OMA-TS-OpenCMAPI-V1_0-20120413-D
Page 141 V(194)

	[image: image7.png]Generic CMAPT redistributable installer
(generic redistributable)

Configuration and customization: include
and exclude device support, include and
exclude CMAPI components

Custom CMAPI redistributable installer
(custom redistributable)

	

	Open Connection Manager API

	Draft Version 1.0 – 13 April 2012

	Open Mobile Alliance

	OMA-TS-OpenCMAPI-V1_0-20120413-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

81.
Scope

2.
References
9
2.1
Normative References
9
2.2
Informative References
10
3.
Terminology and Conventions
11
3.1
Conventions
11
3.2
Definitions
11
3.3
Abbreviations
12
4.
Introduction
15
4.1
Version 1.0
15
5.
Design Convention and data structure definitions
16
5.1
Design convention
16
5.2
Optional Function (s)
16
5.3
Data Type Definitions
16
5.3.1
RadioType
16
5.3.2
RadioState
17
5.3.3
RFInfoType
17
5.3.4
PLMNNameType
18
5.3.5
NetworkInfoType
18
5.3.6
CellularProfileType
18
5.3.7
QoSStructure
19
5.3.8
WLAN SecurityType
21
5.3.9
WLANNetwork
21
5.3.10
Located_WLANNetwork
22
5.3.11
ConnectedParameters
23
5.3.12
EAPAuthenticationMethod
23
5.3.13
SMSRecord
23
5.3.14
PINPUKStatusType
25
5.3.15
UICC Status Words
26
5.3.16
CallbackStatus
27
5.3.17
CallbackID
27
6.
CMAPI-1
29
6.1
Introduction
29
6.2
API Management
29
6.2.1
CMAPI_API_Open()
29
6.2.2
CMAPI_API_Close()
30
6.3
Device Discovery APIs
31
6.3.1
CMAPI_Discovery_DetectDevices()
31
6.3.2
CMAPI_Discovery_GetDevice()
31
6.3.3
CMAPI_Discovery_OpenDevice()
33
6.3.4
CMAPI_Discovery_CloseDevice()
34
6.4
Cellular Network Management APIs
35
6.4.1
CMAPI_Network_GetRFInfo()
35
6.4.2
CMAPI_Network_GetHomeInformation ()
35
6.4.3
CMAPI_Network_GetServingInformation ()
35
6.5
Connection Management APIs
38
6.5.1
CMAPI_NetConnectSrv_MgrCellularProfile()
38
6.5.2
CMAPI_NetConnectSrv_GetCellularProfile()
39
6.5.3
CMAPI_NetConnectSrv_GetCellularProfileList()
39
6.5.4
CMAPI_NetConnectSrv_SelectNetwork ()
39
6.5.5
CMAPI_NetConnectSrv_GetNetworkList_Sync()
41
6.5.6
CMAPI_NetConnectSrv_GetNetworkList_Async()
42
6.5.7
CMAPI_NetConnectSrv_GetCurrentConnType()
43
6.5.8
CMAPI_NetConnectSrv_Connect_Async ()
43
6.5.9
CMAPI_NetConnectSrv_Disconnect_Async()
43
6.5.10
CMAPI_NetConnectSrv_CancelConnect_Async()
45
6.6
Network Management APIs
47
6.6.1
CMAPI_NetCon_GetConnectionStatus()
47
6.6.2
CMAPI_NetCon_SetAutoConnectMode()
47
6.6.3
CMAPI_NetCon_SetDefaultProfile()
49
6.6.4
CMAPI_NetCon_SetPermittedBearers()
50
6.6.5
CMAPI_NetCon_GetPermittedBearers()
51
6.7
CDMA2000 APIs
52
6.7.1
CMAPI_cdma2000_SetACCOLC ()
52
6.7.2
CMAPI_cdma2000_GetACCOLC()
52
6.7.3
CMAPI_cdma2000_SetCDMANetworkParameters()
53
6.7.4
