Doc# OMA-CD-OpenCMAPI-2012-0029-CR_CONRR_Comments_D299[image: image1.emf]

Device driver installer

Change Request

Doc# OMA-CD-OpenCMAPI-2012-0029-CR_CONRR_Comments_D299
Change Request

Change Request

	Title:
	CR to Close OpenCMAPI CONRR Comment D299
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD OpenCMAPI

	Doc to Change:
	OMA-TS-OpenCMAPI-V1_0-20120213-D

	Submission Date:
	15th Feb 2012

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Thierry Berisot, Deutsche Telekom, thierry.berisot@telekom.de

	Replaces:
	

1 Reason for Change

This CR proposes resolutions for the following OpenCMAPI CONRR comment:
	D299
	2011.12.20
	Q/T
	Appendix C
	Source: DTAG

Form: doc#CONR-2011-0141

Comment:

This needs to be improved to detail implementation /deployment scenario as a guideline for implementation reference.

In particular it should mentioned if the OpenCMAPI is a dll or a service and the impacts on multiple instances support

Proposed Change:

DTAG will provide a CR at this effect
	Status: OPEN

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The CD OpenCMAPI SWG should review and agree this CR and close the comment D299.

6 Detailed Change Proposal

Change 1: Replace Appendix C by the following
Appendix C. Typical scenario for use of OpenCMAPI in Mobile Broadband (Laptop context)

C.1

1.
2.
3.
4.
5.
6.
7.
8.
9.
C.2

C.3 Typical Scenario in laptop environment – Installation user experience

10. The user plug in the USB modem into the laptop

11. The installation process starts

12. When the installation is finished, the CM Application is launched

13. The user starts using the CM Application

C.4 Typical Scenario in laptop environment – CM Application device management

A typical scenario for the use of OpenCMAPI in a laptop environment with the possibility of having multiple devices would be:

1. On start-up, the CM Application calls CMAPI_API_Open()

2. The CM calls CMAPI_Callback_Register() and register for CMAPI_Callback_DeviceChanged
3. The CM Application initiates enumeration of available devices by calling the function CMAPI_Discovery_DetectDevices()

4. The OpenCMAPI calls the callback CMAPI_Callback_DetectDevicesComplete() which provides a list of available devices.
5. The CM Application opens one or several devices of the available devices with the function CMAPI_Discovery_OpenDevice (pUniqueDeviceIdentifier)

6. When the device has been successfully opened, the CMAPI_Discovery_OpenDevice returns a device handle. The CM Application stores this handle for future use. Example: a system has two available devices, one modem and one WLAN device. The CM Application decides to open both devices; it saves the handles in two different variables: “modemHandle” and “wlanHandle”.
7. The device handle is used to reference the device in all “device related” API function call; example CMAPI_Information_GetPINStatus (modemHandle..) and CMAPI_WLAN_Connect (wlanHandle…)
8. The CMAPI_Callback_DeviceChanged callback is called when the availability of OpenCMAPI devices changes. Example: the modem which was opened in previous step is unplugged. Shortly after it has been unplugged the OpenCMAPI invokes CMAPI_Callback_DeviceChanged with the handle parameter set to “modemHandle” and the devicestate parameter set to “Unplugged”.
9. The CM Application calls CMAPI_CloseDevice(modemHandle) to close the device, it is no longer available and of no interest (it is not mandatory to close it).

10. The same modem is plugged in again. Shortly after it has been plugged in, the OpenCMAPI calls CMAPI_Callback_DeviceChanged with the parameters set to pUniqueDeviceIdentifier and “plugged”. The CM Application calls CMAPI_Discovery_OpenDevice(pUniqueDeviceIdentifier) etc, see step 5. (In this example the handle parameter CMAPI_Callback_DeviceChanged equals 0 since the device is not already opened)

11. The CM Application calls CMAPI_CloseDevice (modemHandle) to close devices since it is no longer available and of no interest (it is not mandatory to close it though).

12. The CM Application calls CMAPI_CloseDevice(0) to close all devices.

13. The CM Application unregisters for callbacks via CMAPI_Callback_Unregister
14. The CM Application calls CMAPI_CloseAPI().

