OMA-ER-MCAPI-V1_0-201111211205-D
Page 34 V(34)

	[image: image8.wmf]MC

–

enabled Mobile Device

MC Client

MC Server

**

Content

Provider

Web Runtime Environment

Browser

|

Widgets

Other API’s

MC

Enabler

API

Direct Code

Decoding

&

Resolution

functions

;

Indirect Code

Decoding

function

MC Client

/

Server Protocol

(

real

-

time

&

non real

-

time

)

AJAX

/

HTTP

(

online use

only

)

MC Enabler

exposing APIs

WRT MC Enabler API

Note

:

Arrows show primary

direction of data flow

Request

:

Register

,

Subscribe

,

Discover

,

Get

,

Submit

,

Suspend

,

Resume

Response

/

Notification

:

Registered

,

Subscribed

,

Discovered

,

Delivered

,

Submitted

,

Supended

,

Resumed

Data Transfer

:

Data decoded from MC

-

compliant symbologies

Indirect Code

Resolution

functions

MC

-

1

&

MC

-

4

Legend

:

	

	Mobile Codes API Enabler

	Draft Version 1.0 – 05 Dec 2011

	Open Mobile Alliance

	OMA-ER-MCAPI-V1_0-20111205-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
9
4.1
Version 1.0
9
5.
MCAPI Enabler release description (Informative)
10
6.
Requirements (Normative)
12
6.1
High-Level Functional Requirements
12
6.1.1
Security
13
6.1.1.1
Authentication
13
6.1.1.2
Authorization
14
6.1.1.3
Data Integrity
14
6.1.1.4
Confidentiality
15
6.1.2
Charging Events
15
6.1.3
Administration and Configuration
15
6.1.4
Usability
16
6.1.5
Interoperability
16
6.1.6
Privacy
16
6.2
Overall System Requirements
17
7.
Architectural Model
18
7.1
Dependencies
18
7.2
Architectural Diagram
19
7.3
Functional Components and Interfaces/reference points definition
21
7.4
Security Considerations
22
8.
Technical Specifications
23
9.
Sections As Needed
24
9.1
Example Level 2
24
9.1.1
Example Level 3
24
9.1.1.1
Example Level 4
24
10.
Release Information
25
10.1
Supporting File Document Listing
25
10.2
OMNA Considerations
25
10.3
Additional Items
26
Appendix A.
Change History (Informative)
27
A.1
Approved Version History
27
A.2
Draft/Candidate Version 1.0 History
27
Appendix B.
Use Cases (Informative)
28
B.1
Referring a one-time-use discount coupon between family & friends
28
B.1.1
Short Description
28
B.1.2
Market benefits
28
B.2
Lookup of virtual maps and product offers from AR Targets within a Mobile Augmented Reality Session
28
B.2.1
Short Description
28
B.2.2
Market benefits
29
Appendix C.
Call Flows (Informative)
30
Appendix D.
Static Conformance Requirements (Normative)
31
D.1
ERDEF for <<ENABLER>> - Client Requirements
31
D.2
ERDEF for <<ENABLER>> - Server Requirements
31
D.3
SCR for XYZ Client
31
D.4
SCR for XYZ Server
31
Appendix E.
<Additional Information>
32
E.1
App Headers
32
E.1.1
More Headers
32
E.1.1.1
Even More Headers
32
Appendix F.
MCAPI Enabler Deployment Considerations
33

Figures
9Figure 1: Actors involved in the MCAPI landscape

10Figure 2: Example Figure

20Figure 3: Example of the Architectural Diagram using interfaces

24Figure 4: Example Figure

1. Scope

This Enabler Release (ER) document is a combined document that includes requirements, architecture and technical specification of the Mobile Codes API Enabler, according to OMA nomenclature.

Since the Mobile Codes Enabler V1.0 is the reference for which Application Programming Interfaces (APIs) are being developed, the Mobile Codes API Enabler is, therefore, synonymous with “APIs for the Mobile Codes Enabler V1.0”

Scope of work for this enabler is defined and approved as the Work Item Description 0251 ‘Mobile Codes Enhancement and APIs’ Part A - Client-side APIs for the MC Enabler.
The main focus of work is to extend the open Web applications environment to the MC Enabler by defining simple and interoperable interfaces (i.e., API exposure by the MC Client “MCC”) that facilitate app developer innovations in value-added services related to mobile barcodes.
The following areas will be covered as part of the scope of the enabler:

· APIs will be defined exclusively for the MC Client of the MC Enabler V1.0.
· Requirements for the MCAPI.

· Architectural aspects of the MCAPI, as applicable.

