Doc# V2.1 OMA-CD-MobSocNet-2014-0012R06-CR_SNEW_6_Authentication_in_WiFiP2P[image: image5.jpg]Authentication_in_WiFiP2P
Change Request

Doc# V2.1 OMA-CD-MobSocNet-2014-0012R06-CR_SNEW_6_Authentication_in_WiFiP2PAuthentication_in_WiFiP2P
Change Request

Change Request

	Title:
	SNEW_6_Authentication_in_WiFiP2P
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD (SNEW)

	Doc to Change:
	OMA-ER-SNeW-V1_1-20140319-D

	Submission Date:
	1 April 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Jong-Wuk Son, DGISAT, jwson@dgist.ac.kr
Kookrae Cho, DGIST, kookrae@dgist.ac.kr
Duck ki Hong, KWISA, kwisa@kwisa.org
Hyung-Seok Lee, ETRI, hyslee@etri.re.kr
Laurent-Walter Goix, Telecom Italia
Francesco Arenella, Telecom Italia

	Replaces:
	n/a

1 Reason for Change

To add the detailed specification of SNEW-6 interface to the SNEW 1.1
2 Impact on Backward Compatibility

N/A
3 Impact on Other Specifications

It is necessary to add SNEW service “snew” to RFC2782.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is requested for the group to review and agreed the CR.
6 Detailed Change Proposal
Change 1: Addition of scope for WiFi P2P social group
1. Scope
This Enabler Release (ER) document is a combined document that includes requirements, architecture and technical specification of the Social Network Web (SNeW) Enabler.

The SNeW Enabler scope covers the following items:

· the requirements and reference architecture to allow interoperability between clients and servers and server-to-server federation of OMA Compliant SNs, supporting at least features such as:

· profile discovery;

· publication and sharing of contents, activities and reactions;

· the interface between a SNEW Client entity and a SNEW Server entity (intra-domain or UNI) that supports the above identified features;

· the interface between SNEW Server entities (inter-domain or NNI) that supports the above identified features;
· the interface between SNEW Client entities in proximity that supports the above identified features.
· a set of Device APIs and Network APIs, to easily integrate OMA Compliant SN with external applications, as well as an appropriate privacy framework to control access to information through these APIs;

· a set of guidelines to reuse existing OMA enablers for providing additional features (e.g. profile search using OMA MSF);

In particular, with respect to interface specification, it is in the scope of this Enabler:

· to consider referencing OStatus-related specifications, in particular for server-to-server interactions;
· to consider referencing OpenSocial Social APIs, in particular for client-server interactions;
·
· to consider referencing [RFC 3447] and related specifications for user authentication in the context of P2P social groups;
· to consider reusing OAuth 2.0 and related specifications as privacy framework for APIs;
· to consider reusing OMA Push enabler to support notifications to SNEW Client entities (e.g. for reactions delivery, private message delivery, user status notification, etc).
·
Connections with External SNs are expected (through gateways implementing proprietary interfaces) but the definition of which External Social Network will be interconnected (and how) is out-of-scope of this activity.

SNeW Enabler will reuse as much as possible existing technologies.
Change 2: Addition of references for WiFi P2P social group
2. References

2.1 Normative References

	[ACCTURI]
	“The 'acct' URI Scheme”, P. Saint-Andre, July 2013. Work in progress.
URL: http://tools.ietf.org/html/draft-ietf-appsawg-acct-uri-06

	[AS-ATOM]
	“Atom Activity Streams 1.0”, M. Atkins, W. Norris, C. Messina, M. Wilkinson, R. Dolin, February 2011.

URL: http://activitystrea.ms/specs/atom/1.0/

	[AS-JSON]
	“Json Activity Streams 1.0”, J. Snell, M. Atkins, W. Norris, C. Messina, M. Wilkinson, R. Dolin, May 2011.

URL: http://activitystrea.ms/specs/json/1.0/

	[AS-JSON-AUDIENCE]
	“Audience Targeting for JSON Activity Streams”, J. Snell, March 2012.

