Doc# OMA-CD-OpenCMAPI-2011-0056R01-CR_[image: image1.jpg]Device_Identification
Change Request

Doc# OMA-CD-OpenCMAPI-2011-0056R01-CR_Device_Identification
Change Request

Change Request

	Title:
	Introduction of Device Identification
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD OpenCMAPI

	Doc to Change:
	OMA-TS-OpenCMAPI-V1_0-20111019-D

	Submission Date:
	16th Oct 2011

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Patrick Froeller, Deutsche Telekom AG, patrick.froeller@t-mobile.at,

Thomas Nachbar, Deutsche Telekom AG, thomas.nachbar@telekom.de,
Thierry Berisot, Deutsche Telekom AG, thierry.berisot@telekom.de,

	Replaces:
	n/a

1 Reason for Change

This contribution provides a proposal to complete the Device discovery part and a way to address the case of supporting possibly multiple devices and to identify the related devices.
The notion of “handle” has been introduced to identify a device and to use this/these identify (ies) by the functions to point to the targeted device or to handle several devices in parallel without ambiguity.

A device identifier would be obtained either at start up when the CM application queries for all available devices or when a Callback notifies when a new device is available (assuming the application has registered for such call back).
It is assumed that the pHandle is the device identifier that will be used in all API communication to reference a device as the CMAPI_DeviceDiscovery_DetectDevices() parameter dword* pHandle is unique for the device. If that is the case, there is a need for a “CloseHandle” function. That way the API knows that the handle is not used anymore. The device identifier will be unique only during a given session. There will probably be a need for a OpenAPI () as well as a CloseAPI () function for the internal management of handles and device detection threads.

The proposed CMAPI_DeviceDiscovery_GetDevice() function enumerates all available devices, it allocates device identifier and it “Opens” the device. It is maybe better to split into smaller entities: one function to enumerate available devices, one function to Open a specific device and another to Close the device.

It would be much simpler to develop and implement a CM application if the API itself silently and automatically detects all device changes: when devices are added and removed the API keeps record of all changes. The CMAPI would - whenever there’s a change in device state - notify all applications that have registered for a callback “OnChangedDevice()”. Typically the client application would register for device changes on start-up and unregister at the end. The CM does not have to ‘poll’ for new devices as is the case in the current proposal (the client app will have to “poll” only once: on start-up).
With such approach, any function can be pointed to each device through the device identification represented by pHandle by using this parameter.
CMAPI_DevSrv_GetNAAavailable():

dword CMAPI_DevSrv_GetNAAavailable (dword* pHandle, NAAnametype* pstNAAList, dword* dwNAAListsize)

CMAPI_Information_GetPinStatus ()

Currently, the radio access technology (RAT) is used for device identification in the GetPinStatus function. This will mean only one device per RAT can be used at the same time. Identifying a device with RAT is an implicit identification of a device, it is better to use an explicit method such as pHandle.
dword CMAPI_Information_GetPinStatus (dword* pHandle, dword* pStatus)

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The CD OpenCMAPI SWG should review and agree this CR.
6 Detailed Change Proposal

Change 1:
	

	

	
	
	

Change 2: Add new functions - Open Device & Close Device
5.X.Y CMAPI_DeviceDiscovery_OpenDevice()
The CMAPI_DeviceDiscovery_OpenDevice() function is used to “open” a device within the system. The device is identified by the UniqueIdentifier obtained in earlier call to CMAPI_DeviceDiscovery_DetectDevices(). The function returns an opaque handle which is used to eliminate any possible confusion resulting from one device appearing and another disappearing in a short timespan. The opaque handle is supplied to the technology specific API calls in order to obtain more detailed information related to the device.

	Prototype

	unsigned long CMAPI_DeviceDiscovery_OpenDevice (dword* pHandle , string pUniqueIdentifier)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Output
	An opaque handle which is used to reference this device in other OpenCMAPI calls. The opaque handle to the device MUST not be allowed to change unless the hosting device is rebooted and all applications are restarted.

	pUniqueIdentifier
	Input
	A string that uniquely identifies this specific device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The pUniqueIdentifier is referencing a non-existing device

	0x00000003
	The device is already opened.

	0x00000004
	Maximum number of device that the API can handle per client is reached (can be 1), close another open device handle.

5.X.Y CMAPI_DeviceDiscovery_CloseDevice()
The CMAPI_DeviceDiscovery_CloseDevice() function is used to “close” a device within the system. The device is identified by the opaque handle obtained in earlier call to CMAPI_DeviceDiscovery_OpenDevice().

	Prototype

	unsigned long CMAPI_DeviceDiscovery_CloseDevice (dword pHandle)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	An opaque handle which was obtained in a call to OpenDevice. If pHandle is 0, all devices opened by the calling application will be closed.