· General alignment with Client-side API design and specification approaches as led by the CD Working Group WRAPI work.
· Other aspects as may be identified during the course of development.
MCAPI Enabler will reuse as much as possible available and applicable technologies.
Editor’s Note: Design of the MC API Enabler will generally be informed by the following Client-side API works ongoing within OMA CD Working Group:

OMA-RRP-CSEA-V1_0-20101130-A.zip
OMA-TS-WRAPI_Push-V1_0-20110831-D.zip
OMA-TS-WRAPI_Design_Patterns-V1_0-20110831-D.zip
2. References
Editor’s Note: As the baseline structure of this ER Document is constructed, there is an over-presumption of references (normative and informative) and definitions being relevant in this draft, some of which might arguably be ‘place holders’. As the approach and substance of the MCC API design is clarified, the content of this draft is expected to be edited extensively to sharpen the applicability of these references and definitions.
2.1 Normative References

	[OMA-Autho4API]
	“Authorization Framework for Network APIs”, Version 1.0, Open Mobile Alliance™, OMA-ERP-AUTHO4API-V1_0
URL: http://www.openmobilealliance.org/

	[OMA-MC]
	“Mobile Codes”, Version 1.0, Open Mobile Alliance™, OMA-ERP-MC-V1_0

URL: http://www.openmobilealliance.org/

	[OMA-REST-NETAPI-TL]
	“RESTful Network API for Terminal Location”, Version 1.0, Open Mobile Alliance™, URL: http://www.openmobilealliance.org/

	[OMA-SEC-CF]
	“Application Layer Security Common Functions”, Version 1.1, Open Mobile Alliance™, OMA-ERP-SEC-CF-V1_1

URL: http://www.openmobilealliance.org/

	[OSE]
	“OMA Service Environment”, Open Mobile Alliance™,
URL:http://www.openmobilealliance.org/

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, T. Berners-Lee et al. January 2005. URL: http://tools.ietf.org/html/rfc3986

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL:http://www.ietf.org/rfc/rfc4627.txt

	[W3C-EventSource]
	“Server-Sent Events”, W3C, URL: http://www.w3.org/TR/eventsource/

	[W3C-FileAPI]
	“File API”, W3C, URL: http://www.w3.org/TR/FileAPI/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type,
URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	[W3C-WARP]
	“Widget Access Request Policy”, W3C, URI: http://www.w3.org/TR/widgets-access/

	[W3C-WebIDL]
	“Web IDL", Worldwide Web Consortium (W3C), URL: http://www.w3.org/TR/WebIDL/

	[W3C-Widgets]
	“Widget Packaging and XML Configuration”, W3C, URL: http://www.w3.org/TR/widgets/

	[WRAPI-API-Patterns]
	“Web Runtime API (WRAPI) – Design Patterns”, Open Mobile Alliance™, OMA-TS-WRAPI_Design_Patterns-V1_0, URL:http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

	
	

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2.8, URL:http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(. URL:
http://www.openmobilealliance.org/tech/omna.aspx

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	API Patterns
	Design guidelines and requirements for definition of APIs

	Browser Context
	Web applications executing under a Web browser as Web runtime environment.

	ECMAScript
	Use definition from [OMADICT].

	JavaScript
	Use definition from [OMADICT].

	
	

	User Agent
	Use definition from [OMADICT].

	Web
	The World Wide Web, a content and application framework based upon hypertext and related technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

	Web Application
	An application designed using Web technologies (e.g. HTML, CSS, and Javascript).

	Web IDL
	An IDL language for Web application APIs

	Web Runtime Environment
	Client software that supports the execution of Web applications (e.g. browsers or widget engines).

	Web Runtime Application
	A client-side Web application that is executed in Web runtime environments.
Editor’s Note: Defer to CD Plenary for consistency of definitions.

	Widget Context
	Web applications installed and executing under a W3C Widget [W3C-Widgets] engine as Web runtime environment.

	Widget Engine
	Software which supports the execution of Web applications running outside a browser context, e.g. with the same functional capabilities as browsers but without the user interface functions provided by a browser, including window frames, menus, toolbars and scroll bars.

	Uniform Resource Identifier
	Use definition from [OMADICT].

3.3
Abbreviations

	API
	Application Programming Interface

	DM
	Data Matrix

	EventSource
	The EventSource API

	HTTP
	HyperText Transfer Protocol

	IDL
	Interface Definition Language

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	QR
	Quick Response

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	UA
	User Agent

	UE
	User Equipment

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	W3C
	World Wide Web Consortium

	WRAPI
	The OMA Web Runtime API enabler

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

This specification defines API that exposes the Mobile Codes Enabler V1.0 functionality to 3rd party applications while executing in Web Runtime environments (i.e. as a “Web Runtime App”). This API is referred to in this document as the MCC API.

The functions supported by the User Agent as part of the Web Runtime environment that facilitate the 3rd party App access to the MCC functionality are dependent on the following:

· Implementation of the MCC API.

· Specific functions of the MC Client as defined by the OMA MC Enabler (e.g., decoding data from the mobile code symbology) which are exposed by the MCC API.
The functionalities of the MC API Enabler are not directly offered to the user, but are API functionalities offered to 3rd party Web applications running on the device in either a browser or widget context.
The MCAPI Enabler exposes the functionalities of the Mobile Codes Enabler to applications such that innovative use of mobile codes can be facilitated, thus leading to a broadening of the emerging mobile codes ecosystem.

Figure 1 illustrates the actors (including software entities) mainly involved in MCAPI usages and ecosystem.
[image: image1.jpg]
Figure 1: Overview of Web Runtime MC API role in an OMA MC-enabled mobile device
4.1 Version 1.0

The version 1.0 of the MCAPI Enabler defines an overall framework that enables applications to access the MC Enabler functionalities.
5. MCAPI Enabler release description
(Informative)

<< This clause illustrates what the release is about, describing the release in terms of its functionalities, identifying the actors and their relationships. The inclusion of any pictures to back up text should be kept simple, showing various actors involved. The text shall summarize the functionalities of the release in a generic form which does not constrain terminal or network design. It is intended to allow an understanding of the release without regard to implementation. The description should include functional, charging, administration and configuration, usability, interoperability, privacy aspects as well as interactions with other releases.

