OMA-ER-MCAPI-V1_0-20130207-D
Page 26 V(39)

	[image: image9.wmf]MC

–

enabled Mobile Device

MC Client

MC Server

**

Content

Provider

Web Runtime Environment

Browser

|

Widgets

Other API’s

MC

Enabler

API

Direct Code

Decoding

&

Resolution

functions

;

Indirect Code

Decoding

function

MC Client

/

Server Protocol

(

real

-

time

&

non real

-

time

)

AJAX

/

HTTP

(

online use

only

)

MC Enabler

exposing APIs

WRT MC Enabler API

Note

:

Arrows show primary

direction of data flow

Request

:

Register

,

Subscribe

,

Discover

,

Get

,

Submit

,

Suspend

,

Resume

Response

/

Notification

:

Registered

,

Subscribed

,

Discovered

,

Delivered

,

Submitted

,

Supended

,

Resumed

Data Transfer

:

Data decoded from MC

-

compliant symbologies

Indirect Code

Resolution

functions

MC

-

1

&

MC

-

4

Legend

:

	

	Mobile Codes API Enabler

	Draft Version 1.0 – 7 February 2013

	Open Mobile Alliance

	OMA-ER-MCAPI-V1_0-20130207-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents
51.
Scope

62.
References

62.1
Normative References

72.2
Informative References

83.
Terminology and Conventions

83.1
Conventions

83.2
Definitions

93.3
Abbreviations

104.
Introduction

104.1
Version 1.0

115.
MCAPI Enabler release description (Informative)

115.1 End-to-end Service Description

126.
Requirements (Normative)

126.1
High-Level Functional Requirements

126.1.1
Security

136.1.2
Charging Events

146.1.3
Administration and Configuration

146.1.4
Usability

146.1.5
Interoperability

146.1.6
Privacy

146.2
Overall System Requirements

187.
Architectural Model

187.1
Dependencies

187.2
Architectural Diagram

197.3
Functional Components and Interfaces definition

197.3.1
MCAPI Enabler Functional Components

207.3.2
MCAPI Enabler Interfaces

207.4
Security Considerations

228.
Technical Specifications

228.1
Overview of the MCAPI in the MC Architecture

238.2
The MCAPI Interface Details

299.
Sections As Needed

299.1
Example Level 2

299.1.1
Example Level 3

3010.
Release Information

3010.1
Supporting File Document Listing

3010.2
OMNA Considerations

3110.3
Additional Items

33Appendix A.
Change History (Informative)

33A.1
Approved Version History

33A.2
Draft/Candidate Version 1.0 History

34Appendix B.
Use Cases (Informative)

34B.1
Referring a one-time-use discount coupon between family & friends remotely

34B.1.1
Short Description

34B.1.2
Market benefits

34B.2
Lookup of virtual maps and product offers from AR Targets within a Mobile Augmented Reality Session

34B.2.1
Short Description

35B.2.2
Market benefits

36Appendix C.
Call Flows (Informative)

37Appendix D.
Static Conformance Requirements (Normative)

37D.1
ERDEF for <<ENABLER>> - Client Requirements

37D.2
ERDEF for <<ENABLER>> - Server Requirements

37D.3
SCR for XYZ Client

37D.4
SCR for XYZ Server

38Appendix E.
<Additional Information>

38E.1
App Headers

38E.1.1
More Headers

39Appendix F.
MCAPI Enabler Deployment Considerations

Figures
10Figure 1: Overview of Web Runtime MC API role in an OMA MC-enabled mobile device

18Figure 2: MCAPI Enabler Architectural Diagram using interfaces

1. Scope

This Enabler Release (ER) document is a combined document that includes requirements, architecture and technical specification of the Mobile Codes API Enabler, according to OMA nomenclature.

Since the Mobile Codes Enabler V1.0 is the reference for which Application Programming Interfaces (APIs) are being developed, the Mobile Codes API Enabler is, therefore, synonymous with “APIs for the Mobile Codes Enabler V1.0”

Scope of work for this enabler is defined and approved as the Work Item Description 0251 ‘Mobile Codes Enhancement and APIs’ Part A - Client-side APIs for the MC Enabler.
The main focus of work is to extend the open Web applications environment to the MC Enabler by defining simple and interoperable interfaces (i.e., API exposure by the MC Client “MCC”) that facilitate app developer innovations in value-added services related to mobile barcodes.
The following areas will be covered as part of the scope of the enabler:

· APIs will be defined exclusively for the MC Client of the MC Enabler V1.0.
· Requirements for the MCAPI.

· Architectural aspects of the MCAPI, as applicable.

· General alignment with Client-side API design and specification approaches as led by the CD Working Group WRAPI work.
· Other aspects as may be identified during the course of development.
MCAPI Enabler will reuse as much as possible available and applicable technologies.
Editor’s Note: Design of the MC API Enabler will generally be informed by the following Client-side API works ongoing within OMA CD Working Group (this area is intended to be a placeholder of both stable references and ongoing updates):

OMA-RRP-CSEA-V1_0-20101130-A.zip
OMA-CD-WRAPI-2012-0002R01-INP_Push_API_Update.zip
OMA-TS-WRAPI_Design_Patterns-V1_0-20120508-C.zip
OMA-TS-WRAPI_Push-V1_0-20120508-C.zip
OMA-ERELD-WRAPI-V1_0-20120508-C.zip
2. References
Editor’s Note: As the baseline structure of this ER Document is constructed, there is an over-presumption of references (normative and informative) and definitions being relevant in this draft, some of which might arguably be ‘place holders’. As the approach and substance of the MCC API design is clarified, the content of this draft is expected to be edited extensively to sharpen the applicability of these references and definitions.

2.1 Normative References

	[OMA-Autho4API]
	“Authorization Framework for Network APIs”, Version 1.0, Open Mobile Alliance™, OMA-ERP-AUTHO4API-V1_0
URL: http://www.openmobilealliance.org/

	[OMA-MC]
	“Mobile Codes”, Version 1.0, Open Mobile Alliance™, OMA-ERP-MC-V1_0

URL: http://www.openmobilealliance.org/

	[OMA-REST-NETAPI-TL]
	“RESTful Network API for Terminal Location”, Version 1.0, Open Mobile Alliance™, URL: http://www.openmobilealliance.org/

	[OMA-SEC-CF]
	“Application Layer Security Common Functions”, Version 1.1, Open Mobile Alliance™, OMA-ERP-SEC-CF-V1_1

URL: http://www.openmobilealliance.org/

	[OSE]
	“OMA Service Environment”, Open Mobile Alliance™,
URL:http://www.openmobilealliance.org/

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, T. Berners-Lee et al. January 2005. URL: http://tools.ietf.org/html/rfc3986

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL:http://www.ietf.org/rfc/rfc4627.txt

	
	

	
	

	[W3C-CORS]
	“Cross-Origin Resource Sharing”, W3C, URL: http://www.w3.org/TR/cors/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type,
URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	
	

	[W3C-WebIDL]
	“Web IDL", Worldwide Web Consortium (W3C), URL: http://www.w3.org/TR/WebIDL/

	
	

	
	

	[W3C-XHR]
	“XMLHttpRequest”, W3C, URL: http://www.w3.org/TR/XMLHttpRequest/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

	
	

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2.8, URL:http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(. URL:
http://www.openmobilealliance.org/tech/omna.aspx

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	API Patterns
	Design guidelines and requirements for definition of APIs

	Browser Context
	Web applications executing under a Web browser as Web runtime environment.

	ECMAScript
	Use definition from [OMADICT].

	JavaScript
	Use definition from [OMADICT].

	
	

	User Agent
	Use definition from [OMADICT].

	Web
	The World Wide Web, a content and application framework based upon hypertext and related technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

	Web Application
	An application designed using Web technologies (e.g. HTML, CSS, and JavaScript).