URL: http://activitystrea.ms/specs/json/targeting/1.0/

	[AS-JSON-REPLIES]
	“Responses for Activity Streams”, J. Snell, May 2012.

URL: http://activitystrea.ms/specs/json/replies/1.0/

	[AS-BASE-SCHEMA]
	“Activity Base Schema (Draft)”, J. Snell, M. Atkins, D. Recordon, C. Messina, M. Keller, A. Steinberg, R. Dolin, May 2012.

URL: http://activitystrea.ms/specs/json/schema/activity-schema.html

	[AS-CT]
	“The application/stream+json Media Type”, J. Snell, October 2012. Work in progress.

URL: http://tools.ietf.org/html/draft-snell-activity-streams-type-01

	[ATOM]
	“The Atom Syndication Format”, M. Nottingham et al, December 2005

URL: http://www.ietf.org/rfc/rfc4287.txt

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[DP]
	“NFC Digital Protocol, Technical Specification”, NFC Forum

URL: http://www.nfc-forum.org/specs/

	[ENUM-ACCT]
	“ENUM Service Registration for acct URI”, L. Goix, K. Li, May 2013. Work in progress.
URL: http://tools.ietf.org/html/draft-goix-appsawg-enum-acct-uri-02

	[GEORSS-SIMPLE]
	GeoRSS-Simple, URL: http://www.georss.org/simple

	[HOST-META]
	“Web Host Metadata”, E. Hammer-Lahav, B. Cook, October 2011

URL: http://www.ietf.org/rfc/rfc6415.txt

	[LLCP]
	“Logical Link Control Protocol, Technical Specification”, NFC Forum

URL: http://www.nfc-forum.org/specs/

	[MagicSig]
	Panzer, J., Laurie, B., and D. Balfanz, “Magic Signatures.”

URL: http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html

	[NDEF]
	“NFC Data Exchange Format (NDEF)”, NFC Forum

URL: http://www.nfc-forum.org/specs/

	[OAUTHLRDD]
	“Link relation Type Registration for OAuth 2”. W. Mills, February 2013. Work in progress.
URL: http://tools.ietf.org/html/draft-wmills-oauth-lrdd-07

	[OExchange-Spec]
	“OExchange Technical Specification”

URL: http://www.oexchange.org/spec/

	[OMAPUSH]
	“Push Over The Air”, Open Mobile Alliance™, OMA-TS-PushOTA-V2_3, URL:http://www.openmobilealliance.org/

	[OMAPUSH-MSG]
	“Push Message”, Open Mobile Alliance™, OMA-TS-Push_Message-V2_3, URL:http://www.openmobilealliance.org/

	[OMAPUSH-PAP]
	“Push Access Protocol”, Open Mobile Alliance™, OMA-TS-PAP-V2_3, URL:http://www.openmobilealliance.org/

	[OMAPUSH-PPG]
	“Push Proxy Gateway Service”, Open Mobile Alliance™, OMA-TS- PPGService –V2_3, URL:http://www.openmobilealliance.org/

	[OMAPUSH-REST]
	“RESTful Network API for OMA Push. Open Mobile Alliance(. OMA-TS-REST_NetAPI_Push-V1_0, URL:http://www.openmobilealliance.org/

	[OMAPUSH-SL]
	“ServiceLoading”, WAP Forum(, WAP-168-ServiceLoad-20010731-a, URL:http://www.openmobilealliance.org/

	[OMAPUSH-WRAPI]
	“Web Runtime API (WRAPI) – Push”, Open Mobile Alliance™, OMA-TS-WRAPI_Push-V1_0, URL:http://www.openmobilealliance.org/

	[OMA TLS]
	“OMA TLS Profile”, Open Mobile AllianceTM, OMA-TS-TLS_Profile-V1_1 URL:http://www.openmobilealliance.org/

	[OS-Core-API]
	OpenSocial Core API Server Specification 2.5.1, August 2013
URL: http://opensocial.github.io/spec/2.5.1/Core-API-Server.xml