Part of this text can be easily extracted from the WID

DELETE THIS COMMENT >>

<text>

[image: image2]
Figure 2: Example Figure

5.1 End-to-end Service Description

In Mobile Codes V1.0, mobile code scanning is always initiated by the end user. UI interactions between the ‘user-to-MCC’ and ‘MCC-to-device camera’ interactions via the OS to initiate mobile code scanning are left up to implementation. Currently, other apps on the device whether related to Web Runtime, or not, do not have a standardised way to interact with the MCC. Hence, expanded usage of mobile code scanning initiated by applications, as opposed to the end user, is hampered and new opportunities of potential innovative mobile code use cases are largely unexplored. By exposing MCC APIs for Web Runtime Applications, these untapped opportunities become actionable to facilitate app developer innovations that utilise mobile codes in a much larger scale.

In a nutshell, the MCC APIs enable Web Runtime Applications to achieve the following actions:

· Web Runtime App to invoke the MCC to acquire the mobile code via the device camera;

· MCC decodes the code symbology (Direct or Indirect Codes) and initiates MC Enabler actions to resolve the code;

· Information/Action associated with the mobile code resolution (as intended by the Code Publisher) is consumed or responded to by an appropriate app on the device.

· Information returned by the mobile code to the Web Runtime App contributes to enhancing the user experience as part of the Web Runtime App session (see use cases in Appendix B).

6. Requirements
(Normative)

6.1 High-Level Functional Requirements

·
·
·
·

This section contains MC API Enabler requirements supporting functionalities that are relatively common to OMA Enabler Client-side APIs. MC API Enabler Client-side API is synonymous with MC Client “MCC” API.
	Label
	Description
	Release

	MCAPI-HLF-01
	MCC API MUST support JavaScript callable APIs.
	

	MCAPI-HLF-02
	MCC API MUST be defined in Web IDL [WebIDL].

Informational Note: MCC API MAY also be defined in additional methods based on open standard technologies.
	

	MCAPI-HLF-03
	MCC API support MUST be discoverable by the 3rd party Web Runtime applications.
	

	MCAPI-HLF-04
	MCC API MUST support Web application registration and deregistration with the MC Enabler.

Informational Note: These actions may involve the client and/or server components of the MC Enabler; architecture design is TBD.
	

	MCAPI-HLF-05
	MCC API MUST support delivery of status and/or error query requests from the Web Runtime application.
	

	MCAPI-HLF-06
	MCC API MUST support delivery of MCC status and/or error reports to the Web Runtime application, as required.
	

	MCAPI-HLF-07
	MCC API MUST be defined using consistent API design patterns (e.g. error handling, namespaces, and interface structure).
	

	MCAPI-HLF-08
	MCC API MUST support asynchronous operation.
	

	
	
	

Table 1: High-Level Functional Requirements

6.1.1 Security

	Label
	Description
	Release

	MCAPI-SEC-01
	The MCC API MUST be able to make use of the security framework of the OMA Web Runtime Environment supported by the device, where available and applicable.

	

	
	
	

Table 2: High-Level Functional Requirements – Security Items

6.1.1.1 Authentication

	Label
	Description
	Release

	MCAPI-AUTH-01
	MCC API MUST be able to make use of the applicable security framework of the Web Runtime Environment supported by the device to authenticate the 3rd party Wed Runtime App.
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Table 3: High-Level Functional Requirements – Authentication Items
6.1.1.2 Authorization

	Label
	Description
	Release

	MCAPI-AUTR-01
	MCC API MUST be able to make use of the applicable security framework of the Web Runtime Environment supported by the device to authorise the 3rd party Wed Runtime App for access to OMA Enabler client-side APIs.
	

	MCAPI-AUTR-02
	MCC API MUST be able to grant access only to a Web Runtime App that is entitled to access the MCC API.
	

	
	
	

Table 4: High-Level Functional Requirements – Authorization Items

6.1.1.3 Data Integrity

	Label
	Description
	Release

	MCAPI-DATI-01
	MCC API MUST be able to provide data integrity for all data transferred from the MCC to the 3rd party Web Runtime App, and vice versa.
	

	MCAPI-DATI-02
	MCC API MUST be able to detect any accidental, unintentional, or malicious changes to the data transferred from the MCC to the 3rd party Web Runtime App, and vice versa.
	

	
	
	

Table 5: High-Level Functional Requirements – Data Integrity Items

6.1.1.4 Confidentiality

	Label
	Description
	Release

	MCAPI-CONF-01
	MCC API MUST apply or support data confidentiality that ensures information transferred from the MCC to the Web Runtime App, and vice versa, is not made available or disclosed to any unauthorised entity, or process.
	

	
	
	

Table 6: High-Level Functional Requirements – Confidentiality Items

6.1.2 Charging Events

	Label
	Description
	Release

	MCAPI-CHG-01
	MCC API MUST, for Indirect Codes, support charging mechanisms if implemented by the Home CMP.
	

	MCAPI-CHG-02
	MCC API MAY, for Indirect Codes, support charging mechanisms if implemented by the Resolving CMP.

