	Return Value Type:
	string value

	Errors or Exceptions:
	If the input number is NaN then “NaN” is returned

A fractionDigits value outside of the supported range (0-13 as a minimum) will generate a RangeError exception.

Only 14 digits of output string accuracy are guaranteed across implementations.

	Example(s):
	var aNum = 6789912;

dispNum=aNum.toFixed(2); //dispNum=6789912.00

var bNum = 67899.12;

dispNum=bNum.toFixed(2); //dispNum=67899.10 (possible loss of 7th digit of precision)

var cNum=987.44

dispNum=cNum.toFixed(10); //dispNum=987.4400000000

	Reference
	ECMA-262 Section 15.7.4.5

6.8.4.3. toLocaleString()

Reference: ECMA-262 Section 15.7.4.3

Implementations are encouraged to implement I18N locale specific conversions for numbers. In the absence of a true locale specific implementation, toFixed(2) and toLocaleString() shall be considered synonyms.

6.8.4.4. toString()

This is a description of the number object specific instantiation of the toString() method. Note: Every native object has an instantiation of the toString() method.

	Syntax:
	aNumberObj.toString([radix])

	Argument List:
	radix – optional radix for conversion. If radix is “undefined” it is assumed to be 10.

	Description:
	Convert a number into a printable string.

	Return Value Type:
	string value

	Errors or Exceptions:
	If number is NaN then “NaN” is returned.

Only 14 digits of decimal accuracy can be guaranteed.

	Example(s):
	

	Reference
	ECMA-262 Section 15.7.4.2

6.8.4.5. valueOf()

	Syntax:
	aNumberObj.valueOf()

	Argument List:
	

	Description:
	returns a number value from a number object.

The method target is a number object (aNumberObj).

	Return Value Type:
	number value

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.7.4.4

6.8.4.6. toPrecision()

Note: The precision value in [ECMA262] is defined as being between 1 and 21 inclusive. In this implementation, the language is only required to support a precision value between 1 and 14 inclusive.

	Syntax:
	aNumberObj.toPrecision(precision)

	Argument List:
	precision – a number (integer) [range is implementation dependant]

	Description:
	returns a string containing the number represented either in exponential notation with one digit before the significand’s decimal point and ‘precision’ total digits, or in fixed notation with ‘precision’ total digits. The displayed value is rounded with respect to undisplayed digits.

	Return Value Type:
	String value

	Errors or Exceptions:
	if “precision” is “undefined” then the function simply calls the toString method for numbers.

A precision value outside of the supported range (1-14 as a minimum) will generate a RangeError exception.

Only 14 digits of accuracy are guaranteed across implementations.

	Example(s):
	var aNum= 123.4567

dispNum = aNum.toPrecision(2); //dispNum=1.2E2

dispNum = aNum.toPrecision(3); //dispNum=123

dispNum = aNum.toPrecision(4); //dispNum=123.5 Note rounding

dispNum = aNum.toPrecision(5); //dispNum=123.46

dispNum = aNum.toPrecision(6); //dispNum=123.457

dispNum = aNum.toPrecision(7); //dispNum=123.456x where the values of x could vary from implementation to implementation

	Reference
	ECMA-262 Section 15.7.4.7

6.9. Math Object

Reference: ECMA-262 Section 15.8

The Math object is a single object, owned by the global object, which is the container for some useful constants and mathematical functions. This object cannot be instantiated (has no constructor). If an attempt is made to call the math object as a constructor or a function, ECMA-262 states a ReferenceError should be raised. However Internet Explorer and Netscape will return a TypeError in such a case. It is recommended that both types of errors are handled.
6.9.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.9.2. Properties and Constants

Useful constants are contained in the Math object as properties. All constants are guaranteed to support at least 14 total digits of accuracy. The following constants are supported:

	Constant
	Value

	Math.E
	2.7182818284590…

	Math.LN2
	0.6931471805599…

	Math.LN10
	2.3025850929940…

	Math.LOG10E
	0.4342944819035…

	Math.LOG2E
	1.4426950408890…

	Math.PI
	3.1415926535897…

	Math.SQRT1_2
	0.7071067811865…

	Math.SQRT2
	1.4142135623731…

6.9.3. Methods

6.9.3.1. Integerizing Methods

Any of the following methods, if applied to numbers that are already integers, simply returns the number itself.

	Method
	Description
	Examples
	Reference

	Math.round(x)
	Returns the number value that is closest to the given value and is an integer
	a= Math.round(3.5); //a=4

b= Math.round(-3.5);//b= -3
	ECMA-262 Section 15.8.2.15

	Math.ceil(x)
	Returns the smallest number value that is not less than x and is an integer.
	a= Math.ceil (3.4); //a=4

b= Math.ceil(-3.4);//b= -3
	ECMA-262 Section 15.8.2.6

	Math.floor(x)
	Returns the greatest number value that is not greater than x and is an integer.
	a= Math.floor(3.4); //a=3

b= Math.floor(-3.4);//b= -4
	ECMA-262 Section 15.8.2.9

6.9.3.2. General Mathematical Methods

	Method
	Description
	Reference

	Math.abs(x)
	Returns the absolute value of ‘x’.
	ECMA-262 Section 15.8.2.2

	Math.exp(x)
	Returns an implementation dependent approximation of the exponential function of ‘x’ (‘e’ raised to the power of ‘x’, where ‘e’ is the base of the natural logarithms).
	ECMA-262 Section 15.8.2.8

	Math.log(x)
	Returns an implementation dependent approximation of the natural logarithm of ‘x’
	ECMA-262 Section 15.8.2.10

	Math.pow(x,y)
	Returns an implementation dependent approximation of the result of raising ‘x’ to the ‘y’ power.
	ECMA-262 Section 15.8.2.13

	Math.sqrt(x)
	Returns an implementation dependent approximation of the square root of ‘x’
	ECMA-262 Section 15.8.2.17

6.9.3.3. Trigonometric Methods

	Method
	Description
	Reference

	Math.acos(x)
	Generates the arc-cosine of number x Range: +0 to +π
	ECMA-262 Section 15.8.2.2

	Math.asin(x)
	Generates the arc-sine of number x Range:- π/2 to + π/2
	ECMA-262 Section 15.8.2.3

	Math.atan(x)
	Generates the arc-tangent of numberx Range:- π/2 to + π/2
	ECMA-262 Section 15.8.2.4

	Math.atan2(y,x)
	Generates the arc-tangent of the quotient y,x Range:- π to + π
	ECMA-262 Section 15.8.2.5

	Math.cos(x)
	Generates the cosine, in radians, of number x
	ECMA-262 Section 15.8.2.7

	Math.sin(x)
	Generates the sine, in radians, of number x
	ECMA-262 Section 15.8.2.16

	Math.tan(x)
	Generates the tangent, in radians, of number x
	ECMA-262 Section 15.8.2.18

6.9.3.4. max()

Reference: ECMA-262 Section 15.8.2.11

	Syntax:
	Math.max([value1[,value2 [,…]]])

	Argument List:
	value1 – any value, which is then converted with toNumber()

value2 – any value, which is then converted with toNumber()

	Description:
	return the largest of the resulting values

	Return Value Type:
	number

	Errors or Exceptions:
	If any of the values is NaN the result is NaN

	Example(s):
	Math.max(“3.12E12”,36); //returns the number 3.12E12

	Reference
	ECMA-262 Section 15.8.2.11

WMLScript Note: ECMAScript allows zero or more arguments, returning the maximum. WMLScript specified exactly two arguments. [WMLSCRIPT]

6.9.3.5. min()

Reference: ECMA-262 Section 15.8.2.12

	Syntax:
	Math.min([value1 [,value2 [,…]]])

	Argument List:
	value1 – any value, which is then converted with toNumber()

value2 – any value, which is then converted with toNumber()

	Description:
	returns the smallest of the resulting values

	Return Value Type:
	number

	Errors or Exceptions:
	If any of the values is NaN the result is NaN

	Example(s):
	Math.min(“3.12E12”,36); //returns the number 36

	Reference
	ECMA-262 Section 15.8.2.11

WMLScript Note: ECMAScript allows zero or more arguments, returning the minimum. WMLScript specified exactly two arguments. [WMLSCRIPT]

6.9.3.6. random()

	Syntax:
	Math.random([intMaxVal])

	Argument List:
	intMaxVal – number(integer), optional

	Description:
	returns a random (or pseudorandom) number. If the input parameter is “undefined” (not specified) then the function returns a floating point value between 0 and 1. If the input parameter is specified, then the method returns an integer value >= 0 and < to the input value.

	Return Value Type:
	a Number

	Errors or Exceptions:
	if no input parameter is specified, and the implementation supports only integers then NaN is returned. It is an error to specify a negative argument.

	Example(s):
	aVal = Math.random(); //returns .789032 (example floating val 0<aVal<1.0)

bVal= Math.random(100); //returns 89 (integer val 0<=bVal<100)

	Reference
	ECMA-262 Section 15.8.2.14

Note: This function is an enhancement to the the ECMAScript 3rd Edition method, to support integers as well as floating point values. Effort should be made to use a random number algorithm that generates truly randomly distributed numbers.

6.10. Date Object

Reference: ECMA-262 Section 15.9

The date object provides support for date and time handling within ECMAScript Mobile Profile.

6.10.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.10.2. Time Range

Reference: ECMA-262 Section 15.9.1.1

Time range is as specified in [ECMA262], approximately ±285,616 years from January 1st 1970 (the epoch).

6.10.3. Day Number and Time within Day

A given time value ‘t’ belongs to day number

Day(‘t’) = floor(‘t’/secPerDay)

where the number of milliseconds per day is

1000 * 60 * 60 * 24 = 86400000

The remainder is called the time within the day:

TimeWithinDay(‘t’) = ‘t’ modulo secPerDay

Reference: ECMA-262 Sections 15.9.1

Implementations are encouraged to support the persistent storage of local timezone, and to provide a mechanism for the user to access the timezone as well as other date and time settings. If there is no support for timezone in a particular implementation, then the UTC version of a method MUST return the same value as the local version of the method.

Actual implementations may not be accurate to the millisecond, and may be rounded.

6.10.4. Properties

No special properties are specified for the Date object.

6.10.5. Methods

6.10.5.1. getTime()

	Syntax:
	aDateObj.getTime()

	Argument List:
	

	Description:
	returns the current time value of the referenced object, in milliseconds from January 1, 1970 (the epoch)

	Return Value Type:
	sets the time of the target object

	Errors or Exceptions:
	if the target is not a Date object a TypeError exception is generated.

	Example(s):
	var now= new Date;

now.getTime(); // now holds the current time; (right now)

	Reference
	ECMA-262 Section 15.9.5.9

6.10.5.2. getFullYear(), getUTCFullYear()

	Syntax:
	aDateObj.getFullYear() – local timezone based

aDateObj.getUTCFullYear() – UTC timezone based

	Argument List:
	

	Description:
	returns the year contained in the date object

	Return Value Type:
	a number(integer) in the range 1970 (~238,000

	Errors or Exceptions:
	if the date is NaN then NaN is returned

if the target is not a Date object a TypeError exception is generated.

	Example(s):
	now = new Date;

document.write("Current year is " + now.getFullYear());

	Reference
	ECMA-262 Section 15.9.5.10, 15.9.5.11

6.10.5.3. getMonth(), getUTCMonth()

	Syntax:
	aDateObj.getMonth() – local timezone based

aDateObj.getUTCMonth() – UTC timezone based

	Argument List:
	

	Description:
	returns the month contained in the date object

	Return Value Type:
	a number(integer) in the range [0-11]

	Errors or Exceptions:
	if the date is NaN then NaN is returned.

if the target is not a Date object a TypeError exception is generated.

	Example(s):
	now = new Date;

document.write("Current month is " + now.getMonth());

	Reference
	ECMA-262 Section 15.9.5.12, 15.9.5.13

6.10.5.4. getDate(), getUTCDate()

	Syntax:
	aDateObj.getDate() – local timezone based

aDateObj.getUTCDate() – UTC timezone based

	Argument List:
	

	Description:
	returns the date of the month contained in the date object

	Return Value Type:
	a number(integer) in the range [1-31]

	Errors or Exceptions:
	if the date is NaN then NaN is returned.

if the target is not a Date object a TypeError exception is generated.

	Example(s):
	now = new Date;

document.write("Current date is " + now.getUTCDate());

	Reference
	ECMA-262 Section 15.9.5.14, 15.9.5.15

6.10.5.5. getDay(), getUTCDay()

	Syntax:
	aDateObj.getDay() – local timezone based

aDateObj.getUTCDay() – UTC timezone based

	Argument List:
	

	Description:
	returns the day of the week contained in the date object

	Return Value Type:
	a number(integer) in the range [0-6] where 0 is Sunday and 6 is Saturday

	Errors or Exceptions:
	if the date is NaN then NaN is returned.

if the target is not a Date object a TypeError exception is generated.

	Example(s):
	now = new Date;

document.write("Current day is " + now.getUTCday());

	Reference
	ECMA-262 Section 15.9.5.16, 15.9.5.17

6.10.5.6. getHours(), getUTCHours()

	Syntax:
	aDateObj.getHours() – local timezone based

aDateObj.getUTCHours() – UTC timezone based

	Argument List:
	

	Description:
	returns the hour of the day contained in the date object

	Return Value Type:
	a number(integer) in the range [0-23]

	Errors or Exceptions:
	if the date is NaN then NaN is returned.

if the target is not a Date object a TypeError exception is generated.

	Example(s):
	now = new Date;

document.write("Current hour is " + now.getHours());

	Reference
	ECMA-262 Section 15.9.5.18, 15.9.5.19

6.10.5.7. getMinutes(), getUTCMinutes()

	Syntax:
	aDateObj.getMinutes() – local timezone based

aDateObj.getUTCMinutes() – UTC timezone based

	Argument List:
	

	Description:
	returns the minute within the hour contained in the date object

	Return Value Type:
	a number(integer) in the range [0-59]

	Errors or Exceptions:
	if the date is NaN then NaN is returned.

if the target is not a Date object a TypeError exception is generated.

	Example(s):
	now = new Date;

document.write("Current minute is " + now.getUTCMinutes());

	Reference
	ECMA-262 Section 15.9.5.20, 15.9.5.21

6.10.5.8. getSeconds(), getUTCSeconds()

	Syntax:
	aDateObj.getSeconds() – local timezone based

aDateObj.getUTCSeconds() – UTC timezone based

	Argument List:
	

	Description:
	returns the second within the minute contained in the date object

	Return Value Type:
	a number(integer) in the range [0-59]

	Errors or Exceptions:
	if the date is NaN then NaN is returned.

if the target is not a Date object a TypeError exception is generated.

	Example(s):
	now = new Date;

document.write("Current second is " + now.getUTCSeconds());

	Reference
	ECMA-262 Section 15.9.5.22, 15.9.5.23

6.10.5.9. getMilliseconds(), getUTCMilliseconds()

	Syntax:
	aDateObj.getMilliseconds() – local timezone based

aDateObj.getUTCMilliseconds() – UTC timezone based

	Argument List:
	

	Description:
	returns the millisecond within the second contained in the date object

	Return Value Type:
	a number(integer) in the range [0-999]

	Errors or Exceptions:
	if the date is NaN then NaN is returned.

if the target is not a Date object a TypeError exception is generated.

If milliseconds are not supported for a given device then 0 (zero) is returned

	Example(s):
	now = new Date;

document.write("Current millisecond is " + now.getUTCMilliseconds());

	Reference
	ECMA-262 Section 15.9.5.24, 15.9.5.25

6.10.5.10. getTimezoneOffset()

	Syntax:
	aDateObj.getTimezoneOffset()

	Argument List:
	

	Description:
	returns the value in minutes which is the difference between the current timezone and UTC

	Return Value Type:
	a number(integer) in the range [0-1439]

Note: ECMA-262 does not specify the range of the return value.

	Errors or Exceptions:
	If timezone is not supported on a particular device this method MUST return zero (0).

if the target is not a Date object a TypeError exception is generated.

	Example(s):
	var someDate = new Date;

val = someDate.getTimezoneOffset();

//In the Eastern U.S, at certain times, val would = 300

	Reference
	ECMA-262 Section 15.9.5.26

6.10.5.11. parse()

The parse() method is not supported for the Date object, because textual dates are not specified in a standard way, and the cost of parsing freeform date syntax is deemed too expensive for small devices.

6.10.5.12. UTC()

	Syntax:
	Date.UTC(year,month[,date[,hours[,minutes[,seconds[,ms]]]]])

	Argument List:
	year - number – a full year value

month – number (0-11)

date – number (1-31)

hours – number (0-23)

minutes – number (0-59)

seconds – number (0-59)

ms – number (0-999)

	Description:
	Returns a number(integer) which corresponds to the date described in milliseconds from the epoch

	Return Value Type:
	number

	Errors or Exceptions:
	If an argument is not within the valid ranges given above, the result is implementation-dependent.

	Example(s):
	aVal = Date.UTC(1954,3,4,0,0,0,0);

// aVal = -496886400000

	Reference
	ECMA-262 Section 15.9.4.3

6.10.5.13. setTime()

	Syntax:
	aDateObj.setTime(time)

	Argument List:
	time – number(signed integer)

	Description:
	assigns the input value ‘time’ as the time for the target date object

	Return Value Type:
	integer ‘time’

	Errors or Exceptions:
	if the target is not a Date object a TypeError exception is generated.

	Example(s):
	var newTime = new Date;

newTime.setTime(990807301); //newTime = May 25th 12:15:01 PM 2001

	Reference
	ECMA-262 Section 15.9.5.27

6.10.5.14. setFullYear(), setUTCFullYear()

	Syntax:
	aDateObj.setFullYear(year [,month [, date]])

aDateObj.setUTCFullYear(year [,month [, date]])

	Argument List:
	year – number(integer)

month – number(integer)

date – number(integer)

	Description:
	sets the year (and optionally the month and date) of the target date object

	Return Value Type:
	returns the value of the newly calculated date

	Errors or Exceptions:
	if any of the input numbers is out of range of a signed 64 bit integer, or the resultant date cannot be expressed within a signed 64 bit integer, the date is set to NaN

	Example(s):
	aDateObj.setFullYear(2003); // would change the year but no other part of the date

	Reference
	ECMA-262 Section 15.9.5.40, 15.9.5.41

6.10.5.15. setMonth(), setUTCMonth()

	Syntax:
	aDateObj.setMonth(month [, date])

aDateObj.setUTCMonth(month [, date])

	Argument List:
	month – number(integer)

date – number(integer)

	Description:
	sets the month (and optionally the date) of the target date object

	Return Value Type:
	returns the value of the newly calculated date

	Errors or Exceptions:
	 if any of the input numbers is out of range of a signed 64 bit integer, or the resultant date cannot be expressed within a signed 64 bit integer, the date is set to NaN

	Example(s):
	aDateObj.setMonth(-22); // would set the date back to the 2nd month (modulo 12)

	Reference
	ECMA-262 Section 15.9.5.38, 15.9.5.39

6.10.5.16. setDate(), setUTCDate()

	Syntax:
	aDateObj.setDate(date)

aDateObj.setUTCDate(date)

	Argument List:
	date – number(integer)

	Description:
	sets the date of the target date object

	Return Value Type:
	returns the value of the newly calculated date

	Errors or Exceptions:
	 if any of the input numbers is out of range of a signed 64 bit integer, or the resultant date cannot be expressed within a signed 64 bit integer, the date is set to NaN

	Example(s):
	aDateObj.setDate(5); // would set the date to be the 5th of the month

	Reference
	ECMA-262 Section 15.9.5.36, 15.9.5.37

6.10.5.17. setHours(), setUTCHours()

	Syntax:
	aDateObj.setHours(hour [,min [,sec]])

aDateObj.setUTCHours(hour [,min [,sec]])

	Argument List:
	hour – number(integer)

min – number(integer)

sec – number(integer)

	Description:
	sets the hour (and optionally the minutes and seconds) of the target date object

	Return Value Type:
	returns the value of the newly calculated date

	Errors or Exceptions:
	 if any of the input numbers is out of range of a signed 64 bit integer, or the resultant date cannot be expressed within a signed 64 bit integer, the date is set to NaN

	Example(s):
	aDateObj.setHours(24); // would set the hour to be 0 and increment the day count

	Reference
	ECMA-262 Section 15.9.5.34, 15.9.5.35

6.10.5.18. setMinutes(), setUTCMinutes()

	Syntax:
	aDateObj.setMinutes(min [,sec])

aDateObj.setUTCMinutes(min [,sec])

	Argument List:
	aDateObj – a Date Object

min – number(integer)

sec – number(integer)

	Description:
	sets the minutes (and optionally seconds) of the target date object

	Return Value Type:
	returns the value of the newly calculated date

	Errors or Exceptions:
	 if any of the input numbers is out of range of a signed 64 bit integer, or the resultant date cannot be expressed within a signed 64 bit integer, the date is set to NaN

	Example(s):
	aDateObj.setMinutes(-1); // would set the minutes to 59 and decrement the hour

	Reference
	ECMA-262 Section 15.9.5.32, 15.9.5.33

6.10.5.19. setSeconds(), setUTCSeconds()

	Syntax:
	aDateObj.setSeconds(sec)

aDateObj.setUTCMinutes(sec)

	Argument List:
	sec – number(integer)

	Description:
	sets the seconds of the target Date object

	Return Value Type:
	returns the value of the newly calculated date

	Errors or Exceptions:
	 if any of the input numbers is out of range of a signed 64 bit integer, or the resultant date cannot be expressed within a signed 64 bit integer, the date is set to NaN

	Example(s):
	aDateObj.setSeconds (3602); // would set the seconds to 2 and the hours to 1

	Reference
	ECMA-262 Section 15.9.5.30, 15.9.5.31

6.10.5.20. setMilliseconds(), setUTCMilliseconds

	Syntax:
	aDateObj.setMilliseconds(msec)

aDateObj.setUTCMilliseconds(msec)

	Argument List:
	msec – number(integer)

	Description:
	sets the milliseconds of the target Date object.