	Web IDL
	An IDL language for Web application APIs

	Web Runtime Environment
	Client software that supports the execution of Web applications (e.g. browsers or widget engines).

	Web Runtime Application
	A client-side Web application that is executed in Web runtime environments.
Editor’s Note: Defer to CD Plenary for consistency of definitions.

	Widget Context
	Web applications installed and executing under a W3C Widget [W3C-Widgets] engine as Web runtime environment.

	Widget Engine
	Software which supports the execution of Web applications running outside a browser context, e.g. with the same functional capabilities as browsers but without the user interface functions provided by a browser, including window frames, menus, toolbars and scroll bars.

	Uniform Resource Identifier
	Use definition from [OMADICT].

	Mobile Code
	A 1D or 2D barcode as read by camera-equipped devices

	Direct Code
	A Mobile Code that contains either (a) content for direct consumption for the device, or (b) the address of the service to be accessed (typically a URI [Error! Reference source not found.]).

	Indirect Code
	A Mobile Code that contains an Indirect Code Identifier.

	Mobile Code Client
	The MC Enabler software entity that resides in the device, and contains the functionality to acquire, decode, and extract the encoded information for further processing as required. This is often referred to as a Mobile Code Reader and these terms can be used synonymously.

	Code Management Platform
	The Code Management Platform provides a resolution service pertaining to Indirect Codes.

Note: This is an abbreviated definition appropriate for the context of the MCAPI Enabler; for full details that are only relevant in the MC Enabler architecture variants, see MC Enabler V1.0 Definitions Section.

	Home CMP
	The CMP to which a particular MC Client is configured to send all Code Resolution requests.
Note: This is an abbreviated definition appropriate for the context of the MCAPI Enabler; for full details that are only relevant in the MC Enabler architecture variants, see MC Enabler V1.0 Definitions Section.

	Reading a Mobile Code
	Action by the Mobile Code Client (aka ‘Mobile Code Reader’, or ‘Mobile Code Scanner App’) to interact with the device camera to capture the mobile code image and decode/extract the data that was encoded in the mobile code according to the supported ISO symbology standards in the MC Enabler (i.e., QR Code or Data Matrix). Result of decoding is the data string in text form comprising either a Direct Code, or an Inidrect Code.

Note: ‘Reading a Mobile Code’ is synonymous with ‘Decoding a Mobile Code’.

	Resolving a Mobile Code
	Additional action by the Mobile Code Client, upon reading an Indirect Code, to interact with a unique Code Management Platform (i.e., resolution server) to link, or de-reference, the Indirect Code Identifier to the result associated with the mobile code. Result of indirect code resolution is a pre-determined content or an URI returned to the mobile device for action.

3.3
Abbreviations

	API
	Application Programming Interface

	DM
	Data Matrix

	
	

	HTTP
	HyperText Transfer Protocol

	IDL
	Interface Definition Language

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	QR
	Quick Response

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	UA
	User Agent

	UE
	User Equipment

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	W3C
	World Wide Web Consortium

	WRAPI
	The OMA Web Runtime API enabler

	XHR
	XMLHttpRequest

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

This specification defines API that exposes the Mobile Codes Enabler V1.0 functionality to 3rd party applications while executing in Web Runtime environments (i.e. as a “Web Runtime App”). This API is referred to in this document as the MCC API.

The functions supported by the User Agent as part of the Web Runtime environment that facilitate the 3rd party App access to the MCC functionality are dependent on the following:

· Implementation of the MCC API.

· Specific functions of the MC Client as defined by the OMA MC Enabler (e.g., decoding data from the mobile code symbology) which are exposed by the MCC API.
The functionalities of the MC API Enabler are not directly offered to the user, but are API functionalities offered to 3rd party Web applications running on the device in either a browser or widget context.
The MCAPI Enabler exposes the functionalities of the Mobile Codes Enabler to applications such that innovative use of mobile codes can be facilitated, thus leading to a broadening of the emerging mobile codes ecosystem.

Figure 1 illustrates the actors (including software entities) mainly involved in MCAPI usages and ecosystem.
[image: image1.jpg]
Figure 1: Overview of Web Runtime MC API role in an OMA MC-enabled mobile device
4.1 Version 1.0

The version 1.0 of the MCAPI Enabler defines an overall framework that enables applications to access the MC Enabler functionalities.
5. MCAPI Enabler release description
(Informative)

<< This clause illustrates what the release is about, describing the release in terms of its functionalities, identifying the actors and their relationships. The inclusion of any pictures to back up text should be kept simple, showing various actors involved. The text shall summarize the functionalities of the release in a generic form which does not constrain terminal or network design. It is intended to allow an understanding of the release without regard to implementation. The description should include functional, charging, administration and configuration, usability, interoperability, privacy aspects as well as interactions with other releases.

Part of this text can be easily extracted from the WID

DELETE THIS COMMENT >>

<text>

5.1 End-to-end Service Description

In Mobile Codes V1.0, mobile code scanning is always initiated by the end user. UI interactions between the ‘user-to-MCC’ and ‘MCC-to-device camera’ interactions via the OS to initiate mobile code scanning are left up to implementation. Currently, other apps on the device whether related to Web Runtime, or not, do not have a standardised way to interact with the MCC. Hence, expanded usage of mobile code scanning initiated by applications, as opposed to the end user, is hampered and new opportunities of potential innovative mobile code use cases are largely unexplored. By exposing MCC APIs for Web Runtime Applications, these untapped opportunities become actionable to facilitate app developer innovations that utilise mobile codes in a much larger scale.

In a nutshell, the MCC APIs enable Web Runtime Applications to achieve the following actions:

· Web Runtime App to invoke the MCC to acquire the mobile code via the device camera;

· MCC decodes the code symbology (Direct or Indirect Codes) and initiates MC Enabler actions to resolve the code;

· Information/Action associated with the mobile code resolution (as intended by the Code Publisher) is consumed or responded to by an appropriate app on the device.

· Information returned by the mobile code to the Web Runtime App contributes to enhancing the user experience as part of the Web Runtime App session (see use cases in Appendix B).

6. Requirements
(Normative)

6.1 High-Level Functional Requirements

This section contains MC API Enabler requirements supporting functionalities that are relatively common to OMA Enabler Client-side APIs. MC API Enabler Client-side API is synonymous with MC Client “MCC” API. Functional requirements intrinsic to the MC API Enabler are covered in Section 6.2
	Label
	Description
	Release

	MCAPI-HLF-01
	MCC API MUST support JavaScript callable APIs.
	

	MCAPI-HLF-02
	MCC API MUST be defined utilising open standard technologies.
	

	MCAPI-HLF-03
	MCC API support MUST be discoverable by the 3rd party Web Runtime applications.
	

	MCAPI-HLF-04
	MCC API MUST support Web application registration and deregistration with the MC Enabler.

Informational Note: These actions may involve the client and/or server components of the MC Enabler; architecture design is TBD.
	Deleted.

Not relevant in the new API design.

	MCAPI-HLF-05
	MCC API MUST provide status and/or error conditions to the Web Runtime application, when applicable.
	??

	MCAPI-HLF-06
	MCC API MUST support delivery of MCC status and/or error reports to the Web Runtime application, as required.
	Deleted.

Not relevant in the new API design.

	MCAPI-HLF-07
	MCC API MUST be defined using consistent API design patterns (e.g. error handling, namespaces, and interface structure).
	

	MCAPI-HLF-08
	MCC API MUST support asynchronous operation.
	

Table 1: High-Level Functional Requirements

6.1.1 Security

	Label
	Description
	Release

	MCAPI-SEC-01
	The MCC API MUST be able to make use of the security framework of the OMA Web Runtime Environment supported by the device, where available and applicable.

	

Table 2: High-Level Functional Requirements – Security Items
6.1.1.1 Authentication

	Label
	Description
	Release

	MCAPI-AUTH-01
	MCC API MUST be able to make use of the applicable security framework of the Web Runtime Environment supported by the device to authenticate the 3rd party Wed Runtime App.
	