Informational Note: This is subject to the business relationships between the Home CMP and the Remote Resolving CMP.
	

	
	
	

Table 7: High-Level Functional Requirements – Charging Events Items

6.1.3 Administration and Configuration

	Label
	Description
	Release

	MCAPI-ADM-01
	MCC API MUST, for Indirect Codes, support any Home CMP administration and configuration mechanisms that are applicable to the 3rd party Web Runtime App.

Informational Note: Such actions are subject to business and/or operational requirements, including for charging purposes.
	

	
	
	

Table 8: High-Level Functional Requirements – Administration and Configuration Items

6.1.4 Usability

	Label
	Description
	Release

	MCAPI-USE-001
	Nil.
Informational Note: This is where any supporting comments would be placed, if needed
	

	
	
	

Table 9: High-Level Functional Requirements – Usability Items

6.1.5 Interoperability

	Label
	Description
	Release

	MCAPI-INT-01
	MCC API MUST be specified in an open standard descriptive language that is neutral to operating environments.
	

	
	
	

Table 10: High-Level Functional Requirements – Interoperability Items

6.1.6 Privacy

	Label
	Description
	Release

	MCAPI-PRV-01
	MCC API MUST NOT disclose the user's Personal Profile Data that may exist as part of the MCC configuration. This mechanism should ensure that no Personal Profile Data of the user is accessible through the MCC API without the user's express permission.
	

	MCAPI-PRV-02
	MCC API MUST provide a mechanism that protects the user's Location Data that may be accessible by the MCC. This mechanism should ensure that no Location Data of the user is accessible through the MCC API without the user's express permission.
Informational Note: This requirement does not in any way preclude the 3rd party Web Runtime App from accessing the user’s Location Data through interactions with other capabilities or features on the device in which the MCC API is not involved.
	

	
	
	

Table 11: High-Level Functional Requirements – Privacy Items

6.2 Overall System Requirements

·
·
·
·
·

This section contains MC API Enabler requirements supporting functionalities that are intrinsically unique to the MC Enabler accessible via the MC Client-side API (“MCC API”).
A primary role for the MCC is to read/decode the Mobile Code (Direct or Indirect) symbology image. Recognising that direct app access to the device camera API to capture the unread/undecoded symbology image has been widely implemented (e.g., A MMS message being constructed from a picture, such as a Mobile Code symbology image, taken by the device camera), there is no apparent need for the MCC, hence no MCC API involvement in this use case. Specifically, use of the MCC (via the MC API) to acquire the mobile code symbology image without decodation of the symbology data is out-of-scope for the MC API Enabler.
	Label
	Description
	Release

	MCAPI-SYS-01
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode a Direct Code and return the information directly to the Web Runtime App, without any device consumption of the decoded information.

Informational Note: Examples of the above returned information may be a URL, or pre-formatted business card contact data.
	

	MCAPI-SYS-02
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode a Direct Code and return the result, after the device has consumed the information, to the Web Runtime App.

Informational Note: Device consumption of the above information may, for example, involve the browser being invoked to use a URL, or business card contact data being inserted in the device address book.
	

	MCAPI-SYS-03
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode an Indirect Code and return the information directly to the Web Runtime App, without any action taken by the MCC or any device consumption of the decoded information.

Informational Note: The above returned information contains the Indirect Code Identifier (ICI) along with any optional Display-Text, before any code resolution between the MCC and MC network server(s).
	

	MCAPI-SYS-04
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode an Indirect Code and return the result, after Code Resolution by the MCC and MC network server(s), to the Web Runtime App.

Informational Note: Examples of the above returned information may be a URL, pre-formatted business card contact data, or data file containing a video clip.
	

	MCAPI-SYS-05
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode an Indirect Code and return the result, after Code Resolution by the MCC and MC network server(s) and the device has consumed the information, to the Web Runtime App.

Informational Note: Device consumption of the above information may, for example, involve the browser being invoked to use a URL, business card contact data being inserted in the device address book, or a video clip being played by the device media player.
	

	MCAPI-SYS-06
	MCC API MUST not impose any restrictions on how the 3rd party Web Runtime App may or may not manipulate the information, as a result of reading/decoding the (Direct or Indirect) mobile code, being returned to the Web Runtime App.
	

	MCAPI-SYS-07
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the (Direct or Indirect) mobile code, and then parse the result according to the supported formats as requested by the Web Runtime App, before returning such result to the Web Runtime App.

Informational Note: The above returned information to the Web Runtime App contains the following URI or data formats (... to be specified):

Editor’s Note:

For Indirect Code, 3rd party app needs to have knowledge of MC DTD, or not? MCC is already aware of the DTD, but 3rd party app may not be. Caution is that all MC-unique response information (e.g. Tracking Address) should be filtered out and not passed to the 3rd party app.