	Return Value Type:
	returns the value of the newly calculated date

	Errors or Exceptions:
	if any of the input numbers is out of range of a signed 64 bit integer, or the resultant date cannot be expressed within a signed 64 bit integer, the date is set to NaN

	Example(s):
	aDateObj.setMilliseconds (10002); // would set the seconds to 1 and the milliseconds to 2

	Reference
	ECMA-262 Section 15.9.5.28, 15.9.5.29

6.10.5.21. toString(), toLocaleString(), toUTCString()

This toString() method is specific for Date objects.

	Syntax:
	aDateObj.toString()

aDateObj.toLocaleString()

aDateObj.toUTCString()

	Argument List:
	

	Description:
	creates an implementation dependant string, that is a human readable full date

	Return Value Type:
	a string value

	Errors or Exceptions:
	if the Date object is NaN then “NaN” is returned

	Example(s):
	document.write("Date String = " + now.toString());

//Date String = Wed May 30 00:36:34 EDT 2001

document.write("Date String is " + now.toUTCString());

//Date String is Wed, 30 May 2001 04:36:34 UTC

	Reference
	ECMA-262 Section 15.9.5.2, 15.9.5.42

Note: toLocaleString may return a specially localized date string, otherwise it is a synonym for toString when applied to date. The exact format of the human readable string is implementation dependant, and cannot be used for standard string comparisons.

6.10.5.22. toDateString(), toLocaleDateString()

	Syntax:
	aDateObj.toDateString()

aDateObj.toLocaleDateString()

	Argument List:
	

	Description:
	creates an implementation dependant string, that is the human readable date part of the target date object. toLocaleDateString() optionally expresses the date in a manner that represents an I18N localized version. If toLocaleDateString() is not explicitly implemented, it should be a synonym for toDateString().

	Return Value Type:
	a string value

	Errors or Exceptions:
	if the date object is NaN then “NaN” is returned

	Example(s):
	document.write("Date String = " + now.toDateString());

// Date String = Wed May 30 2001

document.write("Date String is " + now.toLocaleDateString());

//Date String is Wednesday,May 30,2001

	Reference
	ECMA-262 Section 15.9.5.3, 15.9.5.6

Note: This is not compatible with IE or Netscape.

6.10.5.23. toTimeString(), toLocaleTimeString()

	Syntax:
	aDateObj.toTimeString()

aDateObj.toLocaleTimeString()

	Argument List:
	

	Description:
	creates an implementation dependant string, that is the human readable time part of the target date object. toLocaleTimeString optionally expresses the time in a manner that represents an I18N localized version. If toLocaleTimeString() is not explicitly implemented, it should be a synonym for toTimeString()

	Return Value Type:
	a string value

	Errors or Exceptions:
	if the date object is NaN then “NaN” is returned

	Example(s):
	document.write("Time String = " + now.toTimeString());

//Time String = 00:57:31 EDT

document.write("Date String is " + now.toLocaleTimeString());

//Time String is 12:57:31 AM

	Reference
	ECMA-262 Section 15.9.5.4, 15.9.5.7

6.10.5.24. valueOf()

	Syntax:
	aDateObj.valueOf()

	Argument List:
	

	Description:
	returns a number(signed integer) which represents the date contained in the date object.

	Return Value Type:
	number(signed integer)

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.9.5.8

6.11. Error (Exception) Object

Reference: ECMA 262 Section 15.11

Error Objects can be used to capture and report errors that are either part of the native implementation (native errors) or are generated explicitly by the application.

6.11.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.11.2. Constructor

	Syntax:
	myError = new Error([aMessage]);

	Argument List:
	aMessage – the optional message string that is to be associated with the message property of this Error object

	Description:
	Constructs an instance of an Error object, and optionally sets the message property with the supplied parameter.

	Return Value Type:
	returns an Error object instance

	Errors or Exceptions:
	none

	Example(s):
	//setting up a user defined error

killerError = new Error(“You should not have done that!”);

killerError.name = “KillerError”;

// force this error

try {

 throw killerError;

}

catch(killerError) {

 document.write(killerError.message);

}

finally {

 alert(“Done with this thing.”);

}

	Reference
	ECMA-262 Section 15.11.1

6.11.3. Properties

6.11.3.1. name

	Syntax:
	myError.name

	Type:
	string

	Description:
	A property containing a one word error title (i.e. “TypeError”). The initial value of a newly constructed Error object name is “Error”.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	This is an extension to ECMA262 Section 15.11.7

6.11.3.2. message

	Syntax:
	myError.message

	Type:
	string

	Description:
	A property containing an implementation dependant description of the error captured in the Error object.

	Errors or Exceptions:
	none

	Example(s):
	var myError = new Error;

document.write(“Error message is “ + myError.message);

	Reference
	ECMA262 Section 15.11.7.2

6.11.3.3. code

	Syntax:
	myError.code

	Type:
	number(integer)

	Description:
	A property that contains the value of the exception thrown. The initial value of a newly constructed Error object code is NaN.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	This is an extension to ECMA262 Section 15.11.7

Note: Assignment of fixed error code constants is an extension to ECMA262.

6.12. Native Error Objects

When an ECMAScript implementation detects a runtime error, it throws an instance of one of the NativeError objects defined in 6.12.2. Each of these objects has the structure described below, differing only in the name used as the constructor name instead of <NativeError>,in the name property of the prototype object, and in the implementation-defined message property of the prototype object.

For each error object, references to <NativeError> in the definition should be replaced with the appropriate error object name from 6.12.2.

6.12.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

6.12.2. Native Error Types (Constants)

Reference: ECMA-262 Section 15.11.7

The following native error types MUST be supported:

	Name
	Code Constant
	Description
	Reference

	RangeError
	101
	A numeric value has exceeded its range.
	ECMA-262 Section 15.11.6.2

	ReferenceError
	102
	An invalid reference has been detected.
	ECMA-262 Section 15.11.6.3

	SyntaxError
	103
	A parsing error has occurred.
	ECMA-262 Section 15.11.6.4

	TypeError
	104
	The actual type of an operand is different than the expected type.
	ECMA-262 Section 15.11.6.5

	URIError
	105
	A global URI handling function was used in an inconsistent or incompatible way.
	ECMA-262 Section 15.11.6.6

	EvalError
	106
	The global eval() function was used in a way that is incompatible with its definition, or attempts were made to use eval() when it isn’t present. This error value is required whether or not an implementation supports eval().
	ECMA-262 Section 15.11.6.1

ECMA-327 Section 5.1

	MemoryError
	99
	The method was unable to obtain the memory resources required to complete the request.
	

This means that the implementation MUST be able to throw instantiations of any of the above Error objects, as defined by their name. To catch and process any of the native errors a try / catch {} clause must be used. The catch parameter will be set to reference the instantiation of the native error. The instantiated Error object MUST set the ‘name’ and the ‘code’ properties to the proper value.

function myException()

{

 myErr = new Error;

 var anInt;

 var aVal = 4.3;

 document.write("Entering routine.");

 try {

 anInt = aVal.Garbage(); //will generate an exception

 document.write("Shouldn't get here");

 }

 catch(myErr)

 {

 document.write("
An error was thrown.
");

 document.write("
 myErrName=" + myErr.name + "
message=" + myErr.message);

 } //myErr.name = “TypeError”

}

6.12.3. Constructor

	Syntax:
	myError = new <NativeError>([aMessage]);

	Argument List:
	aMessage – the optional message string that is to be associated with the message property of this Error object

	Description:
	Constructs an instance of a <NativeError> object, and optionally sets the message property with the supplied parameter.

	Return:
	returns a <NativeError> object instance

	Errors or Exceptions:
	none

	Example(s):
	badUri = new URIError(“Invalid Uri”);

try{

throw badUri;

catch(err){

 document.writeln(err.name); // This should print “URIError”

 document.writeln(err.message); //This should print “Invalid Uri”

 document.writeln(err.code); //This should print 105

}

	Reference:
	ECMA-262 Secs. 15.11.7.2, 15.11.7.3, 15.11.7.4

6.12.4. Properties

6.12.4.1. name

	Syntax:
	myError.name

	Type:
	string

	Description:
	A property containing a one word error title (i.e. “TypeError”). The initial value of the property for a given <NativeError> constructor is the name of the constructor (the name used instead of <NativeError>). The various possible values are defined in 6.11.4 under Name column.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.11.7.9

6.12.4.2. message

	Syntax:
	MyError.message

	Type:
	string

	Description:
	A property containing an implementation dependant description of the error captured in the <NativeError> object.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	ECMA-262 Section 15.11.7.10

6.12.4.3. code

	Syntax:
	MyError.code

	Type:
	Number(integer)

	Description:
	A property that contains the value of the exception thrown. The initial value of a newly constructed <NativeError> object code is the corresponding value in 6.11.4 under Code Constant column.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	This is an extension to ECMA262 Section 15.11.7

6.13. Unsupported Native Objects

Because of the separation between compilation and execution support for the dynamic creation of new object and function prototypes is not required for language conformance. [ECMA327]

6.13.1. Object object

Reference: ECMA-262 Section 15.2

Dynamic creation of new Object objects SHOULD NOT be supported in ECMAScript – Mobile Profile.
Creation of dynamic objects is a large memory burden upon a client.

6.13.2. Function object

Reference: ECMA-262 Section 15.3

Because support for the eval() function (runtime compilation) is not required, the Function object is not required to support a constructor supporting dynamic creation of runtime functions. [ECMA327]. See Section 5.4.2.

The Function constructor SHOULD NOT support the ability to construct dynamic functions requiring runtime compilation.

When eval() is not supported, attempts to compile a dynamically created function MUST throw an EvalError.
7. The Language Environment

7.1. Reference Programming Model

The reference programming model described here is concerned only with the entry to and exit from script. When inside script the reference programming model is as described in [ECMA262].

7.1.1. Script Context

Script context is inherited at the time of script invocation. It is an aggregation of the current browser context and the document context (including, but not limited to, current location, form variable state, event state, history stack, etc.) from which the script was called. Event state is defined as the set of events (0 or more) and their associated attribute values, which are pending at the time the script is invoked.

7.1.2. Generic Browser Context

The generic browser context is composed of the history, location and event state associated with the currently executing document [XHTMLMP]. These data are accessible from within script through the history and location host objects (See sections 9.3 and 0). history and location objects are instantiated at the time of script invocation, and go out of scope upon script exit.

7.1.3. Document Context

Document context is as defined by [DOM2CORE] and is accessed via the Browser Document Object (See Section 9.5). Document context is instantiated at the time a markup document is entered. Document-level state (such as form variable values and document mutations via the DOM) remains in scope until another document is established as the current document. This occurs as the result of navigation, either by interacting with the current document (hyperlink navigation or form submission) or through other mechanisms independent of the current document (such as bookmarks or URL input dialog). Note that when the user navigates away from the current document, an entry for that document may be retained in the browser's navigation history.Hence when invoking script multiple times from within a single markup document, document form variables remain in scope.

7.2. Script Invocation Mechanisms

7.2.1. Invocation via Navigation

All script invocations in WMLScript [WMLSCRIPT] are via navigation to a script document. This method is not supported in ECMAScript Mobile Profile, where scripts are contained within an XHTML Mobile Profile document and script invocation occurs during the loading of the document or as a result of events.

7.2.2. <script> Element Definition

When invoking script directly from a markup document, the script is considered to be part of the invoking document. This is the markup/script relationship that exists between Javascript and markup in the “wired web”. This method of invocation is supported by ECMAScript Mobile Profile. This method of invocation is also referred to as child invocation. The context of the invoking markup document is available to the script. Script may be defined in three ways as defined in sections 7.2.2.1,7.2.2.2, 7.2.2.3.

[image: image5.wmf]Markup

Script

Markup

WMLScript

ECMAScript

-

MP

Markup

Script

Markup

Script

Markup

Script

URI

Remote

Script

Navigation

7.2.2.1. Inline Execution

Script segments may be defined directly inline as embedded script text. This occurs when the inline script is not enclosed in a function body.

<script type="text/ecmascript">

document.write(“I will be invoked.
”);

</script>

Multiple direct embedded script segments MUST be supported. Scripts defined in this way are said to be directly invoked.

Directly invoked script segments MUST be executed in the order in which they appear.

Directly invoked script segments MUST be executed prior to any event invoked script segments.
7.2.2.2. Event-based (Deferred) Execution

The most common way to define a script is as a response to an event. (See section 8). Scripts written to be executed as a result of an event are said to have event-based, or deferred invocation. Event-based invocation requires the use of event assignment attributes in XHTML [XHTMLMP] markup.

<html>

 …

<script type="text/ecmascript">

someFunc() {

//do something

}

</script>

 …

 <body>

 …

<form onsubmit=”someFunc()”>

…

</form>

 …

 </body>

</html>

Deferred execution MUST be supported.
The script engine MUST allow deferred execution scripts to be located in either the <body> or the <head> of a document.
7.2.2.3. File-based Execution

Script may be defined by referencing a URL that contains the source for the script to execute.

Script files defined by reference SHOULD contain only script statements and SHOULD be text only.

Failure to meet these criteria may lead to rejection of the file by the implementation. Remotely referenced script files are processed by replacing the contents of the script element with the contents of the file.

The script engine MUST allow script elements representing references to remote scripts to be located in either the <body> or the <head> of a document.

After loading, remote scripts are subject to the invocation rules described in 7.2.2.1 and 7.2.2.2.

<script type="text/ecmascript" src=”aFileofESMP.es”/>

Remotely referenced script files MUST be supported.

The type attribute on the <script> element SHOULD be supported.
7.2.2.4.
Scheme-based execution

Scheme-based invocation, (using a scheme syntax such as href=”ecmascript:<immediate statements>”) which is a syntactic shortcut, is not supported.

7.3. Script Completion Mechanisms

7.3.1. Normal Completion

Unlike WMLScript, ECMAScript completion follows a very simple model. Irrespective of the state in which a script execution completes, control is returned to the context of the parent document. This is true for abnormal and successful completions as well as completions following explicit navigation to a new document via the history or location objects (See section 9.3 and 9.4). This means that successive calls to a script segment may be initiated by the parent context if so directed. The script invocation mechanism is considered to be stateless. All script completions return to the parent document as if the execution was successful. It is implementation dependent what, if any errors, from abnormal termination are reported to the user.

The user agent MAY report to the user, errors from the abnormal termination of scripts.
In the case of completion following an explicit navigation to a new document, the navigation request is to be considered asynchronous and cancellable like any other document navigation. Should the script request a navigation, complete and return to the parent document context and the user the immediately selects another navigation object or invokes the navigation cancel command, the script's navigation request will be cancelled. In the case of the user selecting the cancel command, the user is of course free to re-invoke the script.
7.3.2. Aborted Completion

The script engine MUST provide an abort event to allow the initiation of abnormal script execution.

There MUST be a user input mechanism, such as a key or button, available to provide access to the abort functionality to the end user.

Completion of the abort processing MUST guarantee that the browser is capable of continuing, or returning to a known state.

8. Events

Events are the primary method of invoking scripts. The event language bindings, management and flow mechanisms specified in ECMAScript Mobile Profile are based on the attributes defined in section 5.14 (Intrinsic Events Module) of [XHTMLMOD] plus the Events attributes defined in section 5.1 (Attribute Collections) of [XHTMLMOD]. The semantics for the event types are defined in [XHTMLMP]
In ESMP event bindings are only supported through the markup interface, although they should be considered compatible with the procedural interface as defined in DOM2 events[DOM2EVENTS]. Certain events may support a return value and be cancellable (See Sec. 8.4)
8.1. XHTML Event Types

XHTML Mobile Profile 1.1 [XHTMLMP] defines events and a mechanism for binding event handlers to those events.
The XHTML – Mobile Profile user agent MUST support XHTML Events as a prerequisite for script support.

Note: These events are also referred to “DOM0” events in [DOM2EVENTS] chapter 1.6.5. For a list of XHTML Event attributes, their targets, and semantics see [XHTMLMP].

To guarantee interoperability between legacy events and any future DOM2 event semantics, implementers SHOULD guarantee that legacy events operate as a special case of the broader DOM2 event model.

The user agent MUST ignore event handlers registered for event types that are not supported.
8.2. Event Binding

An event handler is bound to an event by assigning the value of an event handler attribute. The event handler attribute specifies the type of the event and its value specifies the handler. The target element is the element to which the event handler attribute is attached.

The user agent MUST operate as if the value of the event handler attribute is the body of an anonymous function that is registered as an event handler.

The prototype of the function contains a single argument, an Event object (See Section 8.3)

 function <anonymous>(Event event)

 {

 ...

 }

The binding is equivalent to the W3C DOM Level 2 Events registration method addEventListener() invoked on the element to which the attribute is attached, with useCapture specified as false.

Any attempt to modify the value of an event handler attribute via the DOM interfaces MUST result in a deregistration of any existing event handler. Only a single event handler is supported for a given event type on a given target element.

8.3. Event Object

When the user agent handles an event, it makes available to the event listener an Event object. The Event object defined in ECMAScript Mobile Profile is a small intersecting subset of the W3C DOM Level 2 Events Event object and the Netscape Navigator Event object. The static Event object, as defined in the IE implementation, is not available in this implementation.
8.3.1. Event Properties

All events are considered to be “non-bubbling”, since the full W3C DOM event binding interface is not supported.

All events are considered to “non-capturing”, since the full W3C DOM event binding interface is not supported.

Because all events are considered non-bubbling and non-capturing, events fired without a specified handler are ignored.

8.3.2. Properties

8.3.2.1. keyCode

	Syntax:
	anEvent.keyCode

	Type:
	number (integer), read-only

	Description:
	For keyboard events only (onkeyup, onkeydown, onkeypress) this property is an integer corresponding to the following:

For KeyPress – the Unicode [UNICODE] value of the character pressed by the user

For KeyDown, KeyUp – the Unicode [UNICODE] value of the keyboard key pressed

	Errors or Exceptions:
	Keys which do not have a Unicode equivalent mapping are ignored.