Table 3: High-Level Functional Requirements – Authentication Items
6.1.1.2 Authorization

	Label
	Description
	Release

	MCAPI-AUTR-01
	MCC API MUST be able to make use of the applicable security framework of the Web Runtime Environment supported by the device to authorise the 3rd party Wed Runtime App for access to OMA Enabler client-side APIs.
	

	MCAPI-AUTR-02
	MCC API MUST be able to grant access only to a Web Runtime App that is entitled to access the MCC API.
	

	MCAPI-AUTR-03
	MCC API MAY be able to restrict access to an authorized Web Runtime App to specific elements of the MCAPI
	Deleted.

Not relevant in the new API design.

	MCAPI-AUTR-04
	MCC API MUST be able to meter access to an authorized Web Runtime App to specific elements of the MCAPI

Informational Note: This is critical so that a runaway (or a malware) Web Runtime App does not “freeze” the mobile device with continuous calls to elements of the MCAPI that consume significant resources.
	Deleted.

Not relevant in the new API design.

Table 4: High-Level Functional Requirements – Authorization Items

6.1.1.3 Data Integrity

	Label
	Description
	Release

	MCAPI-DATI-01
	MCC API MUST be able to provide data integrity for all data transferred from the MCC to the 3rd party Web Runtime App, and vice versa.
	

	MCAPI-DATI-02
	MCC API MUST be able to detect any accidental, unintentional, or malicious changes to the data transferred from the MCC to the 3rd party Web Runtime App, and vice versa.
	

Table 5: High-Level Functional Requirements – Data Integrity Items

6.1.1.4 Confidentiality

	Label
	Description
	Release

	MCAPI-CONF-01
	MCC API MUST apply or support data confidentiality that ensures information transferred from the MCC to the Web Runtime App, and vice versa, is not made available or disclosed to any unauthorised entity, or process.
	

Table 6: High-Level Functional Requirements – Confidentiality Items

6.1.2 Charging Events

	Label
	Description
	Release

	MCAPI-CHG-01
	MCC API MUST, for Indirect Codes, support charging mechanisms if implemented by the Home CMP.
	

	MCAPI-CHG-02
	MCC API MAY, for Indirect Codes, support charging mechanisms if implemented by the Resolving CMP.

Informational Note: This is subject to the business relationships between the Home CMP and the Remote Resolving CMP.
	

Table 7: High-Level Functional Requirements – Charging Events Items
6.1.3 Administration and Configuration

	Label
	Description
	Release

	MCAPI-ADM-01
	MCC API MUST, for Indirect Codes, support any Home CMP administration and configuration mechanisms that are applicable to the 3rd party Web Runtime App.

Informational Note: Such actions are subject to business and/or operational requirements, including for charging purposes.
	

Table 8: High-Level Functional Requirements – Administration and Configuration Items

6.1.4 Usability

	Label
	Description
	Release

	MCAPI-USE-001
	Nil.
Informational Note: This is where any supporting comments would be placed, if needed
	

Table 9: High-Level Functional Requirements – Usability Items
6.1.5 Interoperability

	Label
	Description
	Release

	MCAPI-INT-01
	MCC API MUST be specified in an open standard descriptive language that is neutral to operating environments.
	

Table 10: High-Level Functional Requirements – Interoperability Items
6.1.6 Privacy

	Label
	Description
	Release

	MCAPI-PRV-01
	MCC API MUST NOT disclose the user's Personal Profile Data that may exist as part of the MCC configuration. This mechanism should ensure that no Personal Profile Data of the user is accessible through the MCC API without the user's express permission.
	

	MCAPI-PRV-02
	MCC API MUST provide a mechanism that protects the user's Location Data that may be accessible by the MCC. This mechanism should ensure that no Location Data of the user is accessible through the MCC API without the user's express permission.

Informational Note: This requirement does not in any way preclude the 3rd party Web Runtime App from accessing the user’s Location Data through interactions with other capabilities or features on the device in which the MCC API is not involved.
	

Table 11: High-Level Functional Requirements – Privacy Items

6.2 Overall System Requirements

This section contains MC API Enabler requirements supporting functionalities that are intrinsically unique to the MC Enabler accessible via the MC Client-side API (“MCC API”).
A primary role for the MCC is to read/decode the Mobile Code (Direct or Indirect) symbology image. Recognising that direct app access to the device camera API to capture the unread/undecoded symbology image has been widely implemented (e.g., A MMS message being constructed from a picture, such as a Mobile Code symbology image, taken by the device camera), there is no apparent need for the MCC, hence no MCC API involvement in this use case. Specifically, use of the MCC (via the MC API) to acquire the mobile code symbology image without decoding of the symbology data is out-of-scope for the MC API Enabler.
	Label
	Description
	Release

	MCAPI-SYS-01
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode a Mobile Code and return raw data of the decoded symbology of the Mobile Code.
Informational Note: “Raw data” means that the data that is decoded from the symbology but has not been decoded by the [OMA-MC]’s data formats or any other data formats.
	Deferred to future release.

	MCAPI-SYS-02
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode an [OMA-MC] conformant Direct Code and return the result to the Web Runtime App.

Informational Note: Examples of the above returned information include: 1) a URL, 2) business card contact data, or 3) a telephone number.
	

	MCAPI-SYS-03
	MCC API SHOULD, upon reading and decoding of an Indirect Code that is not conformant to [OMA-MC] data format, return an error indication to the calling the 3rd party Web Runtime App.

Informational Note: See [OMA-MC-TS] Section 8 for conformant Indirect Code data format.
	

	MCAPI-SYS-04
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to return the complete and unmodified data of a decoded [OMA-MC] conformant Indirect Code: without Code Resolution by the MCC and MC network server(s), to the Web Runtime App.
Informational Note: The above returned information contains the Indirect Code Identifier (ICI) along with any optional Display-Text; see [OMA-MC-TS] Section 8.
	Deferred to future release.

	MCAPI-SYS-05
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode an Indirect Code and return the result: after Code Resolution by the MCC and MC network server(s) but before consumption of the information by a native app on the device, to the Web Runtime App.

Informational Note: Examples of the above returned information include: 1) a URL, 2) pre-formatted business card contact data, or 3) data file containing a JPEG picture.
	

	MCAPI-SYS-06
	MCC API MUST not impose any restrictions on how the 3rd party Web Runtime App may or may not manipulate the information, as a result of reading/decoding the (Direct or Indirect) mobile code, being returned to the Web Runtime App.
	

	MCAPI-SYS-07
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the (Direct or Indirect) mobile code, and then parse the result according to the supported formats as requested by the Web Runtime App, before returning such result to the Web Runtime App.

Informational Note: The above returned information to the Web Runtime App contains the following URI or data formats (... to be specified):

Editor’s Note:

For Indirect Code, 3rd party app needs to have knowledge of MC DTD, or not? MCC is already aware of the DTD, but 3rd party app may not be. Caution is that all MC-unique response information (e.g. Tracking Address) should be filtered out and not passed to the 3rd party app.

	Deleted.

Not relevant in the new API design.

	MCAPI-SYS-07A
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Recognizable Web Access Formats of :

http:

https:

in accordance with the [MC_TS] Section 7.2.1, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	Deleted.

Not relevant in the new API design

	MCAPI-SYS-07B
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Recognizable Telephone Number String Format and Recognition and Tel URI Scheme of:

Telephone-Number-String

tel:

in accordance with the [MC_TS] Section 7.2.2, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	Deleted.

Not relevant in the new API design

	MCAPI-SYS-07C
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Mail Address Recognition Format of:

Mailbox

in accordance with the [MC_TS] Section 7.2.3, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	Deleted.

Not relevant in the new API design

	MCAPI-SYS-07D
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Business Card Recognition Format of:

MECARD:

in accordance with the [MC_TS] Section 7.2.4, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	Deleted.