	

	MCAPI-SYS-07A
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Recognizable Web Access Formats of :

http:

https:
in accordance with the [MC_TS] Section 7.2.1, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	

	MCAPI-SYS-07B
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Recognizable Telephone Number String Format and Recognition and Tel URI Scheme of:

Telephone-Number-String
tel:
in accordance with the [MC_TS] Section 7.2.2, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	

	MCAPI-SYS-07C
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Mail Address Recognition Format of:

Mailbox
in accordance with the [MC_TS] Section 7.2.3, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	

	MCAPI-SYS-07D
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Business Card Recognition Format of:

MECARD:

in accordance with the [MC_TS] Section 7.2.4, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	

	MCAPI-SYS-07E
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Bookmark Recognition Format of:

MEBKM:

in accordance with the [MC_TS] Section 7.2.5, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	

	MCAPI-SYS-07F
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Email Linkage Data Recognition Format of:

MATMSG:
in accordance with the [MC_TS] Section 7.2.6, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	

	MCAPI-SYS-07G
	MCC API MUST be capable of being called by the 3rd party Web Runtime App to utilise the MCC to read/decode the Direct mobile code, then parse the result according to the Location Information Format of:

MELOC:

in accordance with the [MC_TS] Section 7.2.7, before as requested by the Web Runtime App, before returning such result to the calling Web Runtime App.
	

	
	
	

	MCAPI-SYS-08
	MCC API responsibilities for Handling of Error Messages?
Editor’s Note: MCC API should define its own, preferably broad and generic, error messages. MCC error messages are probably not understood by the 3rd party app.
	Deferred to future version.

	MCAPI-SYS-09
	MCC API responsibilities for Tracking and Reporting by the consuming device/MCC?
Editor’s Note: MCC should perform its normal Tracking & Reporting, independent of the 3rd party app.
	Deferred to future version.

	MCAPI-SYS-10
	MCC API MAY support Transferred Codes; i.e., Transferred Code operations, where implemented, SHOULD NOT adversely affect operations of the MCC API.
Editor’s Note: If MCC API has any non-trivial dependency, or may impact, on Transferred Codes, this feature should be deferred to a future version.
	

	MCAPI-SYS-11
	MCC API MAY support MCC Authentication by the Home CMP; i.e., MCC Authentication operations, where implemented, SHOULD NOT adversely affect operations of the MCC API.
Editor’s Note: If MCC API has any non-trivial dependency, or may impact, on MCC Authentication by the Home CMP, this feature should be deferred to a future version.
	

	MCAPI-SYS-12
	MCC API MAY support Secure Indirect Codes; i.e., Secure Indirect Code operations, where implemented, SHOULD NOT adversely affect operations of the MCC API.
Editor’s Note: If MCC API has any non-trivial dependency, or may impact, on MCC Authentication by the Home CMP, this feature should be deferred to a future version.
	

	
	
	

Table 12: High-Level System Requirements
7. Architectural Model

<< This section defines the enabler’s architectural model. The model identifies: a) all internal functional components of this enabler, and b) all of the communication relationships between the components of this enabler and with other enablers and applications (including those specifications not defined by OMA).

This section SHOULD contain a diagram of the architecture. Diagrams in this section should contain logical entities only and not conflate logical entities with physical entities. However, mobile terminals and networks may be shown because of their potential relevance in the design of the architecture. Figure 1, Figure 2 (or a combination of them, if considered appropriate), are illustrative examples of an architectural diagram and should be modified to reflect this architecture.

Working Groups SHOULD re-use functions specified by other enablers. Working Groups should consult other Architecture Documents and Specifications to identify any of this architecture’s functionality (e.g. its systems, subsystems, interfaces and/or reference points, etc) that is already specified.

This section MAY include an explanation and/or diagram to show how this architecture relates to the various views as defined in “Inventory of Architectures and Services”. This diagram and explanation, however, are optional.

DELETE THIS COMMENT >>

This section describes the architectural model and related aspects of the MCAPI Enabler. The architecture contains only MCAPI intrinsic functional components.

The architecture definition and functionalities are based on the requirements defined in the Section 6.
7.1 Dependencies

<< This section MUST enumerate all of the dependencies this architecture has, in order to fulfil the approved enabler requirements (both mandatory and optional). Dependencies in this context are other OMA enablers and non-OMA specifications (e.g. RFC 2616) this enabler calls (i.e. re-uses). Each dependency MUST include a reference to the document(s) that specifies the dependency. All of these references MUST also be included in Section 2.1.

The enumeration would be along the lines of a list with entries such as

 - IMAP binary extension [RFC3516]
Where the reference (e.g. RFC3516 in this example) would link to the fully qualified reference in section 2.1 table.

A dependency is actually to an interface and the intrinsic functions (required and re-used by this enabler) performed by the component that exposes that interface.

Note: Dependencies should not be confused with deployment options.

If this architecture has no dependencies, then this section only needs to contain a statement as such.
If this architecture has dependencies on OMA Enablers, specific sub-sections shall describe those enablers and the interfaces used, as well as the purpose for re-use in the context of this enabler.

Example:

5.1.1 OMA X Enabler

This Enabler makes use of the following Interfaces from OMA X:

X-1 Interface is exposed by the X Enabler and SHALL be used by this enabler as detailed in [X_AD];

5.1.2 OMA Y Enabler

This Enabler makes use of the following Interfaces from OMA Y:

Y-1 Interface is exposed by the Y Enabler and SHALL be used by this Enabler as described in [Y_AD];
DELETE THIS COMMENT >>

The MCAPI Enabler (or APIs for the MC Enabler) architecture is inherently dependent on the OMA MC V1.0 Enablers.