	[OS-Core-Data]
	OpenSocial Core Data Specification 2.5.1, August 2013
URL: http://opensocial.github.io/spec/2.5.1/Core-Data.xml

	[OS-Social-API]
	OpenSocial Social API Server Specification 2.5.1, August 2013
URL: http://opensocial.github.io/spec/2.5.1/Social-API-Server.xml

	[OS-Social-Data]
	OpenSocial Social Data Specification 2.5.1, August 2013
URL: http://opensocial.github.io/svn/spec/2.5.1/Social-Data.xml

	[OS-Spec]
	OpenSocial Specification 2.5.1, August 2013
URL: http://opensocial.github.io/spec/2.5.1/OpenSocial-Specification.xml

	[POCO]
	Smarr J., “Portable Contacts 1.0 Draft C” , August 2008
URL: http://portablecontacts.net/draft-spec.html

	[PubSubHubbub]
	“PubSubHubbub Core 0.3”, B. Fitzpatrick, B. Slatkin, M. Atkins, February 2010.

URL: http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2387]
	“The MIME Multipart/Related Content-type”, E. Levinson, August 1998

URL: http://www.ietf.org/rfc/rfc2387.txt

	[RFC2392]
	“Content-ID and Message-ID Uniform Resource Locators”, E. Levinson, August 1998

URL: http://www.ietf.org/rfc/rfc2392.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”. Fielding, et al. June 1999.
URL: http://www.ietf.org/rfc/rfc2616.txt

	[RFC3403]
	“Dynamic Delegation Discovery System (DDDS) Part Three: The Domain Name System (DNS) Database”. M. Mealling, October 2002.

URL: http://www.ietf.org/rfc/rfc3403.txt

	[RFC3447]
	“Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1”, J. Jonsson , B. Kaliski, February 2003.
URL: http://www.ietf.org/rfc/rfc3447.txt

	[RFC4685]
	“Atom Threading Extensions”, J. Snell, September 2006.

URL: http://www.ietf.org/rfc/rfc4685.txt

	[RFC5234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. January 2008,

URL:http://www.ietf.org/rfc/rfc5234.txt

Change 3: Addition of section 9.6 for user authentication in P2P
9. Data Model
9.6 User authentication for P2P social group
When user authentication for P2P social group service is supported, SNEW Servers and SNEW Clients SHALL support the data models defined in this section.
An object containing the following properties is defined in this specification to represent information about user authentication in P2P social group.
- Packet Type
	Name
	Type
	Description

	SNEW_P2P_Packet_Type
	integer
	Information of the packet which is transmitted for user authentication in P2P social group.

- Generic Authentication object properties (valid for both user/member and GO)
	Name
	Type
	Description

	
	
	

	SNEW_P2P_Global_ID
	string
	
Globally unique identifier as defined in section 9.1.

	SNEW_P2P_Signature_Method
	string
	Signing and verifying method through which the process of digital signature and verification is performed.

	SNEW_P2P_Encryption_Method
	string
	Encryption and decryption method through which transmission data is encrypted and decrypted.

	SNEW_P2P_Time_Stamp
	long
	Positive integer that is expressed in the number of seconds since Jan.1, 1970 00:00:00 GMT.

	SNEW_P2P_Nonce
	string
	A random string that is uniquely generated.

	
	
	

	SNEW_P2P_Version
	string
	Optional, version information that is ‘1.1’ in this document.

	
	
	

	
	
	

	
	
	

	
	
	

- User (member)-specific Authentication object properties (in addition to the generic ones)
User authentication objects can contain properties defined in this table as well as in the generic authentication object table.
	Name
	Type
	Description

	SNEW_P2P_Realm
	string
	The name of SNEW Server that SNEW Client registers its public key for RSA-SHA512 signature and verification.

	SNEW_P2P_ID_Open
	integer
	A decision for a group member to make about whether to open its Global_ID to GO.