Note: keyCode semantics are not an exact match for either IE or Netscape. Netscape uses two properties keyCode and charCode to represent the same thing. IE uses a different property name.

	Example(s):
	

	Reference
	

8.3.2.2. target

	Syntax:
	anEvent.target

	Type:
	Node reference, read-only

	Description:
	This property is a reference to the original markup element that is the target of the event. It can be used to reference nodes (See section 11.2) and attributes relative to the event originator.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	DOM2EVENTS Section 1.4

.

8.3.2.3. timeStamp

	Syntax:
	anEvent.timeStamp

	Type:
	number(integer), read-only

	Description:
	A property which represents the time the event was created. The format of the timestamp is defined by DOM2 Events. It is in a form that is compatible with the Date object (See section 6.10)

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	DOM2EVENTS Section 1.4

8.3.2.4. type

	Syntax:
	anEvent.type

	Type:
	string, read-only

	Description:
	A property that describes the kind of event that generated this object. Strings are lower case and are the same as XHTML event attribute, with the “on” removed.

Valid strings are:

Source XHTML Event Attribute

Type String

onclick

click

ondblclick

dblclick

onload

load

onunload

unload

onreset

reset

onsubmit

submit

onkeypress

keypress

onkeydown

keydown

onkeyup

keyup

onblur

blur

onfocus

focus

onchange

change

onselect

select

onwap-<evt>-event

wap-<evt>-event

onmouseup

mouseup

onmousedown

mousedown

onmouseover

mouseover

onmousemove

mousemove

onmouseout

mouseout

	Errors or Exceptions:
	Unrecognized event types will set type to null.

	Example(s):
	

	Reference
	DOM2EVENTS Section 1.4

8.4. Reference Processing Model

The event model for EcmaScript Mobile Profile is the same model as that of W3C DOM Level 2 Events.

When an event supported by a user agent occurs, the user agent MUST create a read-only instance of an Event object, as specified in section 8.3. It must then invoke the event handler associated with that event, passing the Event object instance to the handler as described in section 8.2.

The user agent MUST ignore any event bindings for event types that are not supported.
8.4.1. Event Capture and Bubbling

The event binding mechanism specified for ECMAScript Mobile Profile does not permit an event handler (event listener) to specify whether it gets invoked in the capture or bubbling phase. Because of this, all events are considered "non-bubbling" and "non-capturing". All event handlers registered on the event's target element are triggered when the event reaches the target.
8.4.2. Event Cancellation

The event model for ECMAScript Mobile Profile provides a mechanism for cancelling an event. Cancelling an event means to prevent the default action for the event. The default action is the action taken by the user agent to handle that event in the case that no script event handler is bound to the event. For example, the default action for the click event on a hyperlink is to activate the hyperlink. Cancelling an event means that the script will completely determine the handling of the event.

A script event handler cancels an event by returning the value false from the anonymous event handler function. If the value true is returned, or no value is returned, the event is not cancelled and the default action occurs.

Only certain events are cancellable. For the list of cancellable events, see [XHTMLMP]. If a handler for a non-cancellable event returns a value, it is ignored.

For a cancellable event, if an event handler cancels the event, the user agent MUST NOT execute the default action for that event. For a non-cancellable event, the user agent MUST ignore any return value by the event handler.

The W3C DOM Level 2 Events model provides a mechanism for cancelling the default action for an event – the method preventDefault() on the Event object. Returning false from an event handler in ECMAScript Mobile Profile is equivalent to invoking the preventDefault() method on the DOM Level 2 Event object. Also, designating an event as cancellable in ECMAScript Mobile Profile is equivalent to setting to true the ‘cancelable’ property on the DOM Level 2 Event object instantiated for that event occurrence.

8.5. Sample Code

This subsection is informative. For the definition of event binding in markup see [XHTMLMP].

The following is an example of handling simple events, using a single script function to support multiple event triggers:

<html>

 <head>

 <script type="text/ecmascript">

 function doEvtThing(evt){

 document.write("In handler
");

 if (evt.type == "click")

 document.write("Click received
");

 if (evt.type == "submit")

 document.write("Submit received
");

 if (evt.type == "keydown")

 document.write("Key pressed =" + evt.keyCode +"
");

 return;

 }

 </script>

 </head>

 <body>

 <h1>Event Tester</h1>

 <form>

 <input type="button" value="OnClickTest" onclick="doEvtThing(event)"/>

 </form>

 <form method="post" onsubmit="doEvtThing(event)" onreset="doEvtThing()">

 Type a word:

 <input type="text" name="text" value="" onkeydown="doEvtThing(event)"/>

 <input type="submit" name="Submit" value="Submit"/>

 <input type="reset" />

 </form>

 </body>

</html>
Note: In some cases the event parameter is specified in markup, and where the event instance is not explicitly used, it is not required.

9. Browser Host Objects

In addition to the native objects that encapsulate language semantics, a set of host objects are defined to interface to the host environment in which the scripting language resides. This section describes these objects. Section 11 describes the DOM host objects.

[image: image6.wmf]Global Object

(window Object)

History

Object

Navigator

Object

Basic

Document

Object

Location

Object

9.1. Global Object (window object)

Note: The version history for this object can be found in section 6.3.1. The global object may be referred to as “top”, “parent”, “self” or “window” for backwards compatibility with the wired web. (See section 6.3)

9.1.1. Properties

The history object, location object, navigator object and document object are contained in the global object and are hence properties of the global object. There are no pre-defined read-only properties directly attributable to the global object.

9.1.1.1. history

	Syntax:
	[top.]history

	Type:
	object, read-only, enumerable

	Description:
	A property which is the history object described in detail in section9.3.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	Common object IE, Netscape

9.1.1.2. navigator

	Syntax:
	[top.]navigator

	Type:
	object, read-only, enumerable

	Description:
	A property which is the navigator object described in detail in section 9.2.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	Common object IE, Netscape

9.1.1.3. location

	Syntax:
	[top.]location

	Type:
	object, read-only, enumerable

	Description:
	A property which is the location object described in detail in section 9.4.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	Common object IE, Netscape

9.1.1.4. document

	Syntax:
	[top.]document

	Type:
	object, enumerable

	Description:
	A property which is the document object described in detail in section 9.5 and section 10

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	Common object IE, Netscape

9.1.2. Methods

9.1.2.1. prompt()

	Syntax:
	prompt(aMessage [,defaultReply]);

	Argument List:
	aMessage – string to be used as a prompt

defaultReply – string that will be returned if there is no input. If not specified, it is set to “undefined”.

	Description:
	Displays the given message as a dialog and prompts for user input. If the user does not enter a reply the defaultReply is returned as the user input string. If the user replies, the user reply is returned. This method is modal, and blocks waiting for a response.

	Return Value Type:
	String or “undefined”

	Errors or Exceptions:
	none

	Example(s):
	prompt(“What is your sex?”,”M”);

	Reference
	Common function IE, Netscape

9.1.2.2. confirm()

	Syntax:
	confirm(aMessage [,OKReply [,CancelReply]])

	Argument List:
	aMessage – string

OKReply – optional string for labeling positive reply

CancelReply – optional string for labeling negative reply

	Description:
	Displays message and waits for user to select positive or negative selection choice. This method is modal, and blocks waiting for a response.

	Return Value Type:
	true is returned upon selection of positive selection choice.

false is returned upon selection of negative selection choice.

	Errors or Exceptions:
	none

	Example(s):
	confirm(“Do you want to exit?”,”YES”,”NO”);

	Reference
	Common function IE, Netscape

9.1.2.3. alert()

	Syntax:
	alert(aMessage);

	Argument List:
	aMessage – a string to be displayed

	Description:
	Displays the given message to the user, and waits for user confirmation of the message. This method is modal, and blocks waiting for a response.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	if (confirm(“Time to panic?”, “YES”,”NO”))

{ alert(“PANIC”); }

else

{ alert(“No problem.”); }

	Reference
	Common function IE, Netscape

9.1.2.4. setTimeout()

	Syntax:
	setTimeout(funcRef,milliSecs [,funcArg1, …, funcArgN]);

	Argument List:
	funcRef – the name of a script function ie. myTimerFunc

milliSecs – number, that represents duration of the timeout as specified in milliseconds

funcArgX – optional arguments which are passed to the function referenced in parameter 1.

	Description:
	This global function specifies the duration to wait before calling the requested function. It acts as if a delay function were inserted at the end of the currently executing function. Execution of the current script does not stop. Rather, the requested function is called as soon as possible after the duration requested has passed.

For greatest compatibility, the function reference SHOULD be specified as <funcname>, without quotes, and without parentheses. This is so that the function reference is not interpreted as a string or expression. Inclusion of the parentheses after the function reference will cause the function to be treated as a function call, and will cause immediate evaluation of the function. Evaluation of the first parameter as an expression (such as a quoted string) may throw an EvalError if eval() is not supported (See section 5.4.2).

An implementation MUST support a minimum of a single timeout.
The user agent is not required to implement a timer with resolution of 1 millisecond. Authors should note that a user agent may not honor the exact value of a timeout expressed in milliseconds.

Note: The support of <funcname> without quotes and without parentheses has been chosen as the common syntax that works with both IE and Netscape. Other combinations will generate interoperability issues between ESMP, IE and Netscape.

Note: This method of passing parameters to a referenced function (while avoiding an eval()) is taken from Netscape and will not correctly pass these arguments in IE. To assure compatibility with all web implementations, do not try to pass arguments to the referenced function. The equivalent syntax for passing function arguments in IE would be

 setTimeout(“funcRef(funcArg)”,milliSecs);

 if the funcArg is a value or

 setTimeout(“funcRef(” + funcArg + “)”,milliSecs);

 if the funcArg is a variable.

	Return Value Type:
	returns an opaque handle (a number) representing the timer. This ID can be used with the clearTimeout() method to stop a timer.

 Note: A return of zero denotes an error.

	Errors or Exceptions:
	If a request for a timeout is made, when there are no more timeout slots available, the function returns 0.

If the number of function arguments do not match the number of parameters specified by the requested function, unspecified arguments are set to “undefined”, extra arguments are ignored.

If a function reference is specified that cannot be found a ReferenceError exception is thrown.

	Example(s):
	function loopMe(sflg) {

var tID;

var index;

var specialflg = “false”;

 if(sflg){

 // do something special

 }

 if(index < 10) {

 index++;

 if (index == 6) specialflg = “true”;

 //do something

 tID = setTimeout(loopMe, 5*1000, specialflg); //wait 5 secs

 // wait for awhile

 }

 else {

 clearTimeout(tID);

 }

}

	Reference
	Common function IE, Netscape

Note: This function is a change from the Javascript standard, in that only the function name (without parameters) may be used as the function input. This is because the use of parameters could require the invocation of an eval() operation, which is not a mandatory requirement of ESMP.

9.1.2.5. clearTimeout()

	Syntax:
	clearTimeout(timeoutID);

	Argument List:
	timeoutID – a number representing an opaque handle to a timeout. timeoutID is obtained as the return of the setTimeout() method.

	Description:
	unsets and clears an existing timeout

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	See above

	Reference
	Common function IE, Netscape

9.2. Navigator Object

The navigator object is a read-only object that contains a set of properties that help to identify the browser and user agent that reside in a particular device.

9.2.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

9.2.2. Properties

9.2.2.1. appName

	Syntax:
	navigator.appName

	Type:
	string, read-only

	Description:
	A property that contains a descriptor of the browser application and device.

Manufacturers are free to insert any string here, but the following guidelines should be followed:

A string identifying the browser application manufacturer SHOULD appear first.
A string identifying the browser application name SHOULD appear next.
Optionally, any qualifiers SHOULD be inside parentheses.

	Errors or Exceptions:
	none

	Example(s):
	document.write("Appname = " + navigator.appName + "
");//displays Appname = MobileCompany Ubrowser (test version)

	Reference
	Common IE and Netscape object property

9.2.2.2. appVersion

	Syntax:
	navigator.appVersion

	Type:
	string, read-only

	Description:
	A property that contains a version number for the browser application and device.

Manufacturers are free to insert any string here, but the following guidelines should be followed:

A string identifying the manufacturers application version number SHOULD appear first.

Optionally, any qualifiers SHOULD be inside parentheses.

	Errors or Exceptions:
	none

	Example(s):
	document.write("App Version = " + navigator.appVersion + "
");

//displays App Version = 3.4 (Build 6 Dynamo 080902)

	Reference
	Common IE and Netscape object property

9.2.2.3. userAgent

	Syntax:
	navigator.userAgent

	Type:
	string, read-only

	Description:
	A property that contains a string that uniquely describes the running user agent.

Manufacturers are free to insert any string here, but the following guidelines should be followed:

A string identifying the user agent name SHOULD appear first.
Optionally, any qualifiers SHOULD be inside parentheses.

	Errors or Exceptions:
	none

	Example(s):
	document.write("User Agent = " + navigator.userAgent + "
");

//displays User Agent = Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:0.9.4) Gecko/20011128 Netscape6/6.2.1

	Reference
	Common IE and Netscape object property

9.3. History Object

The history object maintains a list of the URLs most recently visited by the browser. These URLs are available to scripts for controlling navigation.

Direct access to the list of URL strings is a security concern and MUST NOT be supported.
9.3.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

9.3.2. Properties

9.3.2.1. length

	Syntax:
	history.length

	Type:
	number(integer) , read-only

	Description:
	The number of history entries currently in the history list is ‘length’.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	Common IE and Netscape object property

9.3.3. Methods

9.3.3.1. back()

	Syntax:
	history.back()

	Argument List:
	

	Description:
	This method executes a browser ”navigate to history entry” to the previous entry in the history list (if there is one).

	Return Value Type:
	none

	Errors or Exceptions:
	If there are no entries in the history list, then the method does nothing.

Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of this method, as with all methods that cause URL navigation, should be tied to script exit.

	Example(s):
	history.back(); // reloads the previous URL on the history list

	Reference
	Common IE and Netscape object property

9.3.3.2. forward()

	Syntax:
	history.forward()

	Argument List:
	

	Description:
	This method executes a browser “navigate to history entry” action with next URL entry in the history list.

	Return Value Type:
	none

	Errors or Exceptions:
	If there are no subsequent entries in the history list, then the method does nothing.

Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of this method, as with all methods that cause URL navigation, should be tied to script exit.

	Example(s):
	history.forward(); // reloads the next URL on the history list

	Reference
	Common IE and Netscape object property

9.3.3.3. go()

	Syntax:
	history.go(index)

	Argument List:
	index – a number(integer) which is the index to an ordered list of history entries. 0 (zero) is the index to the current entry.

	Description:
	Requests the browser to navigate to a URL using the indexed entry in the history list.

Form variable state SHOULD be preserved when loading a document requested by the history.go() method. Preservation of variable state is dependent upon cache availability.

Note: A history.go(0) is NOT the same as a location.reload(). history.go(0) is more “gentle”, preserving the state of all form variables whenever possible.

history.go(X) loads the ‘X’ entry in the history list and navigates there if available. There is no notion of navigation to any intervening entries on the history list. Negative numbers represent previous entries in the history list, positive numbers represent subsequent entries (i.e. when one has already navigated backwards)

Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of this method, as with all methods that cause URL navigation, should be tied to script exit.

	Return Value Type:
	none

	Errors or Exceptions:
	If there are no entries at the requested index in the history list, then the method does nothing.

	Example(s):
	history.go(0); // reloads the current URL on the history list, preserving all form variable and context state – beware a loop!

history.go(-1);//same as history.back()

history.go(1);//same as history.forward()

	Reference
	Common IE and Netscape object property

9.4. Location Object

The location object allows a script to query and manipulate the URL of the current document. When the location object is assigned to (used as a left-hand value), the script engine silently applies the location.assign(URL) (See section 9.4.3.1) method to the current context. URL is the complete constructed resource locator of the location object.

9.4.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

9.4.2. Properties

9.4.2.1. hash

	Syntax:
	location.hash

	Type:
	string

	Description:
	A property that is the fragment (anchor) part of the current URL (including the # [hash]) if it exists.

Setting the hash property (using location.hash as an lvalue) navigates to the named anchor without reloading the document. The hash symbol may be included, or not, in an lvalue assignment.

Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of property assignment, as with all methods that cause URL navigation, should be tied to script exit.

	Errors or Exceptions:
	An HTTP error may be generated if attempts to navigate to the anchor specified in an assignment cannot be found.

Attempts to construct an illegal URI will throw a URIError. This is an extension to ECMA262.

	Example(s):
	location.hash = “#nextanchor”; //will navigate to the nextanchor tag in the document

	Reference
	Common IE and Netscape object property, RFC2396

9.4.2.2. host

	Syntax:
	location.host

	Type:
	string

	Description:
	The host property specifies a portion of the current URL. The host property is the concatenation of the hostname (See section 9.4.2.4) and port (see section 9.4.2.6) properties, separated by a colon. When the port property is null, the host property is the same as the hostname property. Assignment to the location.host property may be used to initiate navigation.

Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of property assignment, as with all methods that cause URL navigation, should be tied to script exit.

	Errors or Exceptions:
	Attempts to navigate to non-existent URLs will generate standard HTTP errors.

Attempts to construct an illegal URI will throw a URIError. This is an extension to ECMA262.

	Example(s):
	document.write(“Host = “ + location.host + “
”);

//returns Host = www.mysite.com:8080

	Reference
	Common IE and Netscape object property, RFC2396

9.4.2.3. href

	Syntax:
	location.href

	Type:
	string

	Description:
	The href specifies the entire URL currently pointed to by the location object. Assignment to the location.href property may be used to initiate navigation.
Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of property assignment, as with all methods that cause URL navigation, should be tied to script exit.

	Errors or Exceptions:
	Attempts to navigate to non-existent URLs will generate standard HTTP errors.

Attempts to construct an illegal URI will throw a URIError. This is an extension to ECMA262.

	Example(s):
	Location.href = “http://www.wapforum.org”; //will navigate to the WAP Forum website

	Reference
	Common IE and Netscape object property, RFC2396

9.4.2.4. hostname

	Syntax:
	location.hostname

	Type:
	string

	Description:
	A property that contains a string, which is the hostname part of the current URL. Assignment to the location.hostname property may be used to initiate navigation.

Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of property assignment, as with all methods that cause URL navigation, should be tied to script exit.

	Errors or Exceptions:
	Attempts to navigate to non-existent URLs will generate standard HTTP errors.

Attempts to construct an illegal URI will throw a URIError. This is an extension to ECMA262

	Example(s):
	

	Reference
	Common IE and Netscape object property, RFC2396

9.4.2.5. pathname

	Syntax:
	location.pathname

	Type:
	string

	Description:
	A property which is the pathname component of the current URL. This includes the document name, but not the server name. Assignment to the location.pathname property may be used to initiate navigation.
Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of property assignment, as with all methods that cause URL navigation, should be tied to script exit.

	Errors or Exceptions:
	Attempts to navigate to non-existent URLs will generate standard HTTP errors.

Attempts to construct an illegal URI will throw a URIError. This is an extension to ECMA262.

	Example(s):
	

	Reference
	Common IE and Netscape object property, RFC2396

9.4.2.6. port

	Syntax:
	location.port

	Type:
	string

	Description:
	A property which is the specified port number of the current URL. The colon that separates the hostname from the port is not included. . Assignment to the location.port property may be used to initiate navigation.
Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of property assignment, as with all methods that cause URL navigation, should be tied to script exit.

	Errors or Exceptions:
	Attempts to navigate to non-existent URLs will generate standard HTTP errors.

Attempts to construct an illegal URI will throw a URIError. This is an extension to ECMA262.