7.2 Architectural Diagram

<< This section contains the architectural diagram for the enabler. . The examples in figures 1 and 2, along with the legend, describe the drawing conventions to be followed. In some cases (an example figure is not shown here) the resulting architecture diagram may contain combinations of interfaces and reference points.
DELETE THIS COMMENT >>
[image: image3.emf] Legend

Enabler A

Requestor

(Enabler/Application)

This Enabler B

Component 2

Component 3

Component 1

A-1

B-1

B-2

B-3.2

XYZ-n

Components specified by this Enabler

Components not specified by this Enabler

Indicates use of an interface exposed by an Enabler/Component. The Enabler/

Component offering or exposing the interface is indicated by the arrowhead.

Name of the interface offered or exposed by Enabler/Component XYZ

(following the interface naming convention)

B-3.1

Figure 3: Example of the Architectural Diagram using interfaces

[image: image4.emf] Legend

Enabler A

Requestor

(Enabler/Application)

This Enabler B

Component 2

Component 3

Component 1

A-1

B-1

B-2

B-3

XYZ-n

Components specified by this Enabler

Components not specified by this Enabler

Reference Points

Name of the Reference Point

Figure 2: Example of the Architectural Diagram using reference points

7.3 Functional Components and Interfaces/reference points definition

<< This section describes all of the architecture’s functional components and the specified interfaces and/or reference points.

As a general guidance, the Architecture Document SHOULD define interfaces, wherever possible.
Each of the components should be described in a separate subsection and MUST contain at least the following information:

· Name

· Description

· Responsibility (e.g. what does the component do/perform)

Each component SHOULD have at least one interface or at least one reference point that can be used by some other functional component, enabler, application, etc.

All of the interfaces and/or the reference points should be described in this section.

Interfaces and reference points MUST be described in a language-independent way.

Each interface description MUST include at least the following information:

· Name

· Description

· Entity that exposes the interface

Each reference point description MUST include at least the following information:

· Name

· Description of all the functions exposed between the two entities

· The two entities that are linked by this reference point

Each reference point description SHOULD include the following information:

· Name of each interface included in the reference point

Description of each interface included in the reference point

Interface/reference point naming convention:

The name of an interface/reference point consists of a minimal number of characters (e.g. no longer than the WID's registered name), followed by a dash, followed by a running number (starting at “1” and counting upwards in steps of 1 for each new interface/reference point). Each work group decides about the character(s) for their interfaces/reference point as long as there is no duplication with already existing names (work groups can consult ARC to confirm). Names should be chosen in an intuitive way to allow easy recognition of the interface/reference point. Some examples are:

 B-1
B stands for “Browsing”

 POC-5
POC stands for “Push to Talk over Cellular”

 MMS-7
MMS stands for “Multimedia Messaging”

Interface re-use convention: In case an interface from another enabler is re-used (e.g. exactly as is, as a profiled subset, or extended with additional Attribute Value Pairs), the interface name is that of the other enabler. That is, the interface name does not change, since the interface does not fundamentally change. The interface structure and placement of parameters and/or AVPs are already defined as part of the other enabler.
Reference points re-use convention:
 In case a reference point from another enabler is re-used (i.e. all of its interfaces, and the two entities, as originally defined, linked through the reference point) then, the reference point name is that of the other enabler. That is, the reference point name does not change, since the reference point does not fundamentally change. The reference point structure and placement of parameters and/or AVPs are already defined as part of the other enabler.

Detailed recommendations on how to re-use reference points may be found in the “Architecture Best Practices” document.

Graphical representation convention:

Reference points are depicted as a line and interfaces are depicted as an arrow.

DELETE THIS COMMENT >>

7.4 Security Considerations

<<Describe security functionalities based on security requirements defined in corresponding Requirement Document.

Security functionalities should address and consider at least the following features:

· Authentication

· Authorization

· Data integrity

· Confidentiality
· Non-repudiation
DELETE THIS COMMENT >>

The security considerations mentioned in this section apply to the components involved in MCAPI Enabler either internal or external. Any particular security mechanisms that are essential to the MCAPI Enabler specification shall be addressed in the Technical Specifications section of this document.
The MCAPI Enabler implementation shall not compromise the security levels while protecting the user data (such as location, preferences, feedback, device details) by applying security mechanisms consistent with the applicable SP security policies (e.g. including transport security, user data privacy, data encryption, etc).

Security such as mutual authentication, authorisation, content encryption, transport security etc is subject to specific SP security policies. The possible mechanisms for mutual authentication, content encryption, transportation security can refer to [OMA SEC_CF]. The possible mechanisms for network API authorization can refer to [OMA Autho4API].
8. Technical Specifications

This section covers the MCAPI specifications.

9. Sections As Needed

9.1 Example Level 2

<text>

9.1.1 Example Level 3

<text>

9.1.1.1 Example Level 4

<text>

 SHAPE * MERGEFORMAT

Figure 4: Example Figure

	
	Column 1
	Column 2

	Row 1
	Grid 1,1 data
	Grid 1,2 data

	Row 2
	Grid 2,1 data
	Grid 2,2 data

Table 1: Example Table

10. Release Information

10.1 Supporting File Document Listing

<< List the documents besides this document that comprise this release. This is where supporting files for elements such as Schemas, Managed Objects or Data Descriptions would be itemized. Each such document is to be listed by fully qualified name as known in the permanent document area. Each document should also include the reference from section 2 to provide linkage with other uses in this document.