Not relevant in the new API design

	MCAPI-SYS-07E
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Bookmark Recognition Format of:

MEBKM:

in accordance with the [MC_TS] Section 7.2.5, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	Deleted.

Not relevant in the new API design

	MCAPI-SYS-07F
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Email Linkage Data Recognition Format of:

MATMSG:

in accordance with the [MC_TS] Section 7.2.6, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	Deleted.

Not relevant in the new API design

	MCAPI-SYS-07G
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Location Information Format of:

MELOC:

in accordance with the [MC_TS] Section 7.2.7, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	Deleted.

Not relevant in the new API design

	MCAPI-SYS-08
	MCC API responsibilities for Handling of Error Messages? Yes.
Editor’s Note: MCC API should define its own, preferably broad and generic, error messages. MCC error messages should be HTTP based.
	

	MCAPI-SYS-09
	MCC API responsibilities for Tracking and Reporting by the consuming device/MCC? No; the MCAPI is not involved.
Note: MCC performs its normal Tracking & Reporting, independent of the Web Runtime app.
	This should be deleted.

	MCAPI-SYS-10
	MCC API MAY support Transferred Codes; i.e., Transferred Code operations, where implemented, SHOULD NOT adversely affect operations of the MCC API.

Note: The MCAPI is not involved. MCC performs its normal Code Transfer support actions independent of the Web Runtime app.
	This should be deleted.

	MCAPI-SYS-11
	MCC API MAY support MCC Authentication by the Home CMP; i.e., MCC Authentication operations, where implemented, SHOULD NOT adversely affect operations of the MCC API.

Editor’s Note: If MCC API has any non-trivial dependency, or may impact, on MCC Authentication by the Home CMP, this feature should be deferred to a future version.
	??

	MCAPI-SYS-12
	MCC API MAY support Secure Indirect Codes; i.e., Secure Indirect Code operations, where implemented, SHOULD NOT adversely affect operations of the MCC API.

Editor’s Note: If MCC API has any non-trivial dependency, or may impact, on MCC Authentication by the Home CMP, this feature should be deferred to a future version.
	??

Table 12: High-Level System Requirements
7. Architectural Model

This section describes the architectural model and related aspects of the MCAPI Enabler. The architecture contains only MCAPI intrinsic functional components.

The architecture definition and functionalities are based on the requirements defined in the Section 6.
7.1 Dependencies

The MCAPI Enabler (or APIs for the MC Enabler) architecture is inherently dependent on the OMA MC V1.0 Enablers.

The most prevalent Web Runtime Environment that will utilise the MCAPI Enabler include: Browsers and Widgets. Browser support of HTML5 capabilities is assumed.

7.2 Architectural Diagram

[image: image2]
[image: image3.png]
Figure 2: MCAPI Enabler Architectural Diagram using interfaces

7.3 Functional Components and Interfaces definition

Functional components and interfaces of the MCAPI Enabler are defined in this section.

Under otherwise specified, all MC Enabler functionalities required for Code Resolution (for both Direct Codes and Indirect Codes) are as specified in OMA MC Enabler V1.0 and remain intact in MC Enabler V2.0. Incremental new functionalities of the MC Client as required are specified in this document.
Only components and interfaces from MC Enabler V1.0 having interactions with MCAPI (as part of MC Enabler V2.0) are specified herein. All other components and interfaces of the MC Enabler not shown or mentioned herein are assumed to remain intact, whose operations continue to function as specified in MC Enabler V1.0.
7.3.1 MCAPI Enabler Functional Components
Referencing the Architectural Diagram in Section 7.1, the following MCAPI Enabler components are defined as follows:

Home CMP (Code Management Platform): This is a component of the MC Enabler architecture as defined in MC Enabler V1.0; it is a network server with which the MC Client is configured to interact in order to resolve OMA-compliant Indirect Codes. Resolution of Direct Codes is fulfilled by the MC Client alone and does not require any interactions with the Home CMP. Details of the Home CMP functionalities are as specified in MC Enabler V1.0; no changes to the Home CMP functionalities are required.

MCC (MC Client): This is a component of the MC Enabler architecture as defined in MC Enabler V1.0; it is a software application residing in the mobile device that is required to resolve OMA-compliant mobile codes.

· For Direct Codes, the MCC performs all necessary functions to interact with the device camera (through the device OS/middleware) to read and then decode the data from the mobile code symbology.

· For Indirect Codes, the MCC performs all necessary functions to interact with the device camera (through the device OS/middleware) to read and then decode the data from the mobile code symbology. Since the data from an Indirect Code contains only the Indirect Code Identifier (ICI) and not the mobile code content itself, the MCC is configured to forward the ICI to the designated Home CMP in order to resolve the content associated with the ICI.

Details of the MC Client functionalities are as specified in MC Enabler V1.0; incremental changes to the MC Client functionalities are required to support the MCAPI Enabler.

To support MCAPI Enabler, The MCC component performs incremental functions in addition to those specified in MC Enabler V1.0.
The incremental MCC functionalities required to support MCAPI requirements the following:

1. MCC to include local HTTP server functionality (i.e., “MCAPI Server”) in addition to previously defined MCC behaviour in MC Enabler V1.0.

2. MCAPI Server to expose the MCAPI through HTTP via a dedicated TCP port; this port address may need to be registered, as appropriate (TBD).

3. MCAPI utilises XHR requests and responses as per W3C XMLHttpRequest API (Level 2 Specification, Jan 2012) to service the Web App.

Editor’s Note: Add a new definition for the W3C XHR specification then use the [Doc Ref] in the above.

4. The MCAPI Server, upon receipt of the XHR request, triggers the normal MCC actions of code reading and resolution functionalities as specified in MC Enabler V1.0.

Note: MCC interactions with the device camera and/or OS are subject to implementation specifics, which are likewise in MC Enabler V1.0, considered out-of-scope.

5. MCAPI Server, upon completion of code reading and decoding for a Direct Code, inserts the result as part of the XHR response back to the Web App. See (6) for Indirect Code.

6. MCAPI Server, upon completion of code reading, decoding and resolution for an Indirect Code, inserts the result as part of the XHR response back to the Web App.
Additional Information (Informative)
Note: The following external components are not defined by the MCAPI Enabler but are nonetheless integral to the successful operation of the MCAPI Enabler. The following information (remainder of Section 7.3.1) is Informative:

Mobile Device Operating System (OS) or Middleware: This is an integral component of the mobile device architecture that enables functioning capabilities of device involving: all software features and most of the hardware features on the device. Examples of the device OS or middleware are: Apple iOS, Android, Opera, Chrome, Symbian and Windows Mobile.
Web Runtime Environment: This is the client software that supports the execution of Web applications (e.g. browsers or widget engines). The Web Runtime Environment enables a Web Application to call the MCAPI to access MC Client and MC Enabler functionalities.

See more details in Section 8 – Technical Specifications to follow.
7.3.2 MCAPI Enabler Interfaces
Referencing the Architectural Diagram in Section 7.1, the MCAPI Enabler interfaces are defined as follows:

MC-1 Interface (applicable to Indirect Codes only): This interface is exposed by the Home CMP to an authorised principal (in this case, the MCC) for transfer of latency-critical information related to an Indirect Code; this information may include: request for resolution of Indirect Code Identifier (ICI), response containing resolved content or address of content (or a service), error codes, additional meta-data (e.g., subscriber profile information and location information).

Note:
Transfer of latency-critical information refers to transactions or messaging flows specified by the MC Enabler that directly impact on the user experience due to sensitivity to latency.

MC-7 Interface: This interface is exposed by the MC Client to an authorised principal (in this case, the Web Runtime Environment). Through this interface, the Web Runtime Environment comprising of a Web App and the User Agent (i.e. Web Browser, Widget Runtime and APIs, etc.) can call the MCAPI to access the MC Client and certain MC Enabler functionalities.