- GO-specific Authentication object properties (in addition to the generic ones)
GO authentication objects can contain properties defined in this table as well as in the generic authentication object table.
	Name
	Type
	Description

	
	
	

	SNEW_P2P_Session_Key
	string
	128-bit secret key for AES algorithm between GO and a group member (optional).

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

- Digital Signature
	Name
	Type
	Description

	SNEW_P2P_Signature
	string
	Digital signature made by RSA-SHA512 to authenticate users in P2P group.

- Verification Value
	Name
	Type
	Description

	VerificationValue
	string
	A return value after verifying the digital signature.

The following values and related meaning are defined for the VerificationValue property
	Value
	Meaning

	PASS
	This digital signature is valid, so the user is successfully authenticated.

	FAIL
	This digital signature is not valid, so the user authentication fails.

The following values and related meaning are defined for the SNEW_P2P_ID_Open property
	Value
	Meaning

	YES
	Open this group member's Global ID to GO.

(SNEW_P2P_ID_Open in GO authentication object has this value)

	NO
	Do not open this group member's Global ID to GO.

The following values and related meaning are defined for the SNEW_P2P_Packet_Type property
	Value
	Meaning

	1
	
GO sends SNEW_P2P_Nonce(Nonce1) to a newly joined group member.

	2
	
A group member sends its own authentication object, new SNEW_P2P_Nonce(Nonce2), and the digital signature on the these values to GO. New nonce is created by this member.

	3
	
GO sends a newly-joined member’s authentication object, the signature on the authentication object, GO's authentication object, and the signature on GO's authentication object to SNEW Server for mutual authentication.

	4
	
SNEW Server sends the group member's authentication object, Nonce2, the signature on the member's authentication object, and GO's Global_ID to SNEW Server 2 where the group member belongs if SNEW Servers of GO and the group member are different. If SNEW Servers of GO and the group member are the same server, SNEW_P2P_Packet_Type Value[4-6] are processed in the same SNEW Server.

	5
	
SNEW Server 2 sends VerificationValue, GO Authentication object, the digital signature on GO Authentication object, [the group member ID, SessionKey (optional)] to the SNEW Server where GO belongs.

	6
	SNEW Server sends VerificationValue, GO Authentication object, the digital signature on GO Authentication object, [the group member ID, SessionKey (optional)] to GO.

	7
	GO sends GO Authentication object and the digital signature on GO Authentication object from SNEW Server to the group member.

Change 4: Addition of SNEW-6 interface security considerations
10. Security considerations

10.1
Authentication

 User authentication is expected on SNEW-1 and SNEW-2 interfaces as a prerequisite to authorization, described in section 10.2. In particular, as part of the authorization flows, SNEW Servers MAY decide to authenticate the user based on one of the following procedures:

· username and password;

· authentic network information as described in section 10.1.1.

In addition, user authentication for P2P social group is expected on SNEW-6 interface using public key and private key pairs.
10.1.2
User authentication for P2P social group based on PKI
Group Administrator and group members can authenticate each other using public key and private key pairs. Every SNEW server generates and stores a public/private key pair for each user in SNEW 1.0. For P2P user authentication, when SNEW Client is first installed into user's device, both a public/private key pair of the user and a public key of SNEW Server is downloaded and stored in SNEW Client. These keys SHALL be periodically renewed and can be downloaded on the Client's request.
Editor’s note: FFS to define mechanisms for key distribution
When GO forms a P2P social group, GO and the member exchange digital signatures for mutual authentication with the help of SNEW server. When making and verifying digital signatures, they are using public key and private key pairs.

All of the authentication data between GO and SNEW Server SHALL be transmitted using HTTPs to ensure security.
Editor’s note: FFS to define the endpoint to be used for P2P authentication

See Appendix I.4 for more information about the procedures to authenticate users in P2P social group.