For supporting files that need to be made available separate from the permanent document area (e.g. DTD in a publicly reachable directory), provide information on the expected path as well as the external file name. These should be based on existing recommendations and not picked arbitrarily (see information on supporting files available in the REL support menu).

The following table includes example fields with dummy values to make it clear the type of information to be entered. The actual table should be filled in for the specific release.

DELETE THIS COMMENT >>
	Doc Ref
	Permanent Document Reference
	Description

	Supporting Files

	[FOO_DTD]
	OMA-SUP-DTD_FOO_Msgs-V1_2-20050222-D
	DTD for the messages and included elements of the FOO protocols.

Working file in DTD directory:
file:
foo_msgs-v1_2.dtd
path:
http://www.openmobilealliance.org/tech/dtd/

	[FOO_AC]
	OMA-SUP-AC_ap0123_FOO-v1_2-20050531-D
	Description of the Application Characteristic for FOO. This aligns with the Provisioning Spec.

Working file in Application Characteristics directory:
file:
ap0123_foo-v1_2.txt
path:
http://www.openmobilealliance.org/tech/omna/dm-ac

Table 2: Listing of Supporting Documents in FOO Release

10.2 OMNA Considerations

<< This section is to be used to describe any OMNA items included in the release. This would include, among others:

· Usage of OMA-based Uniform Resource Names (URNs) (including those used as namespace identifiers in Schemas)

· AppiDs for Application Characteristics (AC)

· Managed Object (MO) identifier information for the MO registry

· ISO Object IDs

· PUSH Application Ids

· WAP Wireless Session Protocol (WSP) Content Types

· Presence <service-description> assignments

· Uniform Resource Identifier (URI)-List Registered Usage Names (for XDM)

The format of this section will be left up to the release owners to account for the particular needs they may run into. It should be clear from the written material, though, as to the set of OMNA items needed.

If a new OMNA registry is needed to support the release – clearly this should have been worked with the REL Committee before submitting a Release Document. Failure to do so may result in delays as the required tables are worked up and made publicly available. Another risk is that the table desired is not supported by OMNA (is not a registry type table) and the group will need to re-think how they intend to resolve their needs.

Through the normal development process the OMNA entries or support registries should be accommodated. This should not be trigger to remove the linkage from this section. Thus, if an entry is added to OMNA after the initial Candidate version described the need – the material should stay in this section. It may be useful in subsequent releases to add some text to indicate that the needed items have been accommodated (e.g. add a comment regarding its availability or support as appropriate).

If the release has absolutely no OMNA items to be accommodated – then it should indicate that explicitly with a short description (e.g. this release does not have any OMNA items for handling). This determination probably can not be made until the end of the development phases and editors are encouraged to keep this advisory in place until the Consistency Review.

DELETE THIS COMMENT >>

10.3 Additional Items

<<If the release has any other elements needed to make it complete they should be noted in this section. For example, if there are any external registrations (e.g. IANA assigned values) or shared/dependent components they should be documented.

The format of the description in this section is left to the editor based on the information needed. If there are no such elements, the editor may remove this sub-section.

DELETE THIS COMMENT >>

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	
	

	
	
	

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-ER-MCAPI-V1_0
	17 Oct 2011
	All
	Skeleton document created.

	
	21 Nov 2011
	All
	Implemented online edited version of Doc# 0072R01 for MC API requirements (Beijing meeting).

	
	05 Dec 2011
	All
	Added new text in Sections 1 to 4, and Figure 1.
Consolidated all requirements after review.

Appendix B. Use Cases
(Informative)

B.1 Referring a one-time-use discount coupon between family & friends
Alice who lives in the west coast attends a consumer electronics show and comes across a time and quantity limited offer of a 30% one-time-use (with serial number) special discount coupon during a national sales event of a new 3D HDTV. The details of the offer is presented by an Indirect 2D barcode which must be scanned to first watch the product promotion video for the item followed by instructions for the potential buyer. To retrieve this coupon Alice wants to scan this 2D barcode and then share it with Bob who lives in the east coast and has been looking for that exact new model.
B.1.1 ASK * MERGEFORMAT Short Description

Within a Web Runtime App (e.g. a social network app), Alice (with Device A) wants to use the Web Runtime App through an API to request the MCC on Device A to scan the mobile code as presented by the special offer. The Web Runtime App receives the data decoded from the mobile code symbology through the MCC API which contains instructions to retrieve the one-time-use discount coupon with a serial number (e.g. the data contains a destination URL to a portal that is configured to keep tracks of the serial number of the coupon and will allow only one validation of the discount coupon). The Web Runtime App then sends the data decoded from the mobile code without consuming it, for example, as an email attachment or MMS message from Device A to Bob’s Device B. Bob receives the mobile code decoded data within the MMS or email attachment containing the URL string with the coupon serial number. Within the time limit of the special offer, Bob invokes his Browser with the received destination URL to reach the Sales Event portal and consumes the one-time-use coupon. All metadata made available by the Browser in Device B (e.g. location data, device characteristics and personal profile & preferences) may also be sent from Device B as part of the buyer analytics, discount coupon validation and consumption.

B.1.2 Market benefits

New ways to use the MC Enabler are enabled through the MCAPI. In this case, user A is able to refer a mobile code by transferring the decoded data to user B, who consumes the information remotely.