OSM-1: This interface is exposed by the Mobile Device OS or Middleware to the MCC. Through this interface, the MCC can call an appropriate API to access mobile device camera to view and/or store a picture or short video of the mobile code symbol in order to read and decode the mobile code.

Note: OSM-1 is implementation specific based on the type of mobile device and its native OS; details of this interface and the specific API to access the device camera are out of scope in both MC Enabler V1.0 and MCAPI Enabler.

7.4 Security Considerations

<<Describe security functionalities based on security requirements defined in corresponding Requirement Document.

Security functionalities should address and consider at least the following features:

· Authentication

· Authorization

· Data integrity

· Confidentiality
· Non-repudiation
DELETE THIS COMMENT >>

The security considerations mentioned in this section apply to the components involved in MCAPI Enabler either internal or external. Any particular security mechanisms that are essential to the MCAPI Enabler specification shall be addressed in the Technical Specifications section of this document.
The MCAPI Enabler implementation shall not compromise the security levels while protecting the user data (such as location, preferences, feedback, device details) by applying security mechanisms consistent with the applicable SP security policies (e.g. including transport security, user data privacy, data encryption, etc).

Security such as mutual authentication, authorisation, content encryption, transport security etc is subject to specific SP security policies. The possible mechanisms for mutual authentication, content encryption, transportation security can refer to [OMA SEC_CF]. The possible mechanisms for network API authorization can refer to [OMA Autho4API].
8. Technical Specifications

This section covers the MCAPI specifications.

8.1
Overview of the MCAPI in the MC Architecture

The MCAPI enables a Web WebApp to utilise a User Agent (e.g. browser or Web runtime library) to invoke mobile code reading, decoding and resolution functionalities of the MC Enabler; these functionalities cover both Direct and Indirect Codes.
In this document, the term MCAPI Server refers to the MC Client, which exposes the MCAPI as an HTTP-accessible service.
The relationship of the Web App and MCAPI to the architectural elements in devices and the Mobile Codes Enabler architecture is illustrated below.
[image: image4.png]
Legend:

2 = The new MCAPI as Interface MC-7 (see Section 7 – Architecture of the MCAPI ER)

3 = Interface OSM-1 (see Section 7 - Architecture of the MCAPI ER)

4 = Interface MC-1 of the MC Enabler

Figure 3: Relationship of the Web App and MCAPI in the Mobile Codes Enabler Architecture
Principle of Operations:

· Starting from the Web App, the user can start the MC Client via the MCAPI. The MC Client then takes over control of the screen with the camera view …i.e. the screen foreground.
·
· Web
· Using the MC Client (based on MC Enabler V1.0 functionality), the user navigates the camera view to target and take a picture of the mobile code of choice.

Note: Through actions taken by the MC Client in conjunction with the device camera and OS (via Interface OSM-1 as defined in Section 7 are implementation specific, which are out-of-scope), information associated with the mobile code is obtained.

· Result from the mobile code (reading, decoding or resolution) is passed by the MC Client to the Web App via the MCAPI (as an HTTP response).

· MC Client then terminates; control of the screen reverts back to the Web App … i.e. it becomes the screen foreground.

Editor’s Notes:

1) Add a definition of ‘MCAPI’; also clarify or update the definitions for Code Reading, Decoding and Resolution.

2) The dedicated TCP port number nnnn must be registered with OMNA or IANA, as appropriate.

2) Is the MC Client acting as a MCAPI Server assume to have the same origin as the Web App? If not, in order for the MCAPI to be accessed by the Web App, is Cross-Origin Resource Sharing [W3C-CORS] is required to authorize the User Agent to establish the cross-origin connection between the Web App and the MCAPI Server emulated by the MC Client.? (Editor’s Note: It’s necessary, but can be a locally implemented solution to meet the CORS spec.)
3) As agreed, the Requirements (in Section 6 of the ER) needs to modified to scale remove the parsing or filtering of code resolution results before being returned to the Web App; i.e., the entire result of code resolution should be passed back to the Web APP. It is up to the Web App to parse and select which part of the code resolution result it wants and how to make use of it. In addition, details of how the Browser initiates the MC Client are required (more to follow).
8.2
The MCAPI Interface Details

The MCAPI is based upon exposure of MC Client code scanning operations as an HTTP-accessible internal device service, accessed via User Agent support for the XMLHttpRequest (XHR) Version 2 API [W3C-XHR]. The MC Client acts as an MCAPI Server by listening at a specified port for HTTP requests initiated internal to the host device. Web
The MCAPI Server MUST listen on the OMNA-registered port 4035 (WAP2 Push port) for incoming HTTP GET requests from source IP address 127.0.0.1 (internal to the host device). The MCAPI Server MUST process such requests as MCAPI scan operations when received with the HTTP GET method, with URL path set to “/mc/”.
The MCAPI Server MUST silently ignore any requests that are received from source IP addresses other than 127.0.0.1, i.e. any source outside the MC Client host device.

Because typically Web apps will originate from a Web server outside the host device and not from port 4035, thus are sourced from a different origin than the MCAPI Server, in order to be able to access the MCAPI Server the XHR V2 API and Cross-Origin Resource Sharing (CORS) [W3C-CORS] features must be supported by the device browser. CORS enables Web apps to circumvent the same-origin policy (which limits apps from one origin from accessing resources on another origin), by use of the Origin: HTTP request header and the Access-Control-Allow-Origin: HTTP response header. The MCAPI Server MUST reject any HTTP request that does not include the Origin: request header. When responding to a successful MCAPI request, the MCAPI Server MUST include the Access-Control-Allow-Origin: response header with value set to either the value of the Origin: HTTP request header earlier received, or the value “*”.
Result from actions by the MC Client (i.e. mobile code reading, decoding or resolution) are sent as HTTP responses back to the Web App. Actions by the MC Client normally required to read and decode/resolve the mobile code (including, in the case of an Indirect Code, additional interactions between the MC Client with code resolution servers in the network, e.g., Code Management Platforms), are as specified in the MC Enabler V1.0 – this portion of the MCAPI process is ‘business as usual’ from the perspective of the MC Enabler.

Web

[image: image5.emf]End1

End2

Device

Camera

MC Client (MCC)

User

1: Starts Camera to capture image of the mobile code

(via Device OS native camera interface)

2: Presents live camera view to User

3: User aims & takes picture of mobile code4: Returns image of mobile code to MCC

Notes:

1) MCC implementation in the device is a prerequisite and interacts with the Device OS/Camera as per pre-existing procedures.

2) User interactions with Camera are as normal.

LEGEND:

Message Call

Message Return

 Figure 4: Message Flow between MC Client, Device Camera and User for reading

of a mobile code (normal procedure as per MC Enabler V1.0)

1. MC Client (aka Mobile Code Scanner App) is normally activated either by direct user initiation, or by the camera (subject to implementation of how the MC Client is integrated on the device).
2. Device camera activates and presents a live camera view in the foreground (as normal).

3. User can use the device camera to aim at a mobile code and take a picture of the mobile code image. Depending on a specific implementation, “auto-capture” feature may be available, in which case the mobile code image is acquired automatically when it comes into focus without any user intervention.

4. Device camera returns the mobile code image to the MC Client for further action (reading/decoding, resolution, etc.).

[image: image6.emf]End1

End2

End1

End2

Web AppUser Agent

MC Client (MCC)

with HTTP Server

implemented

Home Code

Management

Platform (CMP)

User

1: Initiates Web App2: Invokes Browser XHR API query3: Sends HTTP_Request to Server

(screen foreground)

to read a mobile code

(using designated URL of MCAPI)

4: Starts MCC normal action to read a mobile code

5: MCC completes reading of mobile code content:

5A: If Direct Code, returns result to Browser XHR API

5B: If Indirect Code, continues to resolve mobile code

6: Returns HTTP_Response to User Agent

5C: Sends mobile code ICI to Home CMP for code resolution

5D: Returns result of successful code resolution to MCC

5F: Error Condition: Returns MC-ERROR message to MCC

(containing XHR_Request syntax)

(containing XHR_Response syntax)

7: Returns Browser XHR API response

Notes:

1) MCC implementation in the device is a prerequisite.