Change 5: Update Appendix I.4 for P2P Social group example
Appendix X.
I.4
P2P Social Group Examples
I.4.1 Proximity-based social interaction

Following is an example flow of proximity-based social service which is connecting users with P2P communication interface. In this example, Wi-Fi P2P is used as P2P communication interface. User1 is a group administrator. User2 and User3 are group members. User1, User2 and User3 are users of SNEW Client 1, SNEW Client 2 and SNEW Client 3 in order.

[image: image1.emf]5) Transmit group information 2) Perform Device/Service Discovery9)1)SNEW Client 1SNEW Client 2SNEW Client 3Create Groupnew group ID3) Invite users to group and join the group4) User profile authentication6)6) Group update (e.g. group members)Response Code=201Invitation requestResponseGroup join requestResponse7) Group activities/reactions8)Group leave notificationResponse Code=204Group termination notificationResponse Code=20410)Group activities uploadResponse Code=20111)Delete groupResponse Code=201Post a textResponse Code=201Post the textResponse Code=201Nonce1User2's profile, Nonce2, Sig1SNEW ServerUser2's profile, Sig1, User1's profile, Sig2VerificationValue, GOAuthentication, Sig3GOAuthentication, Sig3Response Code=200Nonce1User3's profile, Nonce2, Sig1VerificationValue, GOAuthentication, Sig3GOAuthentication, Sig3Response Code=200Group informationResponse Code=201Group informationResponse Code=201User3's profile, Sig1, User1's profile, Sig2

Figure 1 Example flow of proximity-based group service
1) User1 uses SNEW Client 1 to create a proximity-based social group and the group creation request will be sent from SNEW Client 1 to SNEW Server through SNEW-1 interface. SNEW Client 1 gets the group ID from SNEW Server in response.

2) The devices hosting SNEW Client 1, 2 and 3 perform Device/Service discovery.

3) User1 uses SNEW Client 1 to invite User2 as a group member to the proximity-based social group. If User2 accepts the invitation from User1, the initial group is created. Then User3 uses the SNEW Client 3 to join the group and get the permission from User1 through SNEW Client 1.
4) When User2 joins this group, User1 performs a user authentication object authentication procedure together with SNEW Server. User2 makes its own authentication object including Nonce1, produces Nonce2, creates the digital signature Sig1 on these values and sends them to User1. User1 makes User1's authentication object including Nonce2 and creates the digital signature Sig2 on User1's authentication object, and then User1 transmits User2's authentication object, Sig1, User1's authentication object, Sig2 to SNEW Server. SNEW Server verifies the signatures Sig1 and Sig2. If the signatures are valid, it makes GOAuthentication object and a digital signature Sig3 on it. SNEW Server sendsVerificationValue, GOAuthentication object, Sig3 to User1. User1 transmits GOAuthentication object and Sig3 to User2 who verifies the signature for User1 authentication. The same procedure applies when User3 joins this group.
5) Users’ profiles and group profile can be exchanged.

6) User1 can register the group or update the group information through SNEW-1 by using SNEW Client 1

7) The group activities and reactions between group members will be exchanged by group members. If User1 wants to upload the group activities and reactions on the SNEW Server, he or she can store them by using SNEW Client 1
8) If User3 wants to leave the group, User3 uses SNEW Client 3 which sends group leave notification to SNEW Client 1.

9) If User1 wants to terminate the group, User1 uses SNEW Client 1 which sends group termination notification to all SNEW Clients.

10) User1 can upload the group activities and reactions on SNEW Server through SNEW-1 interface by using the SNEW Client 1.

11) If User1 wants to delete the group and all the related activities, User1 uses the SNEW Client 1 which asks SNEW Server to delete the group through SNEW-1 interface.

I.4.2
User authentication for P2P social group service
Following is an example flow of user authentication in proximity-based social service. In this example User1 is a group Owner (GO) and User2 is a group member. GO and User2 are users of SNEW Client 1 and SNEW Client 2 respectively. SNEW Server 1 is a server where GO belongs and SNEW Server 2 is a server where User2 belongs.If SNEW Server1 and SNEW Server 2 are, however, the same server, Step 4 and 6 are processed in the same server without data transmission.
In this example, SNEW Server 1 is "movie.net" and SNEW Server 2 is "music.net". SNEW Server 2's IP address is '112.122.10.2'.