B.2 Lookup of virtual maps and product offers from AR Targets within a Mobile Augmented Reality Session
Mobile Augmented Reality as a new OMA Enabler can leverage the MC Enabler through the MCAPI capabilities to handle mobile barcode resolution within a MobAR Session, thus providing an enhanced user experience based on the combined functionalities of the two enablers seamlessly.
B.2.1 ASK * MERGEFORMAT Short Description

Within a Web Runtime App (e.g. Mobile AR Enabler session based on the video View Finder mode in the mobile device camera), through the view finder, the user zooms into and selects a mobile code displayed on a physical billboard. The MobAR Client establishes the mobile code as an actionable digital object (AR Marker) associated with the billboard (AR Target). Without leaving the session, the MobAR Client can invoke the MCC API to initiate MCC actions to resolve the mobile code. As examples, a Direct mobile code on a billboard selected as an AR Marker object inside the AR session might be decoded & resolved by the MCC as information representing a permanent tag line plus a URL (such as, “Our speciality is XYZ”, and click this URL to get more information). Whereas, an Indirect mobile code (AR Marker) on the same billboard (AR Target) might be decoded to a permanent tag line plus an Indirect Code Identifier which can then be resolved by the MCC, in conjunction with other network components in the MCC architecture, to information that is dynamically updated (such as, “New release of hot product ABC is in stock and sale is on for this week only”, and click this URL for directions to our store (this URL can also be updated in the backend system), view the promotion items and place an order with the special discount). In addition, as the device Browser is invoked by the information returned by the MCC, the user’s current LOC data might also be leveraged by the MobAR Client in conjunction with the LOC Enabler on the device to guide the user to the chosen destination (e.g., according to the walking directions to the store).

In another example, if the mobile code as an AR Marker selected within the MobAR session returns the information which is a map of the shopping mall with various additional mobile codes associated with different stores inside the shopping mall presented (similar to a virtual directory) as options, the user could take further actions to effectively engage in virtual shopping tour inside the mall, without leaving the MobAR session. In this case, the MobAR Client would need to invoke the MCC API multiple times to obtain the information associated each of the mobile codes, including up-to-date product and offers information if associated with Indirect Codes, without physically visiting any of the stores. The user thus can pre-plan his/her customised and efficient shopping itinerary in this unfamiliar neighbourhood.
B.2.2 Market benefits

New ways to use the MC Enabler are enabled through the MCAPI. In this case, AR Markers represented by mobile codes are accessed within a Mobile AR session to enhance the user’s shopping experience. MCC APIs provide critical capabilities through which the MobAR Client can leverage the MC Enabler in innovative and interesting ways.
Appendix C. Call Flows
 (Informative)

This is a placeholder to be populated, as required.
Appendix D. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

D.1 ERDEF for <<ENABLER>> - Client Requirements

This section is normative.
	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-C-001-<<M/O>>
	<<ENABLER>> Client
	

	
	
	

Table 3: ERDEF for <<ENABLER>> Client-side Requirements

D.2 ERDEF for <<ENABLER>> - Server Requirements

This section is normative.

	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-S-001-<<M/O>>
	<<ENABLER>> Server
	

	
	
	

Table 4: ERDEF for <<ENABLER>> Server-side Requirements

D.3 SCR for XYZ Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

D.4 SCR for XYZ Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix E. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

E.1 App Headers

<More text>

E.1.1 More Headers

<More text>

E.1.1.1 Even More Headers

<More text>

Appendix F. MCAPI Enabler Deployment Considerations
This is a placeholder, to be populated as required.

� EMBED Visio.Drawing.11 ���

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20110101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20110101-I]

[image: image6.wmf]MC

–

enabled Mobile Device

MC Client

MC Server

**

Content

Provider

Web Runtime Environment

Browser

|

Widgets

Other API’s

MC

Enabler

API

Direct Code

Decoding

&

Resolution

functions

;

Indirect Code

Decoding

function

MC Client

/

Server Protocol

(

real

-

time

&

non real

-

time

)

AJAX

/

HTTP

(

online use

only

)

MC Enabler

exposing APIs

WRT MC Enabler API

Note

:

Arrows show primary

direction of data flow

Request

:

Register

,

Subscribe

,

Discover

,

Get

,

Submit

,

Suspend

,

Resume

Response

/

Notification

:

Registered

,

Subscribed

,

Discovered

,

Delivered

,

Submitted

,

Supended

,

Resumed

Data Transfer

:

Data decoded from MC

-

compliant symbologies

Indirect Code

Resolution

functions

MC

-

1

&

MC

-

4

Legend

:

[image: image7.png]_1369736662.vsd
Data

MC–enabled Mobile Device

MC Client

MC Server**

Request:
Register, Subscribe, Discover, Get, Submit,
Suspend, Resume

Content Provider

Web Runtime Environment

Browser | Widgets

Response/Notification: Registered,
 Subscribed, Discovered,
Delivered, Submitted,
Supended, Resumed

Data Transfer:
Data decoded from MC- compliant symbologies

Other API’s

MC Enabler
API

Direct Code Decoding & Resolution functions;
 Indirect Code Decoding function

MC Client/Server Protocol
(real-time & non real-time)

AJAX / HTTP
(online use only)

MC Enabler exposing APIs

Indirect Code Resolution functions

MC-1 & MC-4

WRT MC Enabler API

Legend:

Note: Arrows show primary direction of data flow