	Example(s):
	

	Reference
	Common IE and Netscape object property, RFC2396

9.4.2.7. protocol

	Syntax:
	location.protocol

	Type:
	string, read-only

	Description:
	A property that contains a string, which is the first component of a URL, and specifies the protocol used for retrieving the document. Typically this would be “http:”, or “file:”, or “ftp:” etc. The colon is returned as part of the string.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	Common IE and Netscape object property, RFC2396

9.4.2.8. search

	Syntax:
	location.search

	Type:
	string

	Description:
	A property which is the search component of the current URL. The search component is defined as that substring of the URL that comes after the first question mark URI delimiter. The string returned includes the question mark. Assignment to the location.search property may be used to initiate navigation.
Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of property assignment, as with all methods that cause URL navigation, should be tied to script exit.

	Errors or Exceptions:
	Attempts to navigate to URLs that cannot process the appended search string may generate standard HTTP errors.

Attempts to construct an illegal URI will throw a URIError. This is an extension to ECMA262.

	Example(s):
	

	Reference
	Common IE and Netscape object property, RFC2396

9.4.3. Methods

9.4.3.1. assign()

	Syntax:
	location.assign(URL)

	Argument List:
	URL – a string

	Description:
	Loads the document pointed to by the parameter URL into the current context. The history stack is pushed with the requested URL.

Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of this method, as with all methods that cause URL navigation, should be tied to script exit.

	Return Value Type:
	none

	Errors or Exceptions:
	Attempts to navigate to non-existent URLs will generate standard HTTP errors.

Attempts to use an illegally formed URI will throw a URIError. This is an extension to ECMA262.

	Example(s):
	//location.href = http://somewhere/somedoc
location.assign(“http://somewhere/somedoc“);

//loads the document somedoc

	Reference
	Common IE and Netscape object property, RFC2396

9.4.3.2. reload()

	Syntax:
	location.reload(fromServer)

	Argument List:
	fromServer – Boolean, which if true forces a reload of the current URL from the origin server, bypassing the client cache. If ‘fromServer’ is false, reload will attempt to use local client cache before making a network request.

	Description:
	This method reloads the current document. Normally the current document is reloaded from cache when available. When the ‘fromServer’ Boolean is set to true, cache is ignored, and the document is always reloaded from the server. A new presentation document is generated.

Form variable data MUST be reinitialised when navigating to a document using this method.
Note: This causes all form variable data to be re-initialised (as opposed to history.go(0) which maintains current variable state).

Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of this method, as with all methods that cause URL navigation, should be tied to script exit.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	//location.href = http://somewhere/somedoc
location.reload(true); //forces a reload from the origin

 //server. Form variables are reinitialised.

	Reference
	Common IE and Netscape object property, RFC2396

9.4.3.3. replace()

	Syntax:
	location.replace(URLString)

	Argument List:
	URLString – a string

	Description:
	This method loads the document pointed to by the specified URL, while at the same time replacing the current entry in the history list with the specified URL. The over-written URL history reference is no longer available for backwards navigation.

Note: Actual navigation to the requested URL is not guaranteed until script exit. Use of this method, as with all methods that cause URL navigation, should be tied to script exit.

	Return Value Type:
	none

	Errors or Exceptions:
	none

Attempts to use an illegally formed URI will throw a URIError. This is an extension to ECMA262.

	Example(s):
	location.replace(“http://www.wapforum.org”);

//would navigate to and display the WAPF home page while

//replacing the top of the history stack with the current URL,

//rather then stacking a new location onto the stack

	Reference
	Common IE and Netscape object property, RFC2396

9.5. Basic Document Object

9.5.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

9.5.2. Properties

9.5.2.1. cookie

	Syntax:
	document.cookie

	Type:
	string

	Description:
	The cookie property provides access to the cookies associated with the current document domain, as specified by [RFC2109]. Operations performed with the 'cookie' property SHOULD use the client's cookie store.

A cookie is read by reading the value of the cookie property, then parsing it for the particular cookie. When read, the cookie property value MUST be a semi-colon-separated list of the cookies for the domain of the document containing the script. For each cookie list, the format is

 NAME"="VALUE[";"NAME2"="VALUE2[";"NAMEN"="VALUEN]]

where NAME and VALUE are as defined in [RFC2109]. Cookie attributes are not provided.

A cookie is written by setting the value of the property equal to a string representing the name-value pair. The string must match the "cookie" production rule from [RFC2109]. If the string does not match, the cookie must be ignored. Only single name/value pairs, along with acceptable attributes may be written.

Cookies may have attributes associated with them. The legal attribute values are defined by the "cookie" production rule. Any other values result in the value string not matching the production rule; such a cookie must be ignored.

 Legal attributes that MUST be supported are:

Attribute

Description

Domain
Defaults to the request-host. Note that there is no dot (“.”) at the beginning of request-host.
Max-Age
Defines the lifetime of the cookie in seconds. A value of zero means the cookie SHOULD be discarded immediately. The default behavior is to discard the cookie when the user agent exits.
Path
Defaults to the path of the request URL that generated the Set-Cookie response, up to, but not including, the right-most slash (“/”).
Secure
If absent, the user agent may send the cookie over an insecure channel. The definition of whether a channel is secure or not is left to the implementation, but MAY include use of HTTPS, WTLS or other end-to-end encryption schemes.
Note: The Expires attribute, which is a “Netscape Cookie” feature, is not supported, as it requires date synchronization between client and server.

Attributes are included in a cookie by appending them to the name/value cookie pair, separated by semicolons.

The rules for rejecting cookies from [RFC2109 Section 4.3.2] apply for cookies created by setting the value of the 'cookie' property. For example, it MUST NOT be possible to set a cookie for another domain.

Note: This property is only able to access cookies which are local to the terminal on which the script interpreter resides. Cookie storage may be delegated to network proxies (as defined in [HTTPSM]). Cookies stored in network proxies are not visible to the document object.

	Errors or Exceptions:
	Creation of cookies using property assignment is subject to all domain security and syntax checks defined in RFC2109 and will not create a new cookie entry if these rules are broken.

	Example(s):
	function getCookie(NameOfCookie){

var begin;

var end;

 if (document.cookie.length > 0) {

 begin = document.cookie.indexOf(NameOfCookie+"=");

 if (begin != -1) {

 begin += NameOfCookie.length+1;

 end = document.cookie.indexOf(";", begin);

 if (end == -1) end = document.cookie.length;

 return decodeURIComponent(document.cookie.substring(begin, end));

 }

 }

 return null;

}

function setCookie(NameOfCookie, value, expirehours) {

 var seclength = expirehours * 3600;

 document.cookie = NameOfCookie + "=" + encodeURIComponent(value)

 + ((expirehours == null) ? "" : "; Max-Age=" + seclength);

}

function delCookie (NameOfCookie) {

 if (getCookie(NameOfCookie)) {

 document.cookie = NameOfCookie + "=" +"; Max-Age=0";

 }

}

	Reference
	Common IE and Netscape object property, RFC2109

9.5.2.2. domain

	Syntax:
	document.domain

	Type:
	string

	Description:
	A property that contains the current document domain. Writing to this property (using it as a left side assignment) will attempt to change the document domain, according to specified security rules in RFC2396.

A script may not change the origin domain of a document. Two domains are considered to have the same origin if the protocol, port (if given), and host (as defined in RFC2396) are the same for both pages.

	Errors or Exceptions:
	Attempts to change the origin domain will generate an exception.

	Example(s):
	Example: If documents are needed from both www.wapforum.org and www1.wapforum.org, we may broaden the domain from the initial “www.wapforum.org” to “wapforum.org”. Changing the major domain root is illegal.

Example:

//if current connected domain = www1.wapforum.org

 document.domain=”www.wapforum.org”; //legal

 document.domain=”wapforum.org”; //legal

 document.domain=”ebay.com”; //illegal–will generate an exception

	Reference
	Common IE and Netscape object property, RFC2396

9.5.2.3. referrer

	Syntax:
	document.referrer

	Type:
	string, read-only

	Description:
	A property that is the URL of the document that linked to the current document. The referrer property only contains a value when the user reaches the current document via a link. In all other cases the property is set to the empty string (“”).

If referrer is not supported by the browser, or is turned off for security reasons, this property will be an empty string.

	Errors or Exceptions:
	none

	Example(s):
	if (document.referrer && document.referrer != "")

 document.write(“You came in from “ + document.referrer + ”
”);

	Reference
	Common IE and Netscape object property

9.5.2.4. title

	Syntax:
	document.title

	Type:
	string, read-only

	Description:
	The property that is set to the text in a <title> element, if present.

	Errors or Exceptions:
	none

	Example(s):
	var myTitle = document.title;

	Reference
	Common IE and Netscape object property

9.5.3. Methods

9.5.3.1. clear()

	Syntax:
	document.clear()

	Argument List:
	none

	Description:
	The current document is cleared from the browser window. It is identical to document.write(“”).

Note: Neither the cached version of the document, nor the history is affected.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	document.clear();

	Reference
	Common IE and Netscape object property

9.5.3.2. open()

	Syntax:
	document.open([MIMEType])

	Argument List:
	optional MIMEType – a hint to the browser that the content that will be written into a document by a subsequent document.write()statement will be of a MIME type other than text/html. (An XHTML-MP document is assumed if the parameter is missing). This is for compatibility only, and SHOULD be ignored by ECMAScript Mobile Profile implementations, as there is no way to modify the MIME type of the existing document.

This parameter MAY be used as input to document validation if a validating parser is directly supported.

This parameter MAY also be used as input to the implementation to direct the document to be interpreted as another supported MIME type.

	Description:
	Logically opens a path to the current document for writing. The document DOM tree is cleared.

Note: It is often not necessary to specify a document.open() as document.write() automatically opens the current document for writing.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	(see section 9.5.3.3)

	Reference
	Common IE and Netscape object property

9.5.3.3. close()

	Syntax:
	document.close()

	Argument List:
	none

	Description:
	Closes the write path to the current document, and flushes all output to the document.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	var now = new Date;

document.open();

document.write(“
The current time is “ + now.getTime());

document.close();

	Reference
	Common IE and Netscape object property

9.5.3.4. write(), writeln()

	Syntax:
	document.write(outputString)

document.writeln(outputString)

	Argument List:
	outputString – an expression, converted to a string

	Description:
	writes the outputString, as part of a stream to the current document. If the document is closed, the write issues an automatic document.open()and whatever was previously written is discarded and replaced with the new outputString.

document.writeln() is the same as document.write() except that it appends a newline to the end of the written string.

document.write() statements in inline script segments are interpreted such that they replace the DOM nodes of the document.write() statements with the results of the document.write().
Note: document.write() or equivalent statements in intrinsic event handlers

create and write to a reset document rather than modifying the current one. This is reflected in the DOM tree, which is reset. (In future releases of W3C DOM this will be changing. Rather then a new DOM tree being created, a sibling branch will be created in the existing tree.)

	Return Value Type:
	none

	Errors or Exceptions:
	none

Note: Subsequent interpretation of documents created using this method are subject to the same constraints and restrictions as any other markup document.

	Example(s):
	document.write("
 Protocol= " + myURL.protocol);

	Reference
	Common IE and Netscape object property

9.6. Host Object Extension Mechanism

Other objects besides those defined in this section may be a part of the host object set specified for a particular device. Objects such as an EFI object, a crypto object etc. may be included in the global object property set. The definition of these extended objects is out of scope for this specification.

For details regarding the process associated with the creation and addition of new objects see [WAESPEC].

The addition of new host objects may follow two paths:

· The addition of new standard host objects – MUST follow standard OMA processes as independent specifications.

New standard built-in object names MUST be registered with WINA [WINA] according to the WINA process.
· The addition of new private host objects – no process is defined.

New object names SHOULD be registered with WINA [WINA] to guarantee that there will not be any name conflicts.

In all cases new objects MUST support the read-only version property, and MUST be enumerable as properties of the “parent” object. See section 6.2.2.

10. Browser XHTML DOM Objects

The inclusion of a subset of XHTML DOM objects as part of ESMP creates a bridge to existing content and content development methods. It also provides a number of ease of use facilities that have become part of the HTML DOM method set. Creation of a subset of HTML DOM for inclusion into ESMP is based in the following rules:

· The object and methods were present in Javascript 1.2

· The object and methods are present in W3C – DOM Level 2 HTML [DOM2HTML]

· The object provides key communications paths between XHTML and script

· The object provides unique, critical semantics not found in XML DOM

· The total set of XHTML objects and methods should tend toward a minimal set.

Explicitly excluded are:

· Objects whose sole purpose is define a document construct (i.e. div, span etc.)

· Objects that are tightly tied to particular presentation models

· Objects that do not present consistent, standardizable syntax across implementations

Object containment tends to mimic the older Javascript 1.2 rules. For example, each of the various input objects (text, textarea, password, etc.) are identified as separate objects, whereas in [DOM2HTML] they are all derived from a common textInput object. This does not affect the code syntax, and the documentation of separate objects is somewhat clearer.

[image: image7.wmf]Global Object

Form

Object

Document Object

Link

Object

Text

Object

Textarea

Object

Password

Object

Radio

Object

Button

Object

Checkbox

Object

Submit

Object

Reset

Object

Select

Object

Option

Object

Screen

Object

Image

Object

OPTIONAL

XHTML Containment Hierarchy

10.1. XHTML Document Object

In addition to the properties and methods listed for the document object in Section 9.5, these properties extend the document object and allow access to the XHTML semantics of parts of the document.

10.1.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.1.2. Properties

10.1.2.1. forms

	Syntax:
	document.forms[index]

	Type:
	Array (HtmlCollection)

	Description:
	This property is an array of all of the form objects contained in the current document. The index indexes into the forms array to reference a particular form object. The array is ordered from top to bottom of the document.

	Errors or Exceptions:
	none

	Example(s):
	var aZipcode = document.forms[3].myzipcode.value;

	Reference
	DOM2HTML Section 1.5, Common IE and Netscape object property, Javascript 1.2

10.1.2.2. length

	Syntax:
	document.forms.length

	Type:
	integer

	Description:
	The length property defines the number of forms objects referenced in the forms array. If there are 3 forms defined in a document then there will be 3 forms referenced in the array, and hence length will equal 3.

	Errors or Exceptions:
	none

	Example(s):
	var nformsInDoc = document.forms.length ;

	Reference
	Javascript 1.0

10.1.2.3. links

	Syntax:
	document.links[index]

	Type:
	Array (HtmlCollection)

	Description:
	This property is an array of all of the link objects contained in the current document. The index indexes into the links array to reference a particular link object. The array is ordered from top to bottom of the document.

	Errors or Exceptions:
	none

	Example(s):
	document.links[0].href = “http://newref.somewhere.com”;

	Reference
	DOM2HTML Section 1.5, Common IE and Netscape object property, Javascript 1.2

10.1.2.4. images (OPTIONAL)

If an implementation supports the image object, it MUST support the images array.

	Syntax:
	document.images[index]

	Type:
	Array (HtmlCollection)

	Description:
	This property is an array of all of the image objects contained in the current document. The index indexes into the images array to reference a particular image object. The array is ordered from top to bottom of the document.

	Errors or Exceptions:
	If the images array does not exist, it MUST return a NULL.

	Example(s):
	document.images[1].src = “http://newref.somewhere.com/myimage.gif”;

	Reference
	DOM2HTML Section 1.5, Common IE and Netscape object property, Javascript 1.2

Support for the image object may be tested by the following code example:

if (document.images)

{

//the image object is supported

}

10.1.3. Methods

none

10.2. Link Element Object

A link element object is created for each <a> element in a document that has an href attribute associated with it. The link elements are accessible through the links array (See section 10.1.2.3) property of the document.

10.2.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.2.2. Properties

10.2.2.1. hash

	Syntax:
	document.links[index].hash

	Type:
	string

	Description:
	A property that is the fragment (anchor) part of the current URL (including the # [hash]) of the href property of the referenced link, if it exists.

	Errors or Exceptions:
	While any string may be inserted, subsequent attempts to navigate to non-existent or illegal URLs will generate standard HTTP errors.

	Example(s):
	var hash = document.links[0].hash;

	Reference
	Common IE and Netscape object property, Javascript 1.1, RFC2396

10.2.2.2. host

	Syntax:
	document.links[index].host

	Type:
	string

	Description:
	The host property specifies a portion of the current URL referenced by the . The host property is the concatenation of the hostname (See section 9.4.2.4) and port (see section 9.4.2.6) properties, separated by a colon. When the port property is null, the host property is the same as the hostname property.

	Errors or Exceptions:
	While any string may be inserted, subsequent attempts to navigate to non-existent or illegal URLs will generate standard HTTP errors.

	Example(s):
	var host = document.links[1].host;

	Reference
	Common IE and Netscape object property, Javascript 1.1, RFC2396

10.2.2.3. href

	Syntax:
	document.links[index].href

	Type:
	string

	Description:
	The href references the entire URL currently pointed to by the href property in the referenced link.

	Errors or Exceptions:
	While any string may be inserted, subsequent attempts to navigate to non-existent or illegal URLs will generate standard HTTP errors.

	Example(s):
	var href = document.links[2].href;

	Reference
	DOM2HTML Section 1.6.5, Common IE and Netscape object property, Javascript 1.1, RFC2396

10.2.2.4. hostname

	Syntax:
	document.links[index].hostname

	Type:
	string

	Description:
	A property that contains a string, which is the hostname part of the href property in the referenced link.

	Errors or Exceptions:
	While any string may be inserted, subsequent attempts to navigate to non-existent URLs will generate standard HTTP errors.

	Example(s):
	
var hostname = document.links[3].hostname;

	Reference
	Common IE and Netscape object property, Javascript 1.1, RFC2396

10.2.2.5. pathname

	Syntax:
	document.links[index].pathname

	Type:
	string

	Description:
	A property that is the pathname component of the of the href property in the referenced link. This includes the document name, but not the server name.

	Errors or Exceptions:
	While any string may be inserted, subsequent attempts to navigate to non-existent URLs will generate standard HTTP errors.

	Example(s):
	var pathname = document.links[4].pathname;

	Reference
	Common IE and Netscape object property, Javascript 1.1, RFC2396

10.2.2.6. port

	Syntax:
	document.links[index].port

	Type:
	string

	Description:
	A property that is the specified port number of the href property in the referenced link. The colon that separates the hostname from the port is not included. .

	Errors or Exceptions:
	While any string may be inserted, subsequent attempts to navigate to non-existent or illegal URLs will generate standard HTTP errors.

	Example(s):
	
var port = document.links[5].port;

	Reference
	Common IE and Netscape object property, Javascript 1.1, RFC2396

10.2.2.7. protocol

	Syntax:
	document.links[index].protocol

	Type:
	string

	Description:
	A property that contains a string, which is the first component of the referenced URL, and specifies the protocol used for retrieving the document. Typically this would be “http:”, or “file:”, or “ftp:” etc. The colon is returned as part of the string.

	Errors or Exceptions:
	While any string may be inserted, subsequent attempts to navigate to non-existent or illegal URLs will generate standard HTTP errors.

	Example(s):
	var protocol = document.links[6].protocol;

	Reference
	Common IE, Netscape object property, Javascript 1.1

10.2.2.8. search

	Syntax:
	document.links[index].search

	Type:
	string

	Description:
	A property which is the search component of the current URL referenced by the href property of the current link. The search component is defined as that substring of the URL that comes after the first question mark URI delimiter. The string returned includes the question mark.

	Errors or Exceptions:
	While any string may be inserted, subsequent attempts to navigate to non-existent or illegal URLs will generate standard HTTP errors.

	Example(s):
	var search = document.links[7].search;

	Reference
	Common IE and Netscape object property, RFC2396

10.2.3. Methods

None

10.3. Image Element Object (OPTIONAL)

Support for the Image Element object is optional. If supported, an Image Element object is created for every image in a form. The Image Element object is a property of the Document object. It SHOULD be included in those implementations that wish to support the manipulation, download and dynamic replacement of document images. If an implementation does include support for the Image Element object, it MUST support all of the properties listed in the section.
10.3.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.3.2. Properties

10.3.2.1. border

	Syntax:
	<imgReference>.border

	Type:
	Integer, read-only

	Description:
	This property provides the width of the border around the image in pixels.