2) All procedures & messaging between MCC and Home CMP are as per MC Enabler V1.0, hence out-of-scope for MCAPI.

9: Returns mobile code result

(containing mobile code result)

result from XHR_ResponseData.

to User for consumption

(screen foreground)

5E: Returns Indirect Code result to Browser XHR API

5G: MCC notifies User of MC-ERROR

8: WRT App retreives mobile code

LEGEND:

Message Call

Message Return

End1

End2

5H: Sends notification of MC-ERROR to User via device User Interface

"Cannot Resolve Mobile Code"

5I: User terminates Web App

action to read a mobile code

(screen foreground)

Figure 5: Message Flow between the User, Web App, User Agent and MCAPI Server
(MCC to Home CMP actions are out-of-scope for MCAPI Enabler)

1. The Web App invokes a code scan operation in response to some unspecified user interaction.
2. Web App issues a cross-domain HTTP GET request using the XHR API, with the MCAPI Server URL. The Web App may include an “Accept” header set to the content-types that it can process, or “*/*” to indicate that any content type is acceptable.
3. User Agent sends the HTTP GET request to the MCAPI Server, thus activating the MC Client from an idle state.
4. The MC Server, upon receipt of a HTTP GET request with URL path “/mc”, initiates normal MC Client actions (in conjunction with the user; see above section) to target a mobile code and read/decode its content.

5. MC Client, upon the receiving the image of the mobile code, decodes/extracts the mobile code data as per MC Enabler V1.0. The following steps are applicable depending on the type of mobile code:

5A:
If Direct Code
1) If the decoded result is of a content type that the Web App indicated compatibility with, the MCAPI Server returns the decoded result to the User Agent (continues in Step 6).
2) If the decoded result is not of a content type that the Web App indicated compatibility with, the MCAPI Server returns a 406 NOT ACCEPTABLE response to the User Agent, indicating to the Web App that the code did not resolve to a compatible content type.
5B:
If Indirect Code, MC Client takes additional actions to resolve the mobile code.

5C:
MC Client sends the Indirect Code Identifier decoded from the mobile code and forwards it to the Home CMP for resolution.

5D:
Home CMP (interacting with optional network elements of the MC Enabler, as necessary) returns the result of successful code resolution to the MC Client.

5E:
MCAPI Server returns the result of the Indirect Code to the User Agent (continues in Step 6).

5F:
If an error occurs and code resolution fails, the Home CMP returns an appropriate MC-ERROR status code to the MC Client.

5G:
MC Client, upon receiving a MC-ERROR status code, notifies the User to the effect of “Cannot Resolve Mobile Code”.

5H:
MC Client sends a notification of mobile code failure to the User via the device user interface (implementation specific), and returns an HTTP 404 NOT FOUND response to the User Agent, indicating to the Web App that the code scan operation was unsuccessful.

5I:
User terminates Web App action to read a mobile code in the foreground of the screen; end of Message Flow.

Note: Other than step 5H, steps 5 thru 5I are normal actions completed as per MC Enabler V1.0 in the background (“business as usual”), thus are out-of-scope for the MCAPI Enabler and considered Informative.

6. The MC Client, upon obtaining result of the mobile code (either Direct or Indirect Code), returns this result via the MCAPI Server to the User Agent in an HTTP 200 OK response, with:

a. “Access-Control-Allow-Origin” header set to the value of the “Origin” header received in the HTTP GET request

b. “Content-Type” header set per the MIME type of the decoded result, e.g. “text/plain”, “application/xml”, “application/json”, etc
c. The decoded result in the body of the response.

7. WebThe User Agent saves the HTTP response data in the earlier-created XHR object, and informs the Web App by updating the XHR object’s readyState attribute.
8. Web App retrieves the mobile code result from the XHR object’s responseData attribute.

9. Web App takes whatever application-specific action is expected based upon the mobile code result, e.g. presenting it to the user; end of Message Flow.

Note: Depending on the mobile code result, specific implementation of the Web App may take additional actions to process this result to facilitate consumption by the user; such actions may be completed by invoking another appropriate app on the device. For example: i) if the result is business card contact information, the content may be uploaded to the device address book, or ii) if the result is an URL, Web APP may start a separate Browser session to consume the URL, etc. All such additional actions are specific to the Web App implementation, thus out-of-scope for the MCAPI.

8.1.1.1 Invoking a Code Scan Operation
Below is an example of how an application can invoke a code scan operation via the XHR API, and process the result. In this example, the scan result is simply displayed to the user in an HTML element with ID “result”.
Table 13 Javascript example for Invoking a Code Scan Operation
	function scancode() {

 var cors_supported = true;

 var xhr = new XMLHttpRequest();

 if ("withCredentials" in xhr) { // test for XHR2 support (which includes CORS)

 // XHR2 for Chrome/Firefox/Opera/Safari.

 }

 else if (typeof XDomainRequest != "undefined") { // test for IE implementation of CORS

 xhr = new XDomainRequest(); // Use IE implementation.

 }

 else { // CORS not supported

 // Take whatever action is appropriate in this error case

 cors_supported = false;

 }

 if (cors_supported) {

 xhr.open("GET", "http://localhost:4035/mc/", true);

 xhr.onreadystatechange = function() {

 if (xhr.readyState === 4) { // XHR state is DONE; process the response

 if (xhr.status == 200) { // Code scan was successful

 var result = xhr.responseText;

 var content_type = xhr.getResponseHeader("Content-Type");

 document.getElementById('result').innerHTML += "Response (" + xhr.status + "," + xhr.statusText +
 "):
" + xhr.responseText + "
";
 }

 else { // Code scan was unsuccessful

 document.getElementById('result').innerHTML += "The code scan was unsuccessful
";

 }

 }

 };

 xhr.onerror = function() {

 alert('An XHR error occurred.');

 };

 xhr.send();

 document.getElementById('result').innerHTML += "Scan request sent, waiting for response...
";

 }

}

Below is an example HTTP trace of a MC API scan operation. Some request and response headers are not shown, for clarity. In this example, the code scanned is a contact card with data in the VCard 4.0 format, and is returned as plain text.
Table 14 Example HTTP Trace for a Code Scan Operation
	GET /mc/ HTTP/1.1

Host: localhost:4035

Origin: http://example.com

User-Agent: Mozilla/5.0 (Linux; Android 4.1.1; SGH-I317 Build/JRO03C) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Mobile Safari/535.19
Accept: */*

Referer: http://example.com/mcapi.html

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

Content-Type: text/plain; charset=utf-8272

BEGIN:VCARD

VERSION:4.0

N:Gump;Forrest;;;

FN:Forrest Gump

ORG:Bubba Gump Shrimp Co.

TITLE:Shrimp Man

PHOTO;MEDIATYPE=image/gif:http://www.example.com/dir_photos/my_photo.gif

TEL;TYPE=work,voice;VALUE=uri:tel:+1-111-555-1212

TEL;TYPE=home,voice;VALUE=uri:tel:+1-404-555-1212

ADR;TYPE=work;LABEL="100 Waters Edge

Baytown, LA 30314

United States of America"

 :;;100 Waters Edge;Baytown;LA;30314;United States of America

ADR;TYPE=home;LABEL="42 Plantation St.