[image: image3.emf]SNEW Client 1 (GO)SNEW Client 21) Nonce12) User2's authentication object, Nonce2, Sig1 SNEW Server 13) User2's authentication object, Sig1, GO's authentication object, Sig28) Response Code=2007) GOAuthentication, Sig3SNEW Server 24) User2's authentication object, Nonce2, Sig1, GO's Global_ID5) VerificationValue, GOAuthentication, Sig3, [User2's ID, SessionKey(optional)]6) VerificationValue, GOAuthentication, Sig3, [User2's ID, SessionKey(optional)]

Figure 2 User profile authentication for P2P group
1) User1 (GO) creates a nonce Nonce1. It sends Packet_Type and a nonce Nonce1 to User2.

- Inserting packet type
SNEW_P2P_Packet_Type = 1
- Creating Nonce1
SNEW_P2P_Nonce = “kllo9940pd9333jh”

2) User2 makes its own authentication object, inserts the Nonce1 (SNEW_P2P_Nonce) into the profile’s Nonce and creates a nonce Nonce2. And then it makes the digital signature Sig1 on User2’s authentication object and the Nonce2. User2 sends Pakcket_Type , User2’s authentication object, Nonce2 (SNEW_P2P_ Nonce), and Sig1 (SNEW_P2P_Signature) to User1.
- Inserting packet type

SNEW_P2P_Packet_Type = 2

 - User2’s authentication object (User)
User.SNEW_P2P_Realm = “music.net”
User.SNEW_P2P_Global_ID = “acct:guest123@music.net”
User.SNEW_P2P_Signature_Method = “RSA-SHA512”
User.SNEW_P2P_Encryption_Method = “RSA”
User.SNEW_P2P_Time_Stamp = “1191242096”
User.SNEW_P2P_Nonce = Nonce1 (kllo9940pd9333jh)
User.SNEW_P2P_ID_Open = “YES”
User.SNEW_P2P_Version = “1.1”
Here, SNEW_P2P_Global_ID is encrypted using SNEW Server 2's public key as per [RFC3447] section 7.2.1, where (n, e) is public key of SNEW Server 2 and M is "acct:guest123@music.net" and C is the result ciphertext octet string.
C = RSAES-PKCS1-V1_5-ENCRYPT [(n, e), M]
User.SNEW_P2P_Global_ID = C
Therefore "acct:guest123@music.net" in User2's authentication object is replaced by C.
- Creating Nonce2.

SNEW_P2P_Nonce = “jlsao24kdlsi2345”
Nonce2 = SNEW_P2P_Nonce
 - Generating the digital signature Sig1 on User2’s authentication object and Nonce2
User2’s authentication object is signed using the User2’s RSA private key as per [RFC3447] section 8.2.1, where K is the User2’s RSA private key, M is the User2’s authentication object and Nonce2, and S is the result signature octet string:
S = RSASSA-PKCS1-V1_5-SIGN (K, M)
SNEW_P2P_Signature = S
Sig1 = SNEW_P2P_Signature
3) GO makes its own authentication object, inserts the Nonce2 into the authentication object’s Nonce, and makes the digital signature Sig2 on the authentication object. Then GO sends Packet_Type , User2’s authentication object, Sig1, GO’s authentication object, and Sig2 to SNEW Server for mutual authentication.
- Inserting packet type

SNEW_P2P_Packet_Type = 3

 - GO’s authentication object (GO)
GO.SNEW_P2P_Realm = “movie.net”
GO.SNEW_P2P_Global_ID = “acct:group_owner@movie.net”
GO.SNEW_P2P_Signature_Method = “RSA-SHA512”
GO.SNEW_P2P_Encryption_Method = NULL
GO.SNEW_P2P_Time_Stamp = “1191242158”
GO.SNEW_P2P_Nonce = Nonce2 (jlsao24kdlsi2345)
GO.SNEW_P2P_ID_Open = NULL
GO.SNEW_P2P_Version = “1.1”
- Generating the digital signature Sig2 on GO's authentication object
GO’s authentication object is signed using the GO’s RSA private key as per [RFC3447] section 8.2.1, where K is the GO’s RSA private key, M is the GO’s authentication object and S is the result signature octet string:

S = RSASSA-PKCS1-V1_5-SIGN (K, M)
SNEW_P2P_Signature = S
Sig2 = SNEW_P2P_Signature
4) SNEW Server 1 verifies the signature Sig2 on GO’s authentication object. If Sig2 is valid, SNEW Server 1 sends Packet_Type , User2's authentication object, Nonce2, Sig1, and GO's Global_ID to SNEW Server 2.
- Inserting packet type

SNEW_P2P_Packet_Type = 4

 - Verifying the signature Sig2 on GO’s authentication object
SNEW Server verifies the signature per [RFC3447] section 8.2.2, where (n,e) is the User2’s public key, M is GO’s authentication object, and S is the octet string representation of the Sig2:

RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)

Check whether the digital signature Sig2 is valid or not.

5) SNEW Server 2 verifies the signature Sig1 on User2's authentication object and Nonce2. If Sig1 is valid, SNEW Server 2 sends Packet_Type , VerificationValue, GOAuthentication object, Sig3, [User2's ID, SessionKey (optional)] to SNEW Server 1.
- Inserting packet type

SNEW_P2P_Packet_Type = 5
-Decrypting User2's global ID

Here, SNEW_P2P_Global_ID is decrypted using SNEW Server 2's private key as per [RFC3447] section 7.2.2, where K is private key of SNEW Server 2 and C' is User.SNEW_P2P_Global_ID C in User2's authentication object and M is the result ciphertext octet string.
M = RSAES-PKCS1-V1_5-DECRYPT (K, C')
User2's global ID = M

Extract User2's public key corresponding to the User2's global ID.

If User.SNEW_P2P_ID_Open is "YES", SNEW Sever 2 sends User2's global ID to SNEW Server 1.

- Verifying the signature Sig1 on User2’s authentication object and Nonce2
SNEW Server verifies the signature per [RFC3447] section 8.2.2, where (n,e) is the User2’s public key, M is the User2’s authentication object and Nonce2, and S is the octet string representation of the Sig1:

RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)

If the digital signature Sig1 is valid, VerificationValue is set to "PASS". If the digital signature Sig1 is not valid, VerificationValue is set to "FAIL".
-Creating Session_Key between GO and User2 (optional, default is NULL)

SessionKey = "189kdf93jkkdjfd99j"
- Making GOAuthentication object
GOA.SNEW_P2P_Global_ID = “acct:group_owner@movie.net”

GOA.SNEW_P2P_Session_Key = "189kdf93jkkdjfd99j" (optional, default is NULL)
GOA.SNEW_P2P_Signature_Method = “RSA-SHA512”
GOA.SNEW_P2P_Encryption_Method = "RSA"
GOA.SNEW_P2P_Time_Stamp = “1191242158”

GOA.SNEW_P2P_Nonce = Nonce2 (jlsao24kdlsi2345)
GOA.SNEW_P2P_Version = “1.1”
Here, SNEW_P2P_Session_Key is encrypted using User2's public key as per [RFC3447] section 7.2.1, where (n, e) is public key of User2 and M is "189kdf93jkkdjfd99j " and C is the result ciphertext octet string.
C = RSAES-PKCS1-V1_5-ENCRYPT [(n, e), M]
GOA.SNEW_P2P_Session_Key = C
Therefore "189kdf93jkkdjfd99j " in GOAuthentication object is replaced by C.
- Creating the digital signature Sig3 on GOAuthentication object
GOAuthentication object is signed using the SNEW Server 2’s RSA private key as per [RFC3447] section 8.2.1, where K is the SNEW Server 2’s RSA private key, M is the GOAuthentication object, and S is the result signature octet string:

S = RSASSA-PKCS1-V1_5-SIGN (K, M)
Sig3 = S
6) SNEW Server 1 sends Packet_Type, VerificationValue, GOAuthentication object, Sig3, [User2's ID, SessionKey (optional)] to GO if VerificationValue is "PASS". SNEW Server 1 sends only VerificationValue to GO if VerificationValue is "FAIL".