Any outstanding operation will be terminated (e.g. Async operation)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The pHandle references a non-existent device or a device which is not open

Change 3:

	

	

	

	
	
	

	
	
	

	
	
	

	
	
	
·
·
·
·

	
	
	

	
	
	

	
	
	

	
	
	

	

	
	

	
	

	
	

	
	

	
	

	
	

Change 4: To add callback “OnChangedDevice()”
5.3.2 CMAPI_Callback_OnChangedDevice()

The CMAPI_Callback_OnChangedDevice() function is used to communicate whenever there is a change in a given device state and to notify all applications that have registered for this callback.
	Prototype

	dword CMAPI_Callback_OnChangedDevice (dword* pHandle, dword devicestate)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	devicestate
	Input
	 The new state of the device:
· 0x00000000: Unplugged
· 0x00000001: Unavailable
· 0x00000002: Plugged & Available

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

Change 5: Update GetPinStatus
5.3.3 CMAPI_Information_GetPinStatus()

The CMAPI_ Information_ GetPinStatus () function is used to return the status of the PIN.
	Prototype

	dword CMAPI_Information_GetPinStatus (dword* pHandle, dword* pStatus)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	 The Device targeted

	pStatus
	Output
	 The status of the PIN. The field is a bitmask and MAY indicate multiple values.

· 0x00000000: Error

· 0x00000001: Ready (not locked)

· 0x00000002: PIN 1 lock feature enabled

· 0x00000004: Waiting for PIN 1

· 0x00000008: Waiting for PUK 1

· 0x00000010: PIN 2 lock feature enabled

· 0x00000020: Waiting for PIN 2

· 0x00000040: Waiting for PUK 2

· 0x00008000: No SIM detected

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Hardware does not support requested function.

Change 6: GetNAA update & add return value for CMAPI_DevSrv_GetNAAavailable
5.3.4 CMAPI_DevSrv_GetNAAavailable()
The CMAPI_DevSrv_GetNAAavailable() function is used to get all the available NAAs and the corresponding Application labels.
	Prototype

	dword CMAPI_DevSrv_GetNAAavailable (dword* pHandle,
NAAnametype* pstNAAList, dword* dwNAAListsize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pstNAAList
	Output
	Struct NAAnametype

{

 string * strNAAname

 string * strApplicationLabel

}

The NAA name list

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.
Application Label (see [ETSI TS 102 221]) corresponding to the NAA or empty if SIM or R-UIM or if there is no Application Label available. It is recommended that the length does not exceed 32 bytes.

	dwNAAListsize
	Input/Output
	The number of the array pointed by the pstNAAname, if the pstNAAname is null, this will contains the number of elements in the list

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	The size for the pstNNAlist buffer is not sufficient, the dwNAAListsize will contain the number of the elements in the list.

	0Xff
	Not supported by the device (if a device does not support the feature)

Change 7: Update all functions of Device service
TS editor to update all functions of device service as the following example:

CMAPI_DevSrv_ GetDevStatus ()

The CMAPI_DevSrv_ GetDevStatus () function retrieves the device status.
	Prototype

	dword CMAPI_DevSrv_ GetDevStatus (dword* pHandle, int * penDevStatus,)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	penDevStatus
	Output
	Pointer to get the device status in bitmap

Bit 7 | Bit 6 | Bit 5 | Bit 4 || Bit 3 | Bit 2 | Bit 1 | Bit 0

N/A | N/A | N/A | N/A || N/A | N/A | device availability | device presence

Device unplugged : (in binary) 0 0 0 0 0 0 0 0 (this value can used for unplugged and for unknown status)

Device plugged but unavailable : 0 0 0 0 0 0 0 1

Device plugged and available : 0 0 0 0 0 0 1 1

Change 8: To add in Appendix C a typical scenario for CM applications
Appendix C. Typical scenario for use of OpenCMAPI in Mobile Broadband (Laptop context)

C.1 Typical Scenario in laptop environment

C.1.1

C.1.1.1

A typical scenario for the use of OpenCMAPI in a laptop environment with the possibility of having multiple devices would be

1.
On start-up, the CM application calls CMAPI_OpenAPI()

2.
The CM application registers for callback “DeviceChanges”

3.
The CM application enumerates all currently available devices through the function CMAPI_DeviceDiscovery_DetectDevices()
4.
The CM application opens one or several devices with the function CMAPI_DeviceDiscovery_OpenDevice()
5.
The “DeviceChanges” callback is called when device availability changes

6.
The CM application can open and close devices as needed
7.
The CM application calls CMAPI_CloseDevice() to close a specific device or all
8.
The CM application unregisters “DeviceChanges” callback

9.
The CM application calls CMAPI_CloseAPI() when it closed
C.2 Example with multiple devices

To be provided later (based on the example presented by Orange (cf. OMA-CD-OpenCMAPI-2011-0021-INP_Implementation_Options)

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