	Errors or Exceptions:
	none

	Example(s):
	function hasBorder(theImg) {
 if (theImg.border==0) {
 window.alert('The image has no border!') ;
 }
 else window.alert('The image's border is ' + theImg.border);
}

	Reference
	HTMLImage DOM2HTML Section 1.6.5, Javascript 1.1

10.3.2.2. height

	Syntax:
	<imgReference>.height

	Type:
	Integer, read-only

	Description:
	This property provides the read only height of the image in pixels

	Errors or Exceptions:
	None

	Example(s):
	var height = document.images[0].height;

	Reference
	HTMLImage DOM2HTML Section 1.6.5, Javascript 1.1

10.3.2.3. hspace

	Syntax:
	<imgReference>.hspace

	Type:
	Integer, read-only

	Description:
	This property provides the read only amount of horizontal space to the left and right sides of the image.

	Errors or Exceptions:
	none

	Example(s):
	var hspace = document.img1.hspace;

	Reference
	HTMLImage DOM2HTML Section 1.6.5, Javascript 1.1

10.3.2.4. name

	Syntax:
	<imgReference>.name

	Type:
	String, read-only

	Description:
	This property provides the assigned name of an image.

	Errors or Exceptions:
	none

	Example(s):
	var name = document.images[2].name;

	Reference
	HTMLImage DOM2HTML Section 1.6.5, Javascript 1.1

10.3.2.5. src

	Syntax:
	<imgReference>.src

	Type:
	String

	Description:
	This property value is a URL of the image to be displayed. It is a read/write string.

	Errors or Exceptions:
	Attempts to retrieve an image from non-existent URLs will generate standard HTTP errors.

	Example(s):
	myImage.src = “image.gif”;

	Reference
	HTMLImage DOM2HTML Section 1.6.5, Javascript 1.1

10.3.2.6. vspace

	Syntax:
	<imgReference>.vspace

	Type:
	Integer, read-only

	Description:
	This property provides the read-only vertical space above and below the image.

	Errors or Exceptions:
	none

	Example(s):
	var vspace = document.img1.vspace;

	Reference
	HTMLImage DOM2HTML Section 1.6.5, Javascript 1.1

10.3.2.7. width

	Syntax:
	<imgReference>.width

	Type:
	Integer, read-only

	Description:
	This property provides the read-only width of the image in pixels.

	Errors or Exceptions:
	none

	Example(s):
	var width = document.img1.width;

	Reference
	HTMLImage DOM2HTML Section 1.6.5, Javascript 1.1

10.3.3. Methods

None

10.4. Form Object

The majority of ESMP objects defined in the XHTML DOM subset are contained by the form object. The following BNF describes the syntactical hierarchy that is used as a shortcut for defining syntax.

<inputElementName> := STRING

<formName> := STRING

<elemID> := STRING

<index> := INTEGER

<documentReference> := document

<formReference> :=

 <documentReference>.forms[index]
 ||

 <documentReference>.formName

||

 <documentReference>.forms[“formName”]

<elementReference> :=

 <formReference>.elements[index]
 ||

 <formReference>.<inputElementName> ||

 <documentReference>.getElementByID(“elemID”)

(only if XMLDOM is supported)

<radioRef> := <elementReference>[index]

 (where the <inputElementName> points to a radio input object array)

<optionRef> := <elementReference>.options[index]

 (where the <inputElementName> points to a select object)

10.4.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.4.2. Properties

10.4.2.1. action

	Syntax:
	<formReference>.action

	Type:
	String

	Description:
	This property allows access to the action property of a form. It is used to read or modify the URL referenced as the action to take in response to a form.submit(). Note that any reload of a page will NOT retain any changes to the action property, thus forcing the use of the script form.submit() to insure the new action target.

	Errors or Exceptions:
	While any string may be inserted, subsequent attempts to navigate to non-existent or illegal URLs will generate standard HTTP errors.

	Example(s):
	document.forms[0].action = “mailto://me@here.com”;

document.forms[0].submit;

	Reference
	HTMLFormElement DOM2HTML Section 1.6.5, Common IE, Netscape object property, Javascript 1.0

10.4.2.2. elements

	Syntax:
	<formReference>.elements[index]

	Type:
	Array

	Description:
	The elements property defines the array of elements inside any particular form. The index to the elements array references a particular element. The order of the elements in the array is the same as the order of the elements in the document. The index is zero based.

	Errors or Exceptions:
	Selecting an index that is negative or greater then the size of the array returns a NULL.

	Example(s):
	var value = document.myForm.elements[0].value;

	Reference
	HTMLFormElement DOM2HTML Section 1.6.5

10.4.2.2.1. length

	Syntax:
	<elementReference>.length

	Type:
	integer, read-only

	Description:
	This property defines the number of controls in a form.

Note: this returns the identical value as 10.4.2.5

	Errors or Exceptions:
	none

	Example(s):
	var numCntrls = document.myForm.length ;

	Reference
	Javascript 1.0

10.4.2.3. enctype

	Syntax:
	<formReference>.enctype

	Type:
	String

	Description:
	This property reflects the enctype attribute in the form tag.

Note: ESMP supports only the enctype property (not the encoding property), as this is position of [DOM2HTML], and is compatible across all implementations.

	Errors or Exceptions:
	

	Example(s):
	document.forms[0].enctype = “application/x-www-form-urlencoded”;

	Reference
	HTMLFormElement DOM2HTML Section 1.6.5

10.4.2.4. length (of the forms array)

	Syntax:
	document.forms.length

	Type:
	integer, read-only

	Description:
	Provides a count of the number of forms defined in a document.

	Errors or Exceptions:
	none

	Example(s):
	var numForms = document.forms.length;

	Reference
	Common IE, Netscape object property, Javascript 1.0

10.4.2.5. length (of a form object)

	Syntax:
	<formReference>.length

	Type:
	integer, read-only

	Description:
	This property defines the number of controls in a form.

Note: this returns the identical value as 0

	Errors or Exceptions:
	

	Example(s):
	var numCntrls = document.forms[3].length;

	Reference
	HTMLFormElement DOM2HTML Section 1.6.5

10.4.2.6. method

	Syntax:
	<formReference>.method

	Type:
	String

	Description:
	This property reflects the method attribute of the referenced form.

	Errors or Exceptions:
	String must be GET or POST (case insensitive). All other strings will generate errors when trying to submit the form.

	Example(s):
	document.forms[0].method = “POST”;

	Reference
	HTMLFormElement DOM2HTML Section 1.6.5, Common IE, Netscape object property, Javascript 1.0

10.4.2.7. name

	Syntax:
	<formReference>.name

	Type:
	String

	Description:
	This property reflects the value of the name attribute of the referenced element. This property allows the assignment of a name to a form.

	Errors or Exceptions:
	

	Example(s):
	var fName = document.forms[6].name;

	Reference
	HTMLFormElement DOM2HTML Section 1.6.5, Common IE, Netscape object property, Javascript 1.0

10.4.3. Methods

10.4.3.1. reset()

	Syntax:
	<formReference>.reset()

	Argument List:
	none

	Description:
	The reset() method returns all referenced form elements to their default settings. The function is similar to the reset button object except that the onReset event is not triggered.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	document.forms[3].reset();

	Reference
	HTMLFormElement DOM2HTML Section 1.6.5, Javascript 1.1

10.4.3.2. submit()

	Syntax:
	<formReference>.submit()

	Argument List:
	none

	Description:
	The submit() method initiates form content submission to the server in much the same way clicking a submit button initiates form submission. The difference is that the onSubmit event is not triggered by a call to the submit() function.

	Return Value Type:
	none

	Errors or Exceptions:
	Script statements inserted after a form.submit()may cause the cancellation of the submit.

	Example(s):
	document.forms[2].submit();

	Reference
	HTMLFormElement DOM2HTML Section 1.6.5, Javascript 1.0

10.5. Text Input Object

10.5.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.5.2. Properties

10.5.2.1. defaultValue

	Syntax:
	<elementReference>.defaultValue

	Type:
	String, read-only

	Description:
	This property represents the initial value of the text assigned to the referenced text object.

	Errors or Exceptions:
	An empty string is returned if there is no default.

	Example(s):
	document.forms[“Address”].Country.value = document.forms[“Address”].Country.defaultValue;

//reset country string to default

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5, Common IE, Netscape object property, Javascript 1.0

10.5.2.2. form

	Syntax:
	<elementReference>.form

	Type:
	form object reference

	Description:
	This property provides a reference the form element that contains the referenced control.

	Errors or Exceptions:
	none

	Example(s):
	var formRef;

formRef = document.forms[2].InputArea1.form;

formRef.InputArea2.value = “Follow on”;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5, Common IE, Netscape object property, Javascript 1.0

10.5.2.3. maxLength

	Syntax:
	<elementReference>.maxLength

	Type:
	Integer

	Description:
	This property controls the maximum number of characters that are allowed to be typed into an input field. This property initially reflects the maxlength input attribute.

	Errors or Exceptions:
	maxLength will be ignored if it is set to a negative number.

	Example(s):
	document.myForm.text2.maxlength = 1024;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.5.2.4. name

	Syntax:
	<elementReference>.name

	Type:
	String (identifier)

	Description:
	This property is the name attribute associated with the referenced input element. It is also the name part of the name/value pair sent to a server when a GET or POST is issued for the referenced form.

	Errors or Exceptions:
	

	Example(s):
	document.forms[1].addr.name = “address”;

//sets the text name to “address”

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5, Common IE, Netscape object property, Javascript 1.0

10.5.2.5. size

	Syntax:
	<elementReference>.size

	Type:
	Integer

	Description:
	This property controls the presentation size of an input field. This property initially reflects the size input attribute.

Note: Default size for a text input box will vary from device to device.

	Errors or Exceptions:
	Size will be ignored if it is set to a negative number.

	Example(s):
	document.myForm.text3.size = 24;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.5.2.6. type

	Syntax:
	<elementReference>.type

	Type:
	String, read-only

	Description:
	This property defines the kind of object element being referenced.

It reflects the type attribute of the referenced element.

In the case of a text input object the type is set to ‘text’.

Possible values for type are:

 checkbox

 hidden

 password

 radio

 reset

 select-one

 select-multiple

 submit

 text

 textarea

 undefined

	Errors or Exceptions:
	In cases where the type attribute in markup is not a recognized string, the type is set to ‘text’.

	Example(s):
	document.write("Input type (D1) = " + document.forms[3].D1.type + "
");

//Input type (D1) = button

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.5.2.7. value

	Syntax:
	<elementReference>.value

	Type:
	String

	Description:
	This property represents the value attribute of the referenced element. For a text input element, this is the content of the text field.

	Errors or Exceptions:
	

	Example(s):
	document.forms[“Response”].text1.value = “Typing into the form line”;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.5.3. Methods

10.5.3.1. select()

	Syntax:
	<elementReference>.select()

	Argument List:
	none

	Description:
	This method causes the text within the referenced text object to be selected. Selection is most often denoted by highlighting the chosen input area. It does not bring the input focus to the selected item. Note: no onSelect event is triggered.

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	document.forms[0].entry[1].select();

//highlights the second entry

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.5.3.2. blur()

	Syntax:
	<elementReference>.blur()

	Argument List:
	none

	Description:
	This method removes the input focus from the referenced input element.

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	document.forms[0].entry[0].blur();

//removes the input focus from the first entry

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.5.3.3. focus()

	Syntax:
	<elementReference>.focus()

	Argument List:
	none

	Description:
	This method sets the input focus to the referenced input element.

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	document.forms[0].entry[1].focus();

//sets the input focus to the second entry

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.6. Textarea Input Object

The textarea Input object is similar to the text Input object except that it defines a multiline input area as part of the enclosing form.

10.6.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.6.2. Properties

10.6.2.1. cols

	Syntax:
	<elementReference>.cols

	Type:
	Integer

	Description:
	This property represents the cols attribute of the textarea element, and is the number of characters that can be displayed without causing the input widget to scroll horizontally, or the input line to wrap.

	Errors or Exceptions:
	Cols will be ignored if it is set to a negative number.

	Example(s):
	document.forms[0].textArea1.cols = 30;

//set the textarea input widget to 30 chars wide

	Reference
	HTMLTextAreaElement DOM2HTML Section 1.6.5

10.6.2.2. form

	Syntax:
	<elementReference>.form

	Type:
	form object reference, read-only

	Description:
	This property provides a reference the form element that contains the referenced control.

	Errors or Exceptions:
	none

	Example(s):
	var formRef;

formRef = document.forms[2].InputArea1.form;

formRef.InputArea2.value = “Follow on”;

	Reference
	HTMLTextAreaElement DOM2HTML Section 1.6.5

10.6.2.3. name

	Syntax:
	<elementReference>.name

	Type:
	String (identifier)

	Description:
	This property is equal to the name attribute associated with the referenced textarea input element. It is also the name part of the name/value pair sent to a server when a GET or POST is issued for the referenced form.

	Errors or Exceptions:
	

	Example(s):
	document.forms[1].addr.name = “address”;

//sets the text name to “address”

	Reference
	HTMLTextAreaElement DOM2HTML Section 1.6.5

10.6.2.4. rows

	Syntax:
	<elementReference>.rows

	Type:
	Integer

	Description:
	This property represents the rows attribute of the textarea element, and is the number of lines that can be displayed without causing the input widget to scroll vertically.

	Errors or Exceptions:
	Rows will be ignored if it is set to a negative number.

	Example(s):
	document.forms[0].textArea2.rows = 5;

//sets the textarea input widget height to 5

	Reference
	HTMLTextAreaElement DOM2HTML Section 1.6.5

10.6.2.5. type

	Syntax:
	<elementReference>.type

	Type:
	String, read-only

	Description:
	This property defines the kind of object element being referenced.

It reflects the type attribute of the referenced element. In the case of a textarea input object the type is set to ‘textarea’.

Possible values for type are:

 checkbox

 hidden

 password

 radio

 reset

 select-one

 select-multiple

 submit

 text

 textarea

 undefined

	Errors or Exceptions:
	In cases where the type attribute in markup is not a recognized string, the type is set to ‘text’.

	Example(s):
	document.write("Input type (text area) = " + document.forms[3].textArea1.type + "
");

//Input type (D1) = textarea

	Reference
	HTMLTextAreaElement DOM2HTML Section 1.6.5

10.6.2.6. value

	Syntax:
	<elementReference>.value

	Type:
	String

	Description:
	This property represents the value attribute of the referenced element. For a textarea input element, this is the content of the text area.

	Errors or Exceptions:
	

	Example(s):
	document.forms[“comments”].textArea1 = “This is my comment….and that’s my rant.”;

	Reference
	HTMLTextAreaElement DOM2HTML Section 1.6.5

10.6.3. Methods

10.6.3.1. blur()

	Syntax:
	<elementReference>.blur()

	Argument List:
	none

	Description:
	This method removes the input focus from the referenced input element (in this case the textarea).

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	document.forms[0].textArea0.blur();

//removes the input focus from the first entry

	Reference
	HTMLTextAreaElement DOM2HTML Section 1.6.5

10.6.3.2. focus()

	Syntax:
	<elementReference>.focus()

	Argument List:
	none

	Description:
	This method sets the input focus to the referenced input element. Focus is normally denoted by positioning a cursor or similar mechanism at the new point of focus.

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	document.forms[0].textArea1.focus();

//sets the input focus to the second entry

	Reference
	HTMLTextAreaElement DOM2HTML Section 1.6.5

10.6.3.3. select()

	Syntax:
	<elementReference>.select()

	Argument List:
	none

	Description:
	This method causes the text within the referenced textarea object to be selected. Selection is most often denoted by highlighting the chosen input area. It does not bring the input focus to the selected item. Note: no onSelect event is triggered.

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	document.forms[0].textArea0.select();

//highlights the text in the textArea0 text box

	Reference
	HTMLTextAreaElement DOM2HTML Section 1.6.5

10.7. Password Input Object

10.7.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

A password input object is similar to a text input object except then when a user types into the text field meaningless characters (usually asterisks) are echoed to the user.

All properties and methods which apply to the text input object apply to the password input object.

The type property for a password object returns the text password.

10.8. Radio Input Object

10.8.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.8.2. Properties

10.8.2.1. checked

	Syntax:
	<radioRef>.checked

	Type:
	Boolean

	Description:
	This property reflects running state of the checked attribute for an individual radio button in a radio button array. Setting it to true will force all other buttons in the group to be set to false.

	Errors or Exceptions:
	none

	Example(s):
	document.forms[0].radio1[2].checked = true;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.8.2.2. defaultChecked

	Syntax:
	<radioRef>.defaultChecked

	Type:
	Boolean, read-only

	Description:
	This property reflects initial document state of the checked attribute for an individual radio button in a radio button array. If the checked attribute is set in markup, then this property will be set to true.

	Errors or Exceptions:
	none

	Example(s):
	document.forms[0].radio1[2].checked = document.forms[0].radio1[2].defaultChecked;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.8.2.3. form

	Syntax:
	<radioRef>.form

	Type:
	form object reference, read-only

	Description:
	This property provides a reference the form element that contains the referenced radio button array.

	Errors or Exceptions:
	none

	Example(s):
	var radioRef;

radioRef = document.forms[0].radiobuts[2].form;

radioRef.radiobuts[3] = true;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.8.2.4. length

	Syntax:
	<elementReference>.<inputElementName>.length

	Type:
	Integer, readonly

	Description:
	This property returns a value that is equal to the number of radio buttons in the referenced radio input object.

	Errors or Exceptions:
	Note: the length is referenced to the entire array. Attempting to get length of an individual radio button returns a NULL.

	Example(s):
	var numBtns;

numBtns =document.form[“myChoices”].radBtns.length;

	Reference
	Javascript 1.0

10.8.2.5. name

	Syntax:
	<radioRef>.name

	Type:
	String, read-only

	Description:
	This property returns a string that is the assigned name for the radio button array.

	Errors or Exceptions:
	This property must be accessed through the individual radio buttons in an array.

	Example(s):
	var butNam;

butName = document.myChoices.elements[1][1].name;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.8.2.6. type

	Syntax:
	<radioRef>.type

	Type:
	String, read-only

	Description:
	This property defines the kind of object element being referenced.

It reflects the type attribute of the referenced element. In the case of a radio input object the type is set to ‘radio’.

Possible values for type are:

 checkbox

 hidden

 password

 radio

 reset

 select-one

 select-multiple

 submit

 text

 textarea

 undefined

	Errors or Exceptions:
	In cases where the type attribute in markup is not a recognized string, the type is set to ‘text’.

	Example(s):
	document.write("Input type (radio1) = " + document.forms[3].radio1.type + "
");

//Input type = radio

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.8.2.7. value

	Syntax:
	<radioRef>.value

	Type:
	String

	Description:
	This property reflects the value attribute in markup. It is the string that is sent to the server during a GET or POST as the value part of the name/value pair.

	Errors or Exceptions:
	none

	Example(s):
	var myCondiment = “Ketchup”;

var ptr = document.forms[0].condiment;

for (var i = 0 to ptr.length)

{

 if (ptr[i].checked)

 myCondiment = ptr[i].value;

}

//myCondiment is set to the chosen one

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.8.3. Methods

10.8.3.1. click()

	Syntax:
	<radioRef>.click()

	Argument List:
	none

	Description:
	This method causes the state of the referenced checked property to be set to true, (the same semantics as <radioRef>.checked = true;). In addition the onClick event is triggered if there is an onClick clause associated with the referenced radio button.

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	var fo = document.forms[1].radio2;

fo[4].click();

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.9. Checkbox Input Object

10.9.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.9.2. Properties

10.9.2.1. checked

	Syntax:
	<elementReference>.checked

	Type:
	Boolean

	Description:
	This property reflects running state of the checked attribute for an individual checkbox. Setting it to true will cause the visual presentation of that checkbox to be marked. Setting it to false will unmark the checkbox. No other checkboxes are affected.