- Inserting packet type

SNEW_P2P_Packet_Type = 6
7) GO Sends GOAuthentication object and Sig3 if VerificationValue is "PASS". GO terminates this process if VerificationValue is "FAIL". And if there are User2's ID and SessionKey transmitted from SNEW Server 1(optional), it stores these values.
- Inserting packet type

SNEW_P2P_Packet_Type = 7
8) User2 verifies the signature Sig3 on GOAuthentication object and sends Response Code to User1.

- Inserting packet type

SNEW_P2P_Packet_Type = 8
- Verifying the signature Sig3

User2 verifies the signature Sig3 per [RFC3447] section 8.2.2, where (n,e) is the SNEW Server 2’s public key, M is the GOAuthentication object, and S is the octet string representation of the Sig2:

RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)

 if the signature is valid, User2 sends Response Code 200 to GO.

 - Decrypting Session_Key (optional) in GOAuthentication object
Here, if GO and User2 use the session key (optional), GOA.SNEW_P2P_Session_Key C is decrypted using User2's private key as per [RFC3447] section 7.2.2, where K is private key of User2 and C' is GOA.SNEW_P2P_Session_Key C in GOAuthentication object and M is the result ciphertext octet string.
M = RSAES-PKCS1-V1_5-DECRYPT (K, C')
Session_Key = M

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 18)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 18)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

5) Transmit group information
2) Perform Device/Service Discovery
9)
1)
SNEW Client 1
SNEW Client 2
SNEW Client 3

Create Group
new group ID
3) Invite users to group and join the group
4) User profile authentication
6)

6) Group update (e.g. group members)
Response Code=201

Invitation request
Response

Group join request
Response
7) Group activities/reactions
8)

Group leave notification
Response Code=204

Group termination notification
Response Code=204
10)

Group activities upload
Response Code=201
11)

Delete group
Response Code=201

Post a text
Response Code=201

Post the text
Response Code=201

Nonce1
User2's profile, Nonce2, Sig1
SNEW Server

User2's profile, Sig1,
User1's profile, Sig2

VerificationValue, GOAuthentication, Sig3
GOAuthentication, Sig3

Response Code=200

Nonce1
User3's profile, Nonce2, Sig1

VerificationValue, GOAuthentication, Sig3
GOAuthentication, Sig3

Response Code=200

Group information
Response Code=201

Group information
Response Code=201

User3's profile, Sig1,
User1's profile, Sig2

SNEW Client 1 (GO)
SNEW Client 2

1) Nonce1
2) User2's authentication object, Nonce2, Sig1
SNEW Server 1

3) User2's authentication object, Sig1,
GO's authentication object, Sig2

8) Response Code=200
7) GOAuthentication, Sig3

SNEW Server 2

4) User2's authentication object,
Nonce2, Sig1, GO's Global_ID

5) VerificationValue, GOAuthentication, Sig3, [User2's ID, SessionKey(optional)]
6) VerificationValue, GOAuthentication, Sig3, [User2's ID, SessionKey(optional)]

_1446437843.vsd
�

SNEW Client 1 (GO)
SNEW Client 2

1) Nonce1
2) User2's profile, Nonce2, Sig1
SNEW Server 1

3) User2's profile, Sig1,
GO's profile, Sig2

8) Response Code=200
7) GOAuthentication, Sig3

SNEW Server 2

4) User2's profile, Nonce2, Sig1, GO's Global_ID

5) VerificationValue, GOAuthentication, Sig3, [User2's ID, SessionKey(optional)]
6) VerificationValue, GOAuthentication, Sig3, [User2's ID, SessionKey(optional)]