Baytown, LA 30314

United States of America"

 :;;42 Plantation St.;Baytown;LA;30314;United States of America

EMAIL:forrestgump@example.com

REV:20080424T195243Z

END:VCARD

9. Sections As Needed

9.1 Example Level 2

<text>

9.1.1 Example Level 3

<text>

9.1.1.1 Example Level 4

<text>

	
	Column 1
	Column 2

	Row 1
	Grid 1,1 data
	Grid 1,2 data

	Row 2
	Grid 2,1 data
	Grid 2,2 data

Table 15: Example Table

10. Release Information

10.1 Supporting File Document Listing

<< List the documents besides this document that comprise this release. This is where supporting files for elements such as Schemas, Managed Objects or Data Descriptions would be itemized. Each such document is to be listed by fully qualified name as known in the permanent document area. Each document should also include the reference from section 2 to provide linkage with other uses in this document.

For supporting files that need to be made available separate from the permanent document area (e.g. DTD in a publicly reachable directory), provide information on the expected path as well as the external file name. These should be based on existing recommendations and not picked arbitrarily (see information on supporting files available in the REL support menu).

The following table includes example fields with dummy values to make it clear the type of information to be entered. The actual table should be filled in for the specific release.

DELETE THIS COMMENT >>
	Doc Ref
	Permanent Document Reference
	Description

	Supporting Files

	[FOO_DTD]
	OMA-SUP-DTD_FOO_Msgs-V1_2-20050222-D
	DTD for the messages and included elements of the FOO protocols.

Working file in DTD directory:
file:
foo_msgs-v1_2.dtd
path:
http://www.openmobilealliance.org/tech/dtd/

	[FOO_AC]
	OMA-SUP-AC_ap0123_FOO-v1_2-20050531-D
	Description of the Application Characteristic for FOO. This aligns with the Provisioning Spec.

Working file in Application Characteristics directory:
file:
ap0123_foo-v1_2.txt
path:
http://www.openmobilealliance.org/tech/omna/dm-ac

Table 16: Listing of Supporting Documents in FOO Release

10.2 OMNA Considerations

<< This section is to be used to describe any OMNA items included in the release. This would include, among others:

· Usage of OMA-based Uniform Resource Names (URNs) (including those used as namespace identifiers in Schemas)

· AppiDs for Application Characteristics (AC)

· Managed Object (MO) identifier information for the MO registry

· ISO Object IDs

· PUSH Application Ids

· WAP Wireless Session Protocol (WSP) Content Types

· Presence <service-description> assignments

· Uniform Resource Identifier (URI)-List Registered Usage Names (for XDM)

The format of this section will be left up to the release owners to account for the particular needs they may run into. It should be clear from the written material, though, as to the set of OMNA items needed.

If a new OMNA registry is needed to support the release – clearly this should have been worked with the REL Committee before submitting a Release Document. Failure to do so may result in delays as the required tables are worked up and made publicly available. Another risk is that the table desired is not supported by OMNA (is not a registry type table) and the group will need to re-think how they intend to resolve their needs.

Through the normal development process the OMNA entries or support registries should be accommodated. This should not be trigger to remove the linkage from this section. Thus, if an entry is added to OMNA after the initial Candidate version described the need – the material should stay in this section. It may be useful in subsequent releases to add some text to indicate that the needed items have been accommodated (e.g. add a comment regarding its availability or support as appropriate).

If the release has absolutely no OMNA items to be accommodated – then it should indicate that explicitly with a short description (e.g. this release does not have any OMNA items for handling). This determination probably can not be made until the end of the development phases and editors are encouraged to keep this advisory in place until the Consistency Review.

DELETE THIS COMMENT >>

As described in Section 8, the MC Client, acting as the MCAPI HTTP Server, MUST listen on a dedicated TCP port nnnn for incoming HTTP connection request when MCAPI service is invoked.

To enable this capability, it will be necessary that such a TCP port number be assigned by OMNA as a dedicated port address for this purpose. The assigned TCP port number (URL) of MCAPI Server is expected to be discovered by the Web App through unspecified application-specific procedures.
10.3 Additional Items

<<If the release has any other elements needed to make it complete they should be noted in this section. For example, if there are any external registrations (e.g. IANA assigned values) or shared/dependent components they should be documented.

The format of the description in this section is left to the editor based on the information needed. If there are no such elements, the editor may remove this sub-section.

DELETE THIS COMMENT >>
Editor’s Note: From Section 10.2, in the event that the MCAPI HTTP Server TCP port number is required to be available for more general use, it may be necessary to have such a TCP port address assigned by IANA; this is subject to further discussion with OMNA.

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	
	

	
	
	

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-ER-MCAPI-V1_0
	17 Oct 2011
	All
	Skeleton document created.

	
	21 Nov 2011
	All
	Implemented online edited version of document:

OMA-MC-2011-0072R01-INP_MC_API_requirements_consolidated.zip (Beijing meeting).

	
	05 Dec 2011
	All
	Added new text in Sections 1 to 4, and Figure 1.

Consolidated all requirements after review and agreement.

	
	16 Jan 2012
	All
	Incorporated the following documents;

OMA-MC-2011-0078-INP_section_6.2_requirement_re_write_.zip

	
	06 Feb 2012
	1.0 and 6.2
	Implemented agreed changes:

OMA-MC-2012-0002R02-CR_MCAPI_SYS_01_to_SYS_05.zip

	
	23 Feb 2012
	6.1.1.2
	Implemented the following documents:

OMA-MC-2012-0005R01-CR_CR_MCAPI_Access_Metering_Controls.zip

	
	19 June 2012
	7.1 to 7.3
	Implementated agreed changes 1 to 3 only in:

OMA-MC-2012-0035-CR_for_MCAPI_ER_Architecture_Design.zip
- Including the Architectural Diagram.

- Updated references to the Candidate WRAPI and Push API Enablers.

	
	01 Oct 2012
	6, 7 and 8
	Implemented agreed changes as per the following:
OMA-MC-2012-0064-CR_for_MCAPI_ER_Sect_6.zip
OMA-MC-2012-0060R01-CR_for_MCAPI_ER_Doc_Sect_7.zip
OMA-MC-2012-0061R01-CR_for_MCAPI_ER_Doc_Sect_8.zip

	
	05 Nov 2012
	3.2, 6, 7.2 and 7.3.2
	Implemented agreed changes as per the following:

OMA-MC-2012-0068-CR_to_ER_MCAPI_Section_7.2_Architecural_Diagram.zip
Transcribed some relevant definitions from MC Enabler V1.0 to Section 3.2.

Added new definitions for ‘Reading’ and ‘Resolving’ a mobile code.
Provided updates to the modifications of requirements to align with the new design of the MC API.

	
	12 Nov 2012
	8.2
	Implemented agreed changes as per the following:

OMA-MC-2012-0071-INP_New_Message_Flow_Diagrams_for_Section_8.zip

Appendix B. Use Cases
(Informative)

B.1 Referring a one-time-use discount coupon between family & friends remotely
Alice who lives in the west coast attends a consumer electronics show and comes across a time and quantity limited offer of a 30% one-time-use (with serial number) special discount coupon during a national sales event of a new 3D HDTV. The details of the offer is presented by an Indirect 2D barcode which must be scanned to first watch the product promotion video for the item followed by instructions for the potential buyer. To retrieve this coupon Alice wants to scan this 2D barcode and then share it with Bob who lives in the east coast and has been looking for that exact new model.
B.1.1 ASK * MERGEFORMAT Short Description

Within a Web Runtime App (e.g. a social network app), Alice (with Device A) wants to use the Web Runtime App through an API to request the MCC on Device A to scan the mobile code as presented by the special offer. The Web Runtime App receives the data decoded from the mobile code symbology through the MCC API which contains instructions to retrieve the one-time-use discount coupon with a serial number (e.g. the data contains a destination URL to a portal that is configured to keep tracks of the serial number of the coupon and will allow only one validation of the discount coupon). The Web Runtime App then sends the data decoded from the mobile code without consuming it, for example, as an email attachment or MMS message from Device A to Bob’s Device B. Bob receives the mobile code decoded data within the MMS or email attachment containing the URL string with the coupon serial number. Within the time limit of the special offer, Bob invokes his Browser with the received destination URL to reach the Sales Event portal and consumes the one-time-use coupon. All metadata made available by the Browser in Device B (e.g. location data, device characteristics and personal profile & preferences) may also be sent from Device B as part of the buyer analytics, discount coupon validation and consumption.