	Errors or Exceptions:
	none

	Example(s):
	document.forms[0].myChkbox.checked = true;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.9.2.2. defaultChecked

	Syntax:
	<elementReference>.defaultChecked

	Type:
	Boolean, read-only

	Description:
	This property reflects initial document state of the checked attribute for a checkbox. If the checked attribute is set in markup, then this property will be set to true.

	Errors or Exceptions:
	none

	Example(s):
	var cb2 = document.forms[0].elements ;

for (var i = 0 to cb2.length)

 cb2[i].checked = cb2[i].defaultChecked;

//reset all cboxes to initial state

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.9.2.3. form

	Syntax:
	<elementReference>.form

	Type:
	form object reference, read-only

	Description:
	This property provides a reference the form element that contains the referenced checkbox.

	Errors or Exceptions:
	none

	Example(s):
	var refForm = document.myForm.myChkBox.form ;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.9.2.4. name

	Syntax:
	<elementReference>.name

	Type:
	String, read-only

	Description:
	This property returns a string that is the assigned name for the referenced checkbox. It is normally used to refer to this object.

	Errors or Exceptions:
	none

	Example(s):
	var cbName;

cbName = document.forms(“questions”).elements[1].name;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.9.2.5. type

	Syntax:
	<elementReference>.type

	Type:
	String, read-only

	Description:
	This property defines the kind of object element being referenced.

It reflects the type attribute of the referenced element. In the case of a checkbox input object the type is set to ‘checkbox’.

Possible values for type are:

 checkbox

 hidden

 password

 radio

 reset

 select-one

 select-multiple

 submit

 text

 textarea

 undefined

	Errors or Exceptions:
	In cases where the type attribute in markup is not a recognized string, the type is set to text.

	Example(s):
	document.write("Input type (checkBox1) = " + document.forms[3].checkBox1.type + "
");

//Input type = checkbox

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.9.2.6. value

	Syntax:
	<elementReference>.value

	Type:
	String

	Description:
	This property reflects the value attribute in markup. It is the string that is sent to the server during a GET or POST as the value part of the name/value pair.

	Errors or Exceptions:
	none

	Example(s):
	var chkValue = document.myForm.myChkBox.value;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.9.3. Methods

10.9.3.1. click()

	Syntax:
	<elementReference>.click()

	Argument List:
	none

	Description:
	The onClick event is triggered if there is an onClick clause associated with the referenced checkbox.

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	var cbo = document.forms[0].elements[2];

cbo.click();

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.10. Submit Object

10.10.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.10.2. Properties

10.10.2.1. form

	Syntax:
	<elementReference>.form

	Type:
	form object reference, read-only

	Description:
	This property provides a reference the form element that contains the referenced submit object.

	Errors or Exceptions:
	none

	Example(s):
	var refForm = document.forms[0].submitButton.form ;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.10.2.2. name

	Syntax:
	<elementReference>.name

	Type:
	String, read-only

	Description:
	This property returns a string that is the assigned name for the referenced submit object. It is normally used to refer to this object.

	Errors or Exceptions:
	none

	Example(s):
	var submName = document.forms(“questions”).elements[4].name;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.10.2.3. type

	Syntax:
	<elementReference>.type

	Type:
	String, read-only

	Description:
	This property defines the kind of object element being referenced.

It reflects the type attribute of the referenced element. In the case of a submit button object the type is set to ‘submit’.

Possible values for type are:

 checkbox

 hidden

 password

 radio

 reset

 select-one

 select-multiple

 submit

 text

 textarea

 undefined

	Errors or Exceptions:
	In cases where the type attribute in markup is not a recognized string, the type is set to text.

	Example(s):
	var buttonType = document.forms[0].submitButton.type;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.10.2.4. value

	Syntax:
	<elementReference>.value

	Type:
	String

	Description:
	This property reflects the value attribute of the referenced input object. In the case of the input object being of type submit, the value is used as the label for the submit button.

	Errors or Exceptions:
	none

	Example(s):
	var buttonValue = document.forms[0].submitButton.value;

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.10.3. Methods

10.10.3.1. click()

	Syntax:
	<elementReference>.click()

	Argument List:
	none

	Description:
	The onClick event is triggered if there is an onClick clause associated with the referenced checkbox. An onClick event on a submit input object will generate a subsequent onSubmit event.

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	var sub = document.forms[0].elements[2];

sub.click(); // will generate two events

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.11. Reset Object

10.11.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.11.2. Properties

See submit properties.

10.11.3. Methods

10.11.3.1. click()

	Syntax:
	<elementReference>.click()

	Argument List:
	none

	Description:
	The onClick event is triggered if there is an onClick clause associated with the referenced checkbox. An onClick event on a reset input object will generate a subsequent onReset event.

	Return Value Type:
	none

	Errors or Exceptions:
	

	Example(s):
	var res1 = document.forms[0].elements[2];

res1.click(); // will generate two events

	Reference
	HTMLInputElement DOM2HTML Section 1.6.5

10.12. Select Element Object

The select object represents a selection list in a form object. An elements array is created if there are multiple selections lists in a form. A particular select object can be accessed either by index number of by its name attribute. The select object is a property of the form object.

10.12.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.12.2. Properties

10.12.2.1. form

	Syntax:
	<selectReference>.form

	Type:
	form object reference, read-only

	Description:
	This property provides a reference to the form element that contains the referenced select object

	Errors or Exceptions:
	none

	Example(s):
	var formRef = document.form[1].mySelect.form;

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

10.12.2.2. length

	Syntax:
	<selectReference>.length

	Type:
	Integer, read-only

	Description:
	This property provides the number of options in the selection list.

	Errors or Exceptions:
	none

	Example(s):
	var numSelect = document.forms[0].mySelect.length;

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

10.12.2.3. name

	Syntax:
	<selectReference>.name

	Type:
	String

	Description:
	This property consists of a string that is defined by the name of the selection.

	Errors or Exceptions:
	none

	Example(s):
	var selectName = document.forms[0].elements[0].name

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

10.12.2.4. options

	Syntax:
	<selectReference>.options

	Type:
	Option Array, read-only

	Description:
	This property is an array of all the options in a particular select object. There is one element (numbered in ascending order from zero) for each option.

	Errors or Exceptions:
	none

	Example(s):
	for (var i = 0; i < mySelect.options.length; i++) {
 if (mySelect.options[i].selected)
 document.write(" mySelect.options[i].text\n");
}

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

See Option Element Object

10.12.2.5. selectedIndex

	Syntax:
	<selectReference>.selectedIndex

	Type:
	Integer

	Description:
	This property is an integer relating to the currently selected option of a select object. If the select object allows for multiple selections, the selectedIndex property will only return the index of the first option selected

	Errors or Exceptions:
	none

	Example(s):
	var selectIndex = document.myForm.mySelect.selectedIndex;

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

10.12.2.6. size

	Syntax:
	<selectReference>.size

	Type:
	Integer

	Description:
	If a select element is presented as a scrolled list box, this attribute specifies the number of rows in the list that should be visible at the same time

	Errors or Exceptions:
	none

	Example(s):
	var selectSize = document.myForm.mySelect.size;

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

10.12.2.7. type

	Syntax:
	<selectReference>.type

	Type:
	String, read-only

	Description:
	This property holds the type of the select object, having the value "select-one" where only one option can be selected and "select-multiple" where multiple selections are possible. The following code could be used to determine the type of the first select object of the first form of the current document

	Errors or Exceptions:
	none

	Example(s):
	document.writeln(“Select Type is " + document.form1.mySelect.type) ;

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

10.12.2.8. value

	Syntax:
	<selectReference>.value

	Type:
	String

	Description:
	This property provides the value of the currently selected option. If multiple options are selected, this is the value of the first selected option.

	Errors or Exceptions:
	none

	Example(s):
	var selectValue = document.myForm.mySelect.value;

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

10.12.3. Methods

10.12.3.1. add()

	Syntax:
	<selectReference>.add(element, before)

	Argument List:
	element – element of type XHTMLElement

before – element of type XHTMLElement

	Description:
	Adds a new element to the collection of option elements for this select. The new element will be added before the element referred by the before parameter

Note: if the second parameter is NULL or omitted (implied NULL) new options are appended at the end of the list.

	Return Value Type:
	none

	Errors or Exceptions:
	NOT_FOUND_ERR exception is raised if the before element is not a descendent of the select element in the hierarchy

	Example(s):
	var selRef = document.myForm.mySelect;

if (selRef.length > 0)

{

 selRef.add(elem, selRef.options[0]);

}

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

10.12.3.2. remove()

	Syntax:
	<selectReference>.remove(index)

	Argument List:
	index – Integer representing the index of the item to be removed

	Description:
	Removes an element from the collection of option elements for this select element. The method does nothing if no element has the given index.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	var selRef = document.myForm.mySelect;

if (selRef.length > 0)

{

 selRef.remove(0);

}

	Reference
	HTMLSelectElement DOM2HTML Section 1.6.5

10.13. Option Element Object

An Option Element object is created for every option in a selection list. An Option Element object is a property of the Select object.

10.13.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.13.2. Properties

10.13.2.1. defaultSelected

	Syntax:
	<selectReference>.<optionReference>.defaultSelected

	Type:
	Boolean, read-only

	Description:
	The defaultSelected is a boolean value determining whether the option is selected by default. If the option is selected, the property returns true, else it returns false.

	Errors or Exceptions:
	none

	Example(s):
	var optSelected = mySelect.myOption.defaultSelected;

	Reference
	HTMLOptionElement DOM2HTML Section 1.6.5

10.13.2.2. form

	Syntax:
	<optionReference>.form

	Type:
	form object reference, read-only

	Description:
	This property provides a reference to the form object that contains the referenced option object.

	Errors or Exceptions:
	None

	Example(s):
	var formRef = document.mySelect.myOption.form;

	Reference
	HTMLOptionElement DOM2HTML Section 1.6.5

10.13.2.3. label

	Syntax:
	<optionReference>.label

	Type:
	String

	Description:
	This attribute allows authors to specify a shorter label for an option than the content of the option object. When specified, user agents should use the value of this attribute rather than the content of the option object as the option label.

	Errors or Exceptions:
	none

	Example(s):
	document.mySelect.myOption.label= “Option Label”;

	Reference
	HTMLOptionElement DOM2HTML Section 1.6.5

10.13.2.4. selected

	Syntax:
	<optionReference>.selected

	Type:
	Boolean

	Description:
	Determines whether the option is currently selected. This boolean value is read/write. The selected property can be set at any time, immediately updating the display of the Select object.

	Errors or Exceptions:
	none

	Example(s):
	document.mySelect.myOption.selected = true;

	Reference
	HTMLOptionElement DOM2HTML Section 1.6.5

10.13.2.5. text

	Syntax:
	<optionReference>.text

	Type:
	String

	Description:
	The text property is used to describe the option. This is a read/write property.

	Errors or Exceptions:
	none

	Example(s):
	document.mySelect.myOption.text =”NewText”;

	Reference
	HTMLOptionElement DOM2HTML Section 1.6.5

10.13.2.6. value

	Syntax:
	<optionReference>.value

	Type:
	String

	Description:
	During submission of a form, this property value is sent to the server if the option is selected. If there is no VALUE attribute for the option element, then the value property is an empty string.

	Errors or Exceptions:
	none

	Example(s):
	document.mySelect.myOption.text =”NewValue”;

	Reference
	HTMLOptionElement DOM2HTML Section 1.6.5

10.13.3. Methods

none

10.14. Button Element Object

Editors Note: The inclusion of the Button Element Object must be dependant upon whether or not the BUTTON element is included in XHTML-MP. The expectation is that it won’t be in XHTML-MP 1.1 but will be included in XHTML-MP 1.2 (when the complete FORMS module is incorporated into the markup).

A Button object is created for every instance of an input element with a type value set as button on a form. The Button object is a property of the Form object. These objects are then stored in the elements array of the parent form and accessed using either the name property value of the element or an array index
10.14.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.14.2. Properties

10.14.2.1. form

	Syntax:
	<buttonReference>.form

	Type:
	form object reference, read-only

	Description:
	This property provides a reference to the form object that contains the referenced button object.

	Errors or Exceptions:
	none

	Example(s):
	var formRef = document.myForm.myButton.form;

	Reference
	HTMLButtonElement DOM2HTML Section 1.6.5

10.14.2.2. name

	Syntax:
	<buttonReference>.name

	Type:
	String

	Description:
	This property sets or returns the value of the button's name attribute

	Errors or Exceptions:
	none

	Example(s):
	var name = document.myForm.myButton.name;

document.myForm.myButton.name = “NewName”;

	Reference
	HTMLButtonElement DOM2HTML Section 1.6.5

10.14.2.3. type

	Syntax:
	<buttonReference>.type

	Type:
	String, read-only

	Description:
	The type property of a button object identifies the type of the button. The values for the type of a button are ‘button’, ‘submit’ or ‘reset’.

	Errors or Exceptions:
	none

	Example(s):
	var buttonType = document.myForm.myButton.type;

	Reference
	HTMLButtonElement DOM2HTML Section 1.6.5

10.14.2.4. value

	Syntax:
	<buttonReference>.value

	Type:
	String

	Description:
	This property sets or returns the button's value attribute. This is the text that is actually displayed on the button face.

	Errors or Exceptions:
	none

	Example(s):
	var buttonValue = document.myForm.myButton.value;

	Reference
	HTMLButtonElement DOM2HTML Section 1.6.5

10.14.3. Methods

10.14.3.1. blur()

	Syntax:
	<buttonReference>.blur()

	Argument List:
	none

	Description:
	This method removes the input focus from the referenced button element.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	document.myForm.myButton.blur();

	Reference
	Javascript 1.0

10.14.3.2. click ()

	Syntax:
	<buttonReference>.click()

	Argument List:
	none

	Description:
	This method simulates a mouse-click on the referenced button.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	document.myForm.myButton.click();

	Reference
	Javascript 1.0

10.14.3.3. focus ()

	Syntax:
	<buttonReference>.focus()

	Argument List:
	none

	Description:
	This method gives focus to the referenced Button element.

	Return Value Type:
	none

	Errors or Exceptions:
	none

	Example(s):
	document.myForm.myButton.focus();

	Reference
	Javascript 1.0

10.15. Screen Object (OPTIONAL)

Support for the screen object is optional. This object is a read-only object that, when present, provides properties that describe the available screen resources. If an implementation decides to implement the screen object, then all of the described properties MUST be implemented.

To determine whether or not this object is implemented, use the following code:

if(window.screen)

{

//the object is implemented

}

As with all references to unknown objects, the screen object reference MUST return undefined if the object is not implemented.

10.15.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

10.15.2. Properties

10.15.2.1. availHeight

	Syntax:
	screen.availHeight

	Type:
	Integer, read-only

	Description:
	This property is the size in pixels of the visible vertical writable screen area for the window. This is usually less then the total height of the screen, as there are often other decorations on the screen

	Errors or Exceptions:
	none

	Example(s):
	if(window.screen)

{

hsize = screen.availHeight;

}

	Reference
	Common IE and Netscape Object

10.15.2.2. availWidth

	Syntax:
	screen.availWidth

	Type:
	Integer, read-only

	Description:
	This property is the size in pixels of the horizontal writable screen area for the window. This value will often be less then the total screen width, as there are often other decorations on the screen.

This value does not reflect any horizontal scrolling capability that may be implemented on a particular device.

	Return Value Type:
	none

	Example(s):
	if(window.screen)

{

hsize = screen.availWidth;

}

	Reference
	Common IE and Netscape Object

10.15.2.3. colorDepth

	Syntax:
	screen.colorDepth

	Type:
	Integer, read-only

	Description:
	This property describes the number of bits assigned to the management of color for the screen. The number of supported colors = 2 log screen.colorDepth
1 = “black and white”

4 = 16 colors

8 = 256 colors

16 = 65535 colors

24 = 16 million colors

	Errors or Exceptions:
	none

	Example(s):
	var NumColBits = screen.colorDepth;

	Reference
	Common IE and Netscape Object

10.15.2.4. height

	Syntax:
	screen.height

	Type:
	Integer, read-only

	Description:
	This property describes the physical height of the screen in pixels. It is always equal to or greater then screen.availHeight.

	Errors or Exceptions:
	none

	Example(s):
	var myHeight = screen.height;

	Reference
	Common IE and Netscape Object

10.15.2.5. width

	Syntax:
	screen.width

	Type:
	Integer, read-only

	Description:
	This property describes the physical width of the screen in pixels. It is always equal to or greater then screen.availWidth.

	Errors or Exceptions:
	none

	Example(s):
	var myWidth = screen.width;

	Reference
	Common IE and Netscape Object

10.15.3. Methods

None.

11. Browser DOM2 Core Objects

The document object set specified for ECMAScript Mobile Profile is a subset of the document object interface ECMAScript language bindings and definitions of the Document Object Model (DOM) found in [
DOMwerPoint.Slide.8
DOM2CORE
]

[image: image9.wmf]DOMException

Object

Text

Object

CharacterData

Object

Element

Object

Document

Object

Node

Object

NodeList

Object

childNodes

parent,child,sibling

Namespace aware versions of the object functions are not supported.

 The API described in this section is partitioned into mandatory and optional functions and properties. Any methods that cause the document to change are labelled Mutation methods. Mutation is further sub-categorized into methods and properties that are oriented toward changing document data (data mutation) vs. methods and properties that are specifically oriented toward modifying the structure of the document (structural mutation). Methods and properties that are listed as causing structural mutation are optional.

Note: There are cases where methods that are primarily data mutation methods will cause structural changes to the document, i.e., a call to setAttribute() when there is no existing attribute.

	Function and Property Grouping
	Status
	Requirement

	Document Interrogation (DI)
	Mandatory
	

	Data Mutation (DM)
	Mandatory
	DI

	Structural Mutation (SM)
	Optional
	DI and DM

Methods are labelled as [DI],[DM],[SM] as appropriate.

11.1. DOMException Object

The DOMException object is an extended definition of the ECMAScript Error object to include another NativeError object. (Section 6.11).

11.1.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

11.1.2. Properties

The properties of the DOMException Object are the same as the ECMAScript Error Object (Section 6.11).

The setting of the name and message properties of the exception object SHOULD be done when throwing a DOMException.

 If the name property is set, it SHOULD be set to the error name listed in the table in section 11.1.3.

If an instance of DOMException object is created using constructor, the name and code properties SHOULD be initialized to “DOMException” and NaN respectively.
11.1.3. Constants

The DOM exception, when thrown may return one of the following constant number values for the code property:

	Code
	Error Name

	1
	INDEX_SIZE_ERR

	2
	DOMSTRING_SIZE_ERR

	3
	HIERARCHY_REQUEST_ERR

	4
	WRONG_DOCUMENT_ERR

	5
	INVALID_CHARACTER_ERR

	6
	NO_DATA_ALLOWED_ERR

	7
	NO_MODIFICATION_ALLOWED_ERR

	8
	NOT_FOUND_ERR

	9
	NOT_SUPPORTED_ERR

	10
	INUSE_ATTRIBUTE_ERR

	11
	INVALID_STATE_ERR

	12
	SYNTAX_ERR

	13
	INVALID_MODIFICATION_ERR

	14
	NAMESPACE_ERR

	15
	INVALID_ACCESS_ERR

	
	

Note: To maintain compatibility between DOM Exceptions and ECMAScript exceptions the naming of the errors appears inconsistent, with DOM exceptions using only upper case and ECMAScript using mixed case. This is intentional.

11.2. Node Object

The Node object is the base DOM object from which the Document, Element and CharacterData objects are derived.

11.2.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

11.2.2. Properties

11.2.2.1. nodeName

nodeName is not supported. The value of the nodeName property is accessible through the element’s tagName property.

11.2.2.2. nodeValue

nodeValue is not supported. The content of a Text Node is available through the Text object’s data property.

11.2.2.3. nodeType

	Syntax:
	someNode.nodeType

	Type:
	number(integer), read-only

	Description:
	A property that describes the type of node being referenced.