15. The CM Application exits.

C.5 Consideration for implementation in laptop environment

One Server many clients - Single server

In the “One Server many clients” implementation scenario one single OpenCMAPI server serves many CM clients. An example of this scenario is the built-in Wireless LAN Service in Windows, which serves many applications (Note: it does not mean the OpenCMAPI has to be a part of the OS). In this implementation scenario, the OpenCMAPI is implemented and deployed as a process (an executable application). The communication between client and server relies on a known inter-process communication technique, like Signals, Sockets, Pipes or Message Queues.

 One server per client – Multiple servers

In the “One Server per client” implementation scenario one OpenCMAPI server serves only one CM client. An example of this is vendor specific NDIS API. The NDIS API is implemented in a dll, the CM Application (the client in this aspect) loads the NDISApi.dll into its address space and call functions in the dll. One NDIS API can only serve one client at the time.

Implementation aspects

Client side aspects:

Implementing a CM Application that makes use of a dll (one server per client) is straight forward and is used nearly every application.

Implementing a CM Application that communicates via inter-process (the one server many clients scenario) is not common knowledge and requires a higher level of skill than the dll scenario.

Server side aspects:

One advantage of the single server implementation is that it is possible to share the communication resource (the modem) between several clients. Several CM Applications can for example send SMS in parallel, get the signal strength etc.

It is difficult to implement a shared communication based on the dll scenario.

If the CM Application terminates in an abnormal way, the dll is unloaded automatically by the OS. The underlying communication resources (like COM ports) are also handled automatically by the OS. However in the single server scenario the OS doesn’t handle a crashed client, it has to be done by the SMAPI server itself and is likely to cause problems. In this aspect the dll solution is more reliable.

Deployment:

In the single server scenario there will be only one instance installed per system. This can cause problems if one client relies on an ‘old’ server version and another different version. It is easy to maintain and upgrade a system that has a single OpenCMAPI server installed.

In the case of dll, there can be one or several versions of the OpenCMAPI installed on the system. The CM client may install the OpenCMAPI to a common directory or to a private directory. In the case of dll, it is not possible to upgrade all OpenCMAPI servers. Each CM Application has to maintain and upgrade its OpenCMAPI server.

[image: image2.jpg]
Figure 1: Open CM API as a server process
Summary:

The dll solution is a robust and reliable implementation technique known by ‘every’ developer. However the dll solution does not offer parallel client sever communication and it is more difficult to maintain and upgrade already deployed applications.

If parallel communication and centralized maintenance and upgrade of deployed CM servers is a strong requirement, then the “One Server many clients - Single server” is the best option. In all other cases the dll solution “One server per client – Multiple servers” is probably preferable.
Typical Scenario in laptop environment - Deployment and Installation

Concerning the deployment and installation of a CM Application for an USB modem, the following steps will typically be done by the CM Application developer:
1. The CM Application developer customizes/configures the generic OpenCMAPI redistributable installer (generic redistribution) to support the targeted devices and the CM Application equipments. To minimize the overall package size some components can be excluded. Components that may be excluded are: WLAN, GPS and CDMA. The generic redistribution includes support for ‘all’ devices that conforms to the OpenCMAPI. To minimize the overall package size device support for ‘unneeded’ devices can be excluded.

2. The result of the previous configuration process is a custom OpenCMAPI redistributable installer (custom redistribution) which supports one or several devices. The custom redistribution includes the necessary device drivers and the selected OpenCMAPI components as well as installation logic.

3. The CM Application developer creates an installer which includes the CM Application and the custom redistribution.

4. The CM Application installer is deployed on device memory, the internet or preinstalled on target machines.

5. The custom redistribution installer is typically launched from within the main CM Application installer.

Figure 2: Configuration of OpenCMAPI redistributable installer

Figure 3: Example of CM Application installer

CMAPI component installer

CMAPI custom redistributable installer

�

Main CM Application installer

Custom CMAPI redistributable installer (custom redist)

Configuration and customization: include and exclude device support, include and exclude CMAPI components

Generic CMAPI redistributable installer (generic redist)

Full featured Connection Manager Application, CMAPI read-write access

CMAPI proxy dll

Mini CM Application: Show new SMS, CMAPI read-only access

Mini CM Application: Show connect status, show signal strength: CMAPI read-only access

Mini CM Application: Show GPS data: CMAPI read-only access

CMAPI proxy dll

CMAPI proxy dll

CMAPI proxy dll

CMAPI Server process

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