B.1.2 Market benefits

New ways to use the MC Enabler are enabled through the MCAPI. In this case, user A is able to refer a mobile code by transferring the decoded data to user B, who consumes the information remotely.

B.2 Lookup of virtual maps and product offers from AR Targets within a Mobile Augmented Reality Session
Mobile Augmented Reality as a new OMA Enabler can leverage the MC Enabler through the MCAPI capabilities to handle mobile barcode resolution within a MobAR Session, thus providing an enhanced user experience based on the combined functionalities of the two enablers seamlessly.
B.2.1 ASK * MERGEFORMAT Short Description

Within a Web Runtime App (e.g. Mobile AR Enabler session based on the video View Finder mode in the mobile device camera), through the view finder, the user zooms into and selects a mobile code displayed on a physical billboard. The MobAR Client establishes the mobile code as an actionable digital object (AR Marker) associated with the billboard (AR Target). Without leaving the session, the MobAR Client can invoke the MCC API to initiate MCC actions to resolve the mobile code. As examples, a Direct mobile code on a billboard selected as an AR Marker object inside the AR session might be decoded & resolved by the MCC as information representing a permanent tag line plus a URL (such as, “Our speciality is XYZ”, and click this URL to get more information). Whereas, an Indirect mobile code (AR Marker) on the same billboard (AR Target) might be decoded to a permanent tag line plus an Indirect Code Identifier which can then be resolved by the MCC, in conjunction with other network components in the MCC architecture, to information that is dynamically updated (such as, “New release of hot product ABC is in stock and sale is on for this week only”, and click this URL for directions to our store (this URL can also be updated in the backend system), view the promotion items and place an order with the special discount). In addition, as the device Browser is invoked by the information returned by the MCC, the user’s current LOC data might also be leveraged by the MobAR Client in conjunction with the LOC Enabler on the device to guide the user to the chosen destination (e.g., according to the walking directions to the store).

In another example, if the mobile code as an AR Marker selected within the MobAR session returns the information which is a map of the shopping mall with various additional mobile codes associated with different stores inside the shopping mall presented (similar to a virtual directory) as options, the user could take further actions to effectively engage in virtual shopping tour inside the mall, without leaving the MobAR session. In this case, the MobAR Client would need to invoke the MCC API multiple times to obtain the information associated each of the mobile codes, including up-to-date product and offers information if associated with Indirect Codes, without physically visiting any of the stores. The user thus can pre-plan his/her customised and efficient shopping itinerary in this unfamiliar neighbourhood.
B.2.2 Market benefits

New ways to use the MC Enabler are enabled through the MCAPI. In this case, AR Markers represented by mobile codes are accessed within a Mobile AR session to enhance the user’s shopping experience. MCC APIs provide critical capabilities through which the MobAR Client can leverage the MC Enabler in innovative and interesting ways.
Appendix C. Call Flows
 (Informative)

This is a placeholder to be populated, as required.
Appendix D. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

D.1 ERDEF for <<ENABLER>> - Client Requirements

This section is normative.
	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-C-001-<<M/O>>
	<<ENABLER>> Client
	

	
	
	

Table 17: ERDEF for <<ENABLER>> Client-side Requirements

D.2 ERDEF for <<ENABLER>> - Server Requirements

This section is normative.

	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-S-001-<<M/O>>
	<<ENABLER>> Server
	

	
	
	

Table 18: ERDEF for <<ENABLER>> Server-side Requirements

D.3 SCR for XYZ Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

D.4 SCR for XYZ Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix E. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

E.1 App Headers

<More text>

E.1.1 More Headers

<More text>

E.1.1.1 Even More Headers

<More text>

Appendix F. MCAPI Enabler Deployment Considerations
This is a placeholder, to be populated as required.
� EMBED Visio.Drawing.11 ���

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20130101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20130101-I]

[image: image7.wmf]MC

–

enabled Mobile Device

MC Client

MC Server

**

Content

Provider

Web Runtime Environment

Browser

|

Widgets

Other API’s

MC

Enabler

API

Direct Code

Decoding

&

Resolution

functions

;

Indirect Code

Decoding

function

MC Client

/

Server Protocol

(

real

-

time

&

non real

-

time

)

AJAX

/

HTTP

(

online use

only

)

MC Enabler

exposing APIs

WRT MC Enabler API

Note

:

Arrows show primary

direction of data flow

Request

:

Register

,

Subscribe

,

Discover

,

Get

,

Submit

,

Suspend

,

Resume

Response

/

Notification

:

Registered

,

Subscribed

,

Discovered

,

Delivered

,

Submitted

,

Supended

,

Resumed

Data Transfer

:

Data decoded from MC

-

compliant symbologies

Indirect Code

Resolution

functions

MC

-

1

&

MC

-

4

Legend

:

[image: image8.png]_1413620937.vsd
Device
Camera

MC Client (MCC)

User

1: Starts Camera to capture image of the mobile code

(via Device OS native camera interface)

2: Presents live camera view to User

3: User aims & takes picture of mobile code

End1

End2

4: Returns image of mobile code to MCC

LEGEND:
	Message Call
	Message Return

Notes:
1) MCC implementation in the device is a prerequisite and interacts with the Device OS/Camera as per pre-existing procedures.
2) User interactions with Camera are as normal.

_1421793937.vsd
(containing mobile code result)

Web App

User Agent

MC Client (MCC)
with HTTP Server implemented

Home Code
Management
Platform (CMP)

User

1: Initiates Web App

2: Invokes Browser XHR API query

3: Sends HTTP_Request to Server

End1

(screen foreground)
to read a mobile code

(using designated URL of MCAPI)

4: Starts MCC normal action to read a mobile code

End2

End1

End2

End1

End2

5H: Sends notification of MC-ERROR to User via device User Interface

5: MCC completes reading of mobile code content:

LEGEND:
	Message Call
	Message Return

5A: If Direct Code, returns result to Browser XHR API

5B: If Indirect Code, continues to resolve mobile code

6: Returns HTTP_Response to User Agent

5C: Sends mobile code ICI to Home CMP for code resolution

5D: Returns result of successful code resolution to MCC

5F: Error Condition: Returns MC-ERROR message to MCC

5G: MCC notifies User of MC-ERROR

 "Cannot Resolve Mobile Code"

5I: User terminates Web App action to read a mobile code (screen foreground)

(containing XHR_Request syntax)

(containing XHR_Response syntax)

7: Returns Browser XHR API response

result from XHR_ResponseData.

Notes:
1) MCC implementation in the device is a prerequisite.
2) All procedures & messaging between MCC and Home CMP are as per MC Enabler V1.0, hence out-of-scope for MCAPI.

9: Returns mobile code result

to User for consumption (screen foreground)

8: WRT App retreives mobile code

5E: Returns Indirect Code result to Browser XHR API

_1369736662.vsd
Data

MC–enabled Mobile Device

MC Client

MC Server**

Request:
Register, Subscribe, Discover, Get, Submit,
Suspend, Resume

Content Provider

Web Runtime Environment

Browser | Widgets

Response/Notification: Registered,
 Subscribed, Discovered,
Delivered, Submitted,
Supended, Resumed

Data Transfer:
Data decoded from MC- compliant symbologies

Other API’s

MC Enabler
API

Direct Code Decoding & Resolution functions;
 Indirect Code Decoding function

MC Client/Server Protocol
(real-time & non real-time)

AJAX / HTTP
(online use only)

MC Enabler exposing APIs

Indirect Code Resolution functions

MC-1 & MC-4

WRT MC Enabler API

Legend:

Note: Arrows show primary direction of data flow