Values for nodeType are specified in [DOM2CORE], and valid values for supporting the DOM subset aresummarized in the following table:

Value

NodeType

1

Element Node

3

Text Node

9

Document Node

Other values (described in DOM2CORE) are not supported

	Errors or Exceptions:
	Unsupported Node types return 0.

	Example(s):
	

	Reference
	DOM2CORE Section 1.2, Appendix E.

11.2.2.4. parentNode

	Syntax:
	someNode.parentNode

	Type:
	Node, read-only

	Description:
	A property which points the the parent of the target node.

	Errors or Exceptions:
	If this is an unconnected Node, or there is no parent Node the property is set to null.

	Example(s):
	parentnode=myNode.parent;

	Reference
	DOM2CORE Section 1.2, Appendix E.

11.2.2.5. childNodes

	Syntax:
	someNode.childNodes

	Type:
	NodeList, read-only

	Description:
	A property that points to an array of one or more child nodes.

	Errors or Exceptions:
	If this is an unconnected Node, or there is are no child nodes the property is set to null.

	Example(s):
	children=myNode.childNodes;

	Reference
	DOM2CORE Section 1.2, Appendix E.

11.2.2.6. firstChild

	Syntax:
	someNode.firstChild

	Type:
	Node, read-only

	Description:
	–A property that points to the first child of the target Node.

	Errors or Exceptions:
	If this is an unconnected Node, or there is no child Node the property is set to null.

	Example(s):
	Kid1=myNode.firstChild;

	Reference
	DOM2CORE Section 1.2, Appendix E.

This read-only property is a Node object.

11.2.2.7. lastChild

	Syntax:
	someNode.lastChild

	Type:
	Node, read-only

	Description:
	–A property that points to the last child of the target Node.

	Errors or Exceptions:
	If this is an unconnected Node, or there is no child Node the property is set to null.

	Example(s):
	Kidlast=myNode.lastChild;

	Reference
	DOM2CORE Section 1.2, Appendix E.

11.2.2.8. previousSibling

	Syntax:
	someNode.previousSibling

	Type:
	Node, read-only

	Description:
	–A property that points the Node immediately preceding this Node.

	Errors or Exceptions:
	If this is an unconnected Node, or there is no preceding Node the property is set to null.

	Example(s):
	aBrother=myNode.previousSibling;

	Reference
	DOM2CORE Section 1.2, Appendix E.

11.2.2.9. nextSibling

	Syntax:
	someNode.nextSibling

	Type:
	Node, read-only

	Description:
	–A property that points the Node immediately following this Node.

	Errors or Exceptions:
	If this is an unconnected Node, or there is no following Node the property is set to null.

	Example(s):
	anotherBrother=myNode.nextSibling;

	Reference
	DOM2CORE Section 1.2, Appendix E.

11.2.2.10. attributes

The attributes property is not supported. To view and manipulate attributes use the Element functions getAttribute(),setAttribute(), and hasAttribute().
11.2.2.11. ownerDocument

ownerDocument is not supported.

11.2.2.12. namespaceURI

namespaceURI is not supported.
11.2.2.13. prefix

prefix is not supported.

11.2.2.14. localName

localName is not supported.

11.2.3. Methods

11.2.3.1. hasAttributes() [DI]

	Syntax:
	<refNode>.hasAttributes()

	Argument List:
	

	Description:
	returns a Boolean describing whether there are any attributes associated with this Node.

	Return Value Type:
	Boolean true – if there are child attributes under the referenced element

false – it the referenced element has no child attributes

The method target (<refNode>) is a Node object reference.

	Errors or Exceptions:
	None

	Example(s):
	if(document.getElementByID(“myNode”).hasAttributes())

{

 //handle the attributes

}

	Reference
	DOM2CORE Appendix E.

11.2.3.2. hasChildNodes() [DI]

	Syntax:
	<refNode>.hasChildNodes()

	Argument List:
	

	Description:
	returns a Boolean describing whether there are any child nodes of this element

	Return Value Type:
	Boolean true – if there are child nodes under the referenced element

false – it the referenced element has no child nodes

The method target (<refNode>) is a Node object reference.

	Errors or Exceptions:
	None

	Example(s):
	if(document.getElementByID(“myNode”).hasChildNodes())

{

 //process the children

} else

// no children, so we are done

	Reference
	DOM2CORE Appendix E.

11.2.3.3. insertBefore() [SM]

	Syntax:
	<refNode>.insertBefore(newChild [,refChild]);

	Argument List:
	newChild – a Node object

refChild – a Node object

	Description:
	finds the referenced Node <refNode> and insert the newChild Node as a child of that referenced Node. If refChild is specified the newChild Node is inserted before it. If not specified, the newChild Node is appended as the last child of the referenced element.

The method target (<refNode>) is a Node object reference.

	Return Value Type:
	returns a Node object

	Errors or Exceptions:
	NO_MODIFICATION_ALLOWED_ERR is raised if the Node is read-only

NOT_FOUND_ERR is raised if the refChild is not a child of this Node.

	Example(s):
	myElem = document.createElement();

document.getElementByID(“anID”).insertBefore(myElem);

	Reference
	DOM2CORE Appendix E.

11.2.3.4. replaceChild() [SM]

	Syntax:
	<refNode>.replaceChild(newChild, oldChild);

	Argument List:
	newChild – a Node object

oldChild – a Node object

	Description:
	swaps the existing child (oldChild) of the referenced element with a new child Node (newChild).

The method target (<refNode>) is a Node object reference.

	Return Value Type:
	returns a Node object reference

	Errors or Exceptions:
	DOMExceptions

NO_MODIFICATION_ALLOWED_ERR is raised if the Node is read-only

NOT_FOUND_ERR is raised if oldChild is not a child of this Node

	Example(s):
	

	Reference
	DOM2CORE Appendix E.

11.2.3.5. removeChild() [SM]

	Syntax:
	<refNode>.removeChild(aNode);

	Argument List:
	aNode – a Node Object

	Description:
	removes the reference to the child Node (aNode) from the referenced parent element

The method target (<refNode>) is a Node object reference.

	Return Value Type:
	a Node object reference to the removed Node

	Errors or Exceptions:
	NO_MODIFICATION_ALLOWED_ERR is raised if the Node is read-only.

NOT_FOUND_ERR is raised if the refChild is not a child of this Node.

	Example(s):
	

	Reference
	DOM2CORE Appendix E.

11.2.3.6. appendChild() [SM]

	Syntax:
	<refNode>.appendChild(newChild);

	Argument List:
	newChild – a Node object

	Description:
	finds the referenced Node <refNode> and insert the newChild node as a child of that referenced node.The newChild node is appended as the last child of the referenced element.

The method target (<refNode>) is a Node object reference.

	Return Value Type:
	returns a Node object

	Errors or Exceptions:
	NO_MODIFICATION_ALLOWED_ERR is raised if the node is read-only

	Example(s):
	myElem = document.createElement();

document.getElementByID(“anID”).appendChild(myElem);

	Reference
	DOM2CORE Appendix E.

11.2.3.7. cloneNode() [SM]

	Syntax:
	<refNode>.cloneNode(deep);

	Argument List:
	deep – Boolean

	Description:
	makes a copy of the node referenced by refElement. This copy is not attached to the document until explicitly connected using appendChild(), replaceChild() or insertBefore().
When the Boolean ‘deep’ is set to true, the element and all of its child nodes are copied.

The method target (<refNode>) is a Node object reference.

	Return Value Type:
	a Node object reference to the just cloned node, or node subtree

	Errors or Exceptions:
	DOMExceptions

	Example(s):
	

	Reference
	DOM2CORE Appendix E.

11.3. DOM2 Document Object

The DOM2 document object is an extended definition of the interface of the basic document object (Section 9.5) to include a set of DOM2 objects, properties and methods for the traversal, and modification of a document.

Creation of arbitrary new documents, of arbitrary types is not supported.

11.3.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

11.3.2. Properties

doctype, implementation, and documentElement properties, as specified in [DOM2CORE], are not supported.

11.3.3. Methods

11.3.3.1. createElement() [SM]

	Syntax:
	document.createElement(aTagName)

	Argument List:
	aTagName – a case sensitive string which is the element type to instantiate.

	Description:
	creates an element of the type specified.

	Return Value Type:
	returns a new Element object.

	Errors or Exceptions:
	INVALID_CHARACTER_ERR is raised if the specified tag name contains an invalid character.

	Example(s):
	

	Reference
	DOM2CORE Appendix E.

11.3.3.2. createTextNode() [SM]

	Syntax:
	document.createTextNode(textData)

	Argument List:
	textData – string

	Description:
	creates a Text node given the specified string.

	Return Value Type:
	The new Text object is returned.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	DOM2CORE Appendix E.

11.3.3.3. getElementsByTagName() [DI]

	Syntax:
	document.getElementsByTagName(aTag);

	Argument List:
	aTag – a string which specifies an element name

	Description:
	returns a list of all objects in the document which have the specified element name

	Return Value Type:
	a NodeList

	Errors or Exceptions:
	Null is returned if there are no matches.

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.3.3.4. getElementById() [DI]

	Syntax:
	document.getElementById(anID)

	Argument List:
	anID – string that specifies the value of an XML id attribute.

	Description:
	

	Return Value Type:
	returns the first object with a matching id attribute. If the id is associated with a collection, then the first object in that collection is returned.

	Errors or Exceptions:
	returns null if there is no match.

	Example(s):
	<script type="text/ecmascript">

function gettarg() {

 var targetelement = document.getElementById(“targ1”);

}

</script>

<div id=”targ1”>This is the target. </div>

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.4. NodeList Object

DOM2 specifies the return from certain methods to be objects of type NodeList.

11.4.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

11.4.2. Properties

11.4.2.1. length

	Syntax:
	ANodeList.length

	Type:
	number (unsigned integer), read-only

	Description:
	A property that is the number of nodes in the list.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.4.3. Methods

11.4.3.1. item() [DI]

	Syntax:
	<refNodeList>.item(N) or <refNodeList>[N]

	Argument List:
	N – the index of the item in the NodeList

	Description:
	returns the nth indexed Node from the referenced NodeList.

Note: The index is zero based.

	Return Value Type:
	returns a Node object

	Errors or Exceptions:
	null is returned if the index is not a valid index into the NodeList.

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.5. Element Object

11.5.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

11.5.2. Properties

11.5.2.1. tagName

	Syntax:
	anElement.tagName

	Type:
	string, read-only

	Description:
	A property whose value is the name of the referenced Element.

Note: Case is preserved in the returned string.

	Errors or Exceptions:
	none

	Example(s):
	<table id="bigtable" cellspacing="0" cellpadding="0">

 ….

</table>

elemRef = document.getElementByID("bigtable");

myElemName = elemRef.tagName; //myElemName=="table"

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.5.3. Methods

11.5.3.1. getAttribute() [DI]

	Syntax:
	<refElement>.getAttribute(attrName [,caseSensitive])

	Argument List:
	attrName – string, which is the name of a child attribute

caseSensitive – optional Boolean, if set to true then the search for the attribute is case sensitive

	Description:
	returns a string which is the current value of the requested attribute.

Note: This returns the value that is the running state value, not the initial document value.

	Return Value Type:
	string

	Errors or Exceptions:
	returns the empty string if it cannot find the requested attribute

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

Note: The optional parameter specifying case sensitivity is an extension to the W3C DOM 2 Core specification.

11.5.3.2. setAttribute() [DM],[SM*]

	Syntax:
	<refElement>.setAttribute(attrName,attrValue [,caseSensitive])

	Argument List:
	attrName – string, which is the name of a child attribute

attrValue – a string

caseSensitive – optional Boolean, if set to true then the search for the attribute is case sensitive

	Description:
	sets the value of the requested attribute to the specified value. If the attribute doe not exist, it is created.

* Note: using setAttribute() to set an attribute that does not exist will cause structural mutation

	Return Value Type:
	none

	Errors or Exceptions:
	INVALID_CHARACTER_ERR is raised if the specified name contains an illegal character.

NO_MODIFICATION_ALLOWED_ERR is raised if the attribute is read-only.

Note: If setAttribute() is called where an attribute does not exist, and structural mutation is not supported, this error is raised.

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

Note: The optional parameter specifying case sensitivity is an extension to the W3C DOM 2 Core specification.
11.5.3.3. removeAttribute() [DM]

	Syntax:
	<refElement>.removeAttribute(attrName [,caseSensitive])

	Argument List:
	attrName – string, which is the name of a child attribute

caseSensitive – optional Boolean, if set to true then the search for the attribute is case sensitive

	Description:
	removes the attribute from the referenced element

	Return Value Type:
	none

	Errors or Exceptions:
	Removing an attribute which is required by the DTD forces the creation of a new instance of that attribute, whose value is the default set by the DTD.

NO_MODIFICATION_ALLOWED_ERR is raised if the attribute is read-only.

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

Note: The optional parameter specifying case sensitivity is an extension to the W3C DOM 2 Core specification.

11.5.3.4. getElementsByTagName() [DI]

	Syntax:
	<refElement>.getElementsByTagName(aTag);

	Argument List:
	aTag – a string that matches the requested element.

	Description:
	returns a list of elements which are children of the reference element, whose element tag matches the input parameter.

	Return Value Type:
	a NodeList

	Errors or Exceptions:
	Null is returned if there are no matches.

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.5.3.5. hasAttribute() [DI]

	Syntax:
	<refElement>.hasAttribute(attrName)

	Argument List:
	attrName – string, the name of the attribute to look for

	Description:
	Determines whether an Element has the named attribute associated with it.

	Return Value Type:
	Returns true if an attribute with the given name is specified on this element or the attribute has a default value; false otherwise.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.6. Text (CharacterData) Object

Properties of the Text object are inherited from the DOM2 CharacterData object.

11.6.1. Version History

	Version
	Affected
	Comment

	1.1
	
	ECMAScript initial version

	
	
	

11.6.2. Properties

11.6.2.1. data

	Syntax:
	aTextNode.data[DM]

	Type:
	string

	Description:
	A property that is the current value of the text in the Text node. Using this property as a left-side assignment (lvalue) it is possible to reassign the value. Implementations MUST support the ability to deal with 32 character data strings as a minimum.

	Errors or Exceptions:
	NO_MODIFICATION_ALLOWED_ERR is raised if the Node is read-only

DOMSTRING_SIZE_ERR is raised if the string to be returned is larger the implementation maximum.

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.6.2.2. length

	Syntax:
	aTextNode.length

	Type:
	number(unsigned integer), read-only

	Description:
	A property that is the count of characters available through the data (see section 11.6.2.1) attribute.

	Errors or Exceptions:
	none

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.6.3. Methods

11.6.3.1. appendData() [DM]

	Syntax:
	<nodeRef>.appendData(appendString)

	Argument List:
	appendString – a string to be appended

	Description:
	Appends a string to the end of any character data associated with the referenced Node.

	Return Value Type:
	none

	Errors or Exceptions:
	A NO_MODIFICATION_ALLOWED_ERR is raised if the Node is read-only

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.6.3.2. deleteData() [DM]

	Syntax:
	<nodeRef>.deleteData(offset, count)

	Argument List:
	offset – the starting offset in the character data for removing characters. Offsets are zero (‘0’) based.

count – the number of character units to remove

	Description:
	removes a number of characters from the character data associated with a Node

	Return Value Type:
	None

Side effect: Upon success, the ‘data’ and ‘length’ properties will reflect the change.

	Errors or Exceptions:
	INDEX_SIZE_ERR is raised if the offset into the character data is not valid.

NO_MODIFICATION_ALLOWED_ERR is raised if the Node is read-only

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.6.3.3. insertData() [DM]

	Syntax:
	<nodeRef>.insertData(offset, string)

	Argument List:
	offset – the starting offset in the character data for adding characters. Offsets are zero (‘0’) based.

string – the string to insert

	Description:
	adds a number of characters to the character data associated with a Node

	Return Value Type:
	None

Side effect: Upon success, the ‘data’ and ‘length’ properties will reflect the change.

	Errors or Exceptions:
	INDEX_SIZE_ERR is raised if the offset into the character data is not valid.

NO_MODIFICATION_ALLOWED_ERR is raised if the Node is read-only

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.6.3.4. replaceData() [DM]

	Syntax:
	<nodeRef>.replaceData(offset, count, aString)

	Argument List:
	offset – the starting offset in the character data for removing characters, and for replacement. Offsets are zero (‘0’) based.

count – the number of character units to replace

aString – the replacement string

	Description:
	removes a number of characters from the character data associated with a Node, and replaces them with the supplied string parameter. This function is a combination of removeData() and insertData().

	Return Value Type:
	None

Side effect: Upon success, the ‘data’ and ‘length’ properties will reflect the change.

	Errors or Exceptions:
	INDEX_SIZE_ERR is raised if the offset into the character data is not valid.

NO_MODIFICATION_ALLOWED_ERR is raised if the Node is read-only

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

11.6.3.5. substringData() [DI]

	Syntax:
	<nodeRef>.substringData(offset, count)

	Argument List:
	offset – the starting offset in the character data for extracting characters. Offsets are zero (‘0’) based.

count – the number of character units to extract

	Description:
	extracts a number of characters from the character data associated with a Node, and returns them. The character data is not effected.

	Return Value Type:
	A string is returned

	Errors or Exceptions:
	INDEX_SIZE_ERR is raised if the offset into the character data is not valid.

DOMSTRING_SIZE_ERR is raised if the string to be returned is larger the implementation maximum.

	Example(s):
	

	Reference
	DOM2CORE Sec. 1.2 ; DOM2CORE Appendix E.

Appendix A. Static Conformance Requirements

This appendix is normative.

The notation used in this appendix is specified in [CREQ].

A.1 Encoder/ Compiler Conformance

Client conformance (“-C-“) vs. Server (“-S-“) conformance may be a misnomer in the context of a script interpreter or compiler. In this case all static conformance is listed as client, even though there may be a physical separation of the encoder/compiler function from the virtual machine execution.
	Item
	Function
	Reference
	Status
	Requirement

	ESMP-Language-C-001
	ECMAScript Type Support
	5.2
	M
	

	ESMP-Language-C-002
	UTF-16 Code point support
	5.1.1
	M
	

	ESMP-Language-C-003
	UTF-8 Code point support
	5.1.1
	M
	

	ESMP-Language-C-004
	Character indexing support
	5.1.1,6.5
	M
	

	ESMP-Language-C-005
	Semicolon support at end of statements
	5.1.3
	M
	

	ESMP-Language-C-006
	IEEE 754 64 Bit Float Support with accuracy to at least 14 digits
	5.2.2
	M
	

	ESMP-Language-C-008
	ECMAScript Language Syntax and semantics
	5.5
	M
	

	ESMP-Language-C-009
	Support for eval() ECMA327
	5.4.2
	O
	

	ESMP-Language-C-010
	Support for EvalError Exception
	5.4.2,6.12.2
	M
	

	ESMP-Language-C-011
	Support for dynamic function creation ECMA327
	5.4.2,
	O
	ESMP-Language-c-027

	ESMP-Language-C-012
	Support for the with statement ECMA327
	5.5.3
	O
	

	ESMP-Language-C-013
	Support for dynamic modification of built-in objects ECMA327
	6
	O
	

	ESMP-Language-C-014
	Version properties for all native objects
	6.2.1
	M
	

	ESMP-Language-C-015
	All non-native, built-in objects are enumerable
	6.2.2
	M
	

	ESMP-Language-C-016
	All native, built-in objects are enumerable
	6.2.2
	O
	

	ESMP-Language-C-017
	Native Object Support – Global Object
	6.3
	M
	

	ESMP-Language-C-018
	Native Object Support – Array Object
	6.4
	M
	

	ESMP-Language-C-019
	Native Object Support – String Object
	6.5
	M
	

	ESMP-Language-C-020
	Native Object Support – Regular Expression Object
	6.6
	M
	

	ESMP-Language-C-021
	Native Object Support – Boolean Object
	6.7
	M
	

	ESMP-Language-C-022
	Native Object Support – Number Object
	6.8
	M
	

	ESMP-Language-C-023
	Native Object Support – Math Object
	6.9
	M
	

	ESMP-Language-C-024
	Native Object Support – Date Object
	6.10
	M
	

	ESMP-Language-C-025
	Native Object Support – Error Object
	6.11
	M
	

	ESMP-Language-C-026
	Native Object Support – Object Object Creation ECMA327
	6.13.1
	O
	

	ESMP-Language-C-027
	Native Object Support – Function Object - dynamic function construction ECMA327
	6.13.2
	O
	

	ESMP-Language-C-028
	Support for Native Error Types
	6.12.2
	M
	

	ESMP-Language-C-029
	Support for Inline Script Execution
	7.2.2.1
	M
	

	ESMP-Language-C-030
	Support for Deferred Script Execution
	7.2.2.2
	M
	

	ESMP-Language-C-031
	Support for File Based Script Execution
	7.2.2.3
	M
	

	ESMP-Language-C-032
	Abnormal termination error reporting
	7.3.1
	O
	

	ESMP-Language-C-033
	Support for Aborted Script completion
	7.3.2
	M
	

	ESMP-Language-C-034
	Support for XHTML Events
	8.1
	M
	XHTMLMP:MCF

	ESMP-Language-C-035
	Support for DOM2 compliant event binding
	8.2
	M
	

	ESMP-HostObject-C-036
	Host Object Support – parent global Object
	9.1
	M
	

	ESMP-HostObject-C-037
	Host Object Support – navigator Object
	0
	M
	

	ESMP-HostObject-C-038
	Host Object Support – history Object
	9.3
	M
	

	ESMP-HostObject-C-039
	Host Object Support – location Object
	0
	M
	

	ESMP-HostObject-C-040
	Host Object Support – Basic document Object
	0
	M
	

	ESMP-XMLDOMObject-C-041
	XML DOM Support

(Support for XML DOM is optional. However, if it is implemented, all mandatory items MUST be implemented.)
	11
	O
	ESMP- XMLDOMObject-C-042 AND

ESMP- XMLDOMObject-C-043 AND

ESMP- XMLDOMObject-C-044 AND

ESMP- XMLDOMObject-C-047 AND

ESMP- XMLDOMObject-C-049 AND

ESMP- XMLDOMObject-C-050 AND

ESMP- XMLDOMObject-C-051 AND

ESMP- XMLDOMObject-C-052 AND

ESMP- XMLDOMObject-C-054

	ESMP-XMLDOMObject-C-042
	DOM Object Support – Exception Object
	11.1
	M
	

	ESMP-XMLDOMObject-C-043
	DOM Object Support – Node Object – Property Support
	11.2
	M
	

	ESMP-XMLDOMObject-C-044
	DOM Object Support – Node Object – Data Interrogation Methods
	11.2
	M
	

	ESMP-XMLDOMObject-C-045
	DOM Object Support – Structural Mutation
	11
	O
	ESMP- XMLDOMObject-C-046 AND ESMP- XMLDOMObject-C-048 AND ESMP- XMLDOMObject-C-053

	ESMP-XMLDOMObject-C-046
	DOM Object Support – Node Object – Structural Modification Mutation Methods
	11.2
	M
	

	ESMP-XMLDOMObject-C-047
	DOM Object Support – document Object - Data Interrogation Methods
	11.3
	M
	

	ESMP-XMLDOMObject-C-048
	DOM Object Support – document Object – Structural Modification Mutation Methods
	11.3
	M
	

	ESMP-XMLDOMObject-C-049
	DOM Object Support – NodeLlist Object
	11.4
	M
	

	ESMP-XMLDOMObject-C-050
	DOM Object Support – Element Object – Property Support
	11.5
	M
	

	ESMP-XMLDOMObject-C-051
	DOM Object Support – Element Object – Data Interrogation Methods
	11.5
	M
	

	ESMP-XMLDOMObject-C-052
	DOM Object Support – Element Object – Data Modification Methods
	11.5
	M
	

	ESMP-XMLDOMObject-C-053
	DOM Object Support – Element Object – Structural Modification Mutation Methods
	11.5
	M
	

	ESMP-XMLDOMObject-C-054
	DOM Object Support – Text Object
	11.6
	M
	

	ESMP-XHTMLDOMObject-C-055
	XHTML DOM Support

(Support for XHTML DOM is mandatory. All mandatory items MUST be implemented)
	10
	M
	ESMP- XHTMLDOMObject-C-056 AND

ESMP- XHTMLDOMObject-C-057 AND

ESMP- XHTMLDOMObject-C-059 AND

ESMP- XHTMLDOMObject-C-060 AND

ESMP- XHTMLDOMObject-C-061 AND

ESMP- XHTMLDOMObject-C-062 AND

ESMP- XHTMLDOMObject-C-063 AND

ESMP- XHTMLDOMObject-C-064 AND

ESMP- XHTMLDOMObject-C-065 AND

ESMP- XHTMLDOMObject-C-066 AND

ESMP- XHTMLDOMObject-C-067 AND

ESMP- XHTMLDOMObject-C-068

	ESMP-XHTMLDOMObject-C-056
	XHTML DOM Support – XHTML Document Object
	10.1
	M
	

	ESMP-XHTMLDOMObject-C-057
	XHTML DOM Support – Link Object
	10.2
	M
	

	ESMP-XHTMLDOMObject-C-058
	XHTML DOM Support – Image Object
	10.3
	O
	

	ESMP-XHTMLDOMObject-C-059
	XHTML DOM Support – Form Object
	10.4
	M
	

	ESMP-XHTMLDOMObject-C-060
	XHTML DOM Support – Text Input Object
	10.5
	M
	

	ESMP-XHTMLDOMObject-C-061
	XHTML DOM Support – Textarea Input Object
	10.6
	M
	

	ESMP-XHTMLDOMObject-C-062
	XHTML DOM Support – Password Input Object
	10.7
	M
	

	ESMP-XHTMLDOMObject-C-063
	XHTML DOM Support – Radio Input Object
	10.8
	M
	

	ESMP-XHTMLDOMObject-C-064
	XHTML DOM Support – Checkbox Input Object
	10.9
	M
	

	ESMP-XHTMLDOMObject-C-065
	XHTML DOM Support – Submit Object
	10.10
	M
	

	ESMP-XHTMLDOMObject-C-066
	XHTML DOM Support – Reset Object
	10.11
	M
	

	ESMP-XHTMLDOMObject-C-067
	XHTML DOM Support – Select Element Object
	10.12
	M
	

	ESMP-XHTMLDOMObject-C-068
	XHTML DOM Support – Option Element Object
	10.13
	M
	

	ESMP-XHTMLDOMObject-C-069
	XHTML DOM Support – Button Object
	10.14
	
	Not supported in this release – place holder only

	ESMP-XHTMLDOMObject-C-070
	XHTML DOM Support – Screen Object
	10.15
	O
	

Appendix B. Change History
(Informative)
This appendix is informative.

	Document History

	WAP-271-ESMP
	27 May 2002
	Initial Public Draft

	WAP-271-ESMP
	30 Jun 2002
	Post Architectural Consistency Review

	WAP-271-ESMP
	19 Jul 2002
	CR-Wap-271-ESMP-NOKIA-20020630-ARCHCON

CR-Wap-271-ESMP-NOKIA-20020715-OWCOMMENTS

CR-Wap-271-ESMP-NOKIA-20020718-IBMCOMMENTS

	WAP-271-ESMP
	21 Aug 2002
	Followup Architectural Consistency Review

	Candidate Versions

OMA-WAP-ESMP-v1_0
	9 Sep 2002
	Submitted as an OMA Candidate Specification

	
	29 Apr 2003
	Candidate Specification Updated with the following Changes:

OMA-WAP-ESMP-CR-NOKIA-V1_0-20021105-1
OMA-WAP-ESMP-CR-SAMSUNG-001-20021223
OMA-WAP-ESMP-CR-SAMSUNG-003-20021224
OMA-WAP-ESMP-CR-SAMSUNG-004-20021224
OMA-WAP-ESMP-CR-SAMSUNG-005-20021224
OMA-WAP-ESMP-CR-SAMSUNG-006-20021224
OMA-WAP-ESMP-CR-SAMSUNG-007-20021226
OMA-WAP-ESMP-CR-SAMSUNG-008-20021226
OMA-WAP-ESMP-CR-SAMSUNG-011-20030130
OMA-WAP-ESMP-CR-SAMSUNG-012-20030130
OMA-WAP-ESMP-CR-SAMSUNG-014-20030131
OMA-WAP-ESMP-CR-SAMSUNG-015-20030211
OMA-WAP-ESMP-V1_0-CR-NOKIA-20030214-1
OMA-WAP-ESMP-CR-SAMSUNG-018-20030222
CR-ESMP-SAMSUNG-019
OMA-MAE-2003-0051-ESMP-CR-NOKIA-20030317-SPLICE.doc
CR-ESMP-SAMSUNG-020

	OMA-WAP-ESMP-v1_01
	18 Jul 2003
	OMA-WAPESMP-CR-NOKIA-20030721-HTMLDOM.doc

	
	12 Aug 2003
	OMA-MAG-MAE-2003-0111-CR-ESMP-ACCESS-20030805

OMA-MAG-MAE-2003-0107-CR-ESMP-NOKIA-20030509.doc

Other minor typos in XHTML DOM section

	
	13 Oct 2003
	Final Draft after Release Planning Consistency Review

Reversioned per Release Planning Request

OMA-MAE-ESMP-CR-SAMSUNG-023-20030819

http://www.openmobilealliance.org/ftp/BAC/MAE/ID/03/OMA-BAC-MAE-2003-0133.zip
http://www.openmobilealliance.org/ftp/BAC/MAE/ID/03/OMA-BAC-MAE-2003-0134.zip
SCR Typos and Requirements fixed.

Informative Appendices D and E edited for clarity.

	OMA-WAP-ESMP-v1_0
	20 Nov 2003
	Voted to Candidate

Bug fix

http://www.openmobilealliance.org/ftp/BAC/ID/03/OMA-BAC-2003-0060-CR-ESMP-Mouse-Events.zip

	OMA-WAP-ESMP-v1_0
	9 Jul 2004
	Bug Fix – Cancellable Events description added (Section 8.4.1,8.4.2)

http://www.openmobilealliance.org/ftp/Public_documents/BAC/MAE/2004/OMA-MAE-2004-0075-ESMP-Cancelling-Events.zip

Added missing cross references

	OMA-WAP-ESMP-V1_0
	17 May 2005
	Change requests are 15 collected class 2 (1 bugfix) and class 3 (14 editorial)

OMA-MAE-2005-0030R01-CR-Maintenance-ESMP

For submission to TP/BoD approval

Appendix C. Mapping WMLScript Libraries to ECMAScript-MP Objects

This appendix is informative.

	Library
	Call
	Object
	Method/Constant
	Comment

	Lang
	abs
	Math
	abs()
	ECMA-262 Section 15.8.2.1

	Lang
	min
	Math
	min()
	ECMA-262 Section 15.8.2.12

	Lang
	max
	Math
	max()
	ECMA-262 Section 15.8.2.11

	Lang
	parseInt
	Global
	parseInt
	

	Lang
	parseFloat
	Global
	parseFloat
	

	Lang
	isInt
	
	
	All numbers are 64 bit float and require no explicit conversion.

	Lang
	isFloat
	
	
	All numbers are 64 bit float and require no explicit conversion.

	Lang
	maxInt
	
	MAX_VALUE
	These are actually floating point numbers in ECMAScript.

	Lang
	minInt
	
	MIN_VALUE
	These are actually floating point numbers in ECMAScript.

	Lang
	float
	
	
	All numbers are 64 bit float and require no explicit conversion.

	Lang
	exit
	
	
	

	Lang
	abort
	
	
	

	Lang
	random
	Math
	random
	random

	Lang
	seed
	
	
	

	Lang
	characterSet
	
	
	

	Library
	Call
	Object
	Method
	Comment

	Float
	int
	
	
	

	Float
	floor
	Math
	floor
	floating point only ECMA-262 Section 15.8.2.9

	Float
	ceil
	Math
	ceil
	floating point only ECMA-262 Section 15.8.2.6

	Float
	pow
	Math
	pow
	floating point only ECMA-262 Section 15.8.2.13

	Float
	round
	Math
	round
	floating point only ECMA-262 Section 15.8.2.15

	Float
	sqrt
	Math
	sqrt
	floating point only ECMA-262 Section 15.8.2.17

	Float
	maxFloat
	Number
	MAX_VALUE
	constant ECMA-262 Section 15.7.3.2

	Float
	minFloat
	Number
	MIN_VALUE
	constant ECMA-262 Section 15.7.3.3

	Library
	Call
	Object
	Method/Property
	Comment

	String
	length
	String
	.length property
	a call in WMLScript vs.a property of the String object in ESMP

	String
	isEmpty
	
	
	

	String
	charAt
	String
	charAt()
	ECMA-262 Section 15.5.4.4

	String
	subString
	String
	subString()
	Semantics are different

	String
	find
	String
	indexOf()
	ECMA-262 Section 15.5.4.7 parameters are different

	String
	replace
	
	
	See Note 1

	String
	elements
	
	
	See Note 1

	String
	elementAt
	
	
	See Note 1

	String
	removeAt
	
	
	See Note 1

	String
	replaceAt
	String
	replace()
	Object version works on itself ECMA-262 Section 15.5.4.11

	String
	insertAt
	
	
	See Note 1

	String
	squeeze
	
	
	

	String
	trim
	
	
	

	String
	compare
	String
	localeCompare()
	ESMP is Unicode sensitive ECMA-262 Section 15.5.4.9

	String
	toString
	Global
	toString()
	ESMP returns a string value

	String
	format
	
	
	

Note 1: these functions can be emulated with a combination of string.split, and array methods

	Library
	Call
	Object
	Method/Property
	Comment

	URL
	getScheme
	location
	protocol property
	

	URL
	getHost
	location
	host property
	

	URL
	getPort
	location
	port property
	

	URL
	getPath
	location
	hostname property
	

	URL
	getParameters
	location
	href property
	

	URL
	getQuery
	location
	search property
	

	URL
	getFragment
	location
	hash property
	

	URL
	getBase
	
	
	

	URL
	getReferer
	document
	referrer property
	

	URL
	resolve
	
	
	

	URL
	escapeString
	Global
	encodeURI(),

encodeURIComponent()
	

	URL
	unescapeString
	Global
	decodeURI(),

decodeURIComponent()
	

	URL
	loadString
	
	
	

	Library
	Call
	Object
	Method/Property
	Comment

	WMLBrowser
	getVar
	
	
	DOM access to the document replaces this function

	WMLBrowser
	setVar
	
	
	DOM access to the document replaces this function

	WMLBrowser
	go
	history
	go()
	

	WMLBrowser
	prev
	history

location
	back()

reload()
	history.back retains variable state

location.reload reinitialises state

	WMLBrowser
	newContext
	
	
	

	WMLBrowser
	getCurrentCard
	location
	href property
	return is absolute, not relative

	WMLBrowser
	refresh
	location

history
	reload()

go(0)
	

	Library
	Call
	Object
	Method
	Comment

	Dialogs
	prompt
	Global
	prompt()
	part of the global object

	Dialogs
	confirm
	Global
	confirm()
	part of the global object

	Dialogs
	alert
	Global
	alert()
	part of the global object

Appendix D. Differences between WMLScript and ECMAScript Mobile Profile (ESMP)

This appendix is informative.

· WMLScript does not support objects. It supports native libraries. ESMP supports objects.

· ESMP supports 64 IEEE-754 numbers as the sole external numeric type, WMLScript supported integers and optionally 32-bit floats

· All objects in ESMP must be versioned whereas WMLScript libraries are not versioned.

· WMLScript doesn’t support HTML commenting.

· WMLScript doesn’t support the usage of $ character in any position of the name whereas ESMP allows it.

· WMLScript requires lower case Boolean literals. Both upper and lower case characters are supported for boolean literals in ESMP.

· WMLScript supports local assignment of global variables with access to WML globals through a library call. There are no global variables in [XHTMLMP] or ESMP.

· WMLScript requires explicit variable declaration. ESMP allows the creation of variables, simply by referencing them.

· Native support for strings in WMLScript is through library callsIn ESMP makes it available through the String object.

· Arrays are not supported in WMLScript. They are now available through the Array object.

· In ESMP Typeof() operators returns a string, not a value, consistent with standard ECMAScript. WMLScript typeof() returned a number.

· In ESMP variable length parameter lists are supported, per standard ECMAScript [ECMA262].

· Support for the throw/catch and in keywords are included in ESMP.

· The ‘NULL’ literal is supported in ESMP per [ECMA262].

· Unlike WMLScript the Invalid literal is not supported in ECMAScript [ECMA262]

· Operators ‘delete’ and ‘void’ are supported in ESMP.
· Operator ‘isvalid’ is not supported in ESMP.
· ‘div’ is not supported in ESMP.
· WMLScript supports ‘extern’ and ‘pragma’ keywords. There is no support for these keywords in ESMP.
Appendix E. Differences between ECMAScript Mobile Profile (ESMP) and ECMA-262

This appendix is informative.

· In ESMP all objects must maintain an enumerated version property. [ECMA262] has no such requirement.

· ECMAScript Mobile Profile support both UTF-8 and UTF-16 as input, where [ECMA262] specifies only UTF-16 encoding support

· As well as escape characters, ESMP supports non-escape characters preceded by a backslash.

· The global method eval() is optional in ESMP per [ECMA327].

· In ESMP support for the with statement is not required for conformance and is optional per[ECMA327].

· In ESMP the function object is not required to support dynamic function construction per [ECMA327].

· In ESMP dynamic modification of built-in (native and host) object properties (addition, deletion or assignment), other than the global object is not required for conformance per [ECMA327].

· ESMP defines a set of “host” objects to interface to the XHTML browser and documents. [ECMA262] does not.

· There is no automatic insertion of missing semicolons at logical statement end in ESMP. Semicolons are required following ESMP statements. [ECMA262] does not require closing semicolons, they are implied if there is an EOL at the end of a logical statement.

· toLowerCase() is a synonym for toLocaleLowerCase() in ESMP.

· toUpperCase() is a synonym for toLocaleUpperCase() in ESMP.

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWAP-20050101-I
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWAP-20050101-I]

_1081243324.ppt

Global Object

(parent Object)

Date Object

Error Object

RegExp Object

Number Object

String Object

Array Object

Math Object

Boolean Object

_1091422129.ppt

Language

Syntax

ECMA-262

(with ECMA-327 exclusions)

Host Environment Context

Document Context

_1119257428.ppt

Global Object

Form Object

Document Object

Link Object

Radio

Object

Button

Object

Checkbox

Object

Select

Object

Option

Object

Screen Object

Image Object

OPTIONAL

Text

Object

Textarea

Object

Password

Object

Submit

Object

Reset

Object

Requirements

		Compatibility with XHTML-MP

		Support existing developer community

		Support less capable devices, and a simpler path to market for ESMP

		Support bridge to existing scripts

Be compatible with JS 1.2

		Create a consistent (X)HTML DOM subset

Develop a consistent set of rules for inclusion and exclusion of (X)HTML objects

		Missing applications level functionality in XML DOM

_1081243715.ppt

Global Object

(window Object)

History Object

Navigator Object

Basic Document Object

Location Object

_1067766902.ppt

Markup

Script

Markup

WMLScript

ECMAScript-MP

Markup

Script

URI

Remote

Script

Navigation

Markup

Script

Markup

Script

_1076493941.ppt

DOMException

Object

Text

Object

CharacterData

Object

Element

Object

Document

Object

Node

Object

NodeList

Object

childNodes

parent,child,sibling

_1066823769.ppt

Node Object

Element Object

Character

Data Object

Document Object

Text Object

DOMException

 Object

NodeList Object

Parent, children, siblings

childNodes