CMAPI_cdma2000_GetCDMANetworkParameters()
53
6.7.5
CMAPI_cdma2000_GetANAAAAAuthenticationStatus()
56
6.7.6
CMAPI_cdma2000_GetPRLVersion()
56
6.7.7
CMAPI_cdma2000_GetERIFile()
56
6.7.8
CMAPI_cdma2000_ActivateAutomatic()
58
6.7.9
CMAPI_cdma2000_ActivateManual()
58
6.7.10
CMAPI_cdma2000_ValidateSPC()
59
6.7.11
CMAPI_OMADM_StartSession()
60
6.7.12
CMAPI_OMADM_CancelSession()
61
6.7.13
CMAPI_OMADM_GetSessionInfo()
62
6.7.14
CMAPI_OMADM_GetPendingNIA()
62
6.7.15
CMAPI_OMADM_SendSelection()
64
6.7.16
CMAPI_OMADM_GetFeatureSettings()
65
6.7.17
CMAPI_OMADM_SetProvisioningFeature()
66
6.7.18
CMAPI_OMADM_SetPRLUpdateFeature()
66
6.7.19
CMAPI_OMADM_SetFirmwareUpdateFeature()
66
6.7.20
CMAPI_OMADM_ResetToFactoryDefaults()
68
6.7.21
CMAPI_OMADM_InitiateOTASP()
69
6.7.22
CMAPI_OMADM_SetPRL()
69
6.7.23
CMAPI_MobileIP_SetState()
70
6.7.24
CMAPI_MobileIP_GetState()
71
6.7.25
CMAPI_MobileIP_SetActiveProfile()
71
6.7.26
CMAPI_MobileIP_GetActiveProfile()
71
6.7.27
CMAPI_MobileIP_SetProfile()
73
6.7.28
CMAPI_MobileIP_GetProfile()
74
6.7.29
CMAPI_MobileIP_SetParameters()
74
6.7.30
CMAPI_MobileIP_GetParameters()
77
6.7.31
CMAPI_MobileIP_GetLastError()
77
6.8
Device Service APIs
79
6.8.1
CMAPI_DevSrv_GetManufacturerName ()
79
6.8.2
CMAPI_DevSrv_GetManufacturerModel()
79
6.8.3
CMAPI_DevSrv_GetDeviceName()
80
6.8.4
CMAPI_DevSrv_GetHardwareVersion()
81
6.8.5
CMAPI_DevSrv_GetProductType()
81
6.8.6
CMAPI_DevSrv_GetIMSI()
81
6.8.7
CMAPI_DevSrv_GetMDN()
83
6.8.8
CMAPI_DevSrv_GetIMEI()
84
6.8.9
CMAPI_DevSrv_GetESN()
84
6.8.10
CMAPI_DevSrv_GetMEID()
84
6.8.11
CMAPI_DevSrv_GetMSISDN()
86
6.8.12
CMAPI_DevSrv_GetDeviceStatus ()
87
6.8.13
CMAPI_DevSrv_GetFirmwareVersion()
87
6.8.14
CMAPI_DevSrv_GetOpenCMAPIVersion()
88
6.8.15
CMAPI_DevSrv_GetRFSwitch()
88
6.8.16
CMAPI_DevSrv_SetRadioState()
90
6.8.17
CMAPI_DevSrv_SetRadioState_Async()
90
6.8.18
CMAPI_DevSrv_GetControlKeyStatus()
91
6.8.19
CMAPI_DevSrv_DeactivateControlKey()
93
6.8.20
CMAPI_DevSrv_UnblockControlKey() (Optional)
93
6.9
PINs/PUKs Management APIs
96
6.9.1
CMAPI_DevSrv_GetNAAavailable()
96
6.9.2
CMAPI_DevSrv_EnablePIN()
97
6.9.3
CMAPI_DevSrv_DisablePIN()
97
6.9.4
CMAPI_DevSrv_VerifyPIN()
99
6.9.5
CMAPI_DevSrv_UnblockPIN()
99
6.9.6
CMAPI_DevSrv_ChangePIN()
100
6.10
UICC Management APIs
102
6.10.1
CMAPI_UICC_GetICCID()
102
6.10.2
CMAPI_UICC_GetTerminalProfile()
102
6.10.3
CMAPI_UICC_SetTerminalProfile()
103
6.10.4
CMAPI_UICC_SendToolKitEnvelopeCommand()
103
6.10.5
CMAPI_UICC_SendTerminalResponse()
105
6.11
WLAN APIs
107
6.11.1
CMAPI_WLAN_IsSupported()
107
6.11.2
CMAPI_WLAN_AddKnownNetwork()
107
6.11.3
CMAPI_WLAN_UpdateKnownNetwork()
108
6.11.4
CMAPI_WLAN_DeleteKnownNetwork()
109
6.11.5
CMAPI_WLAN_GetKnownNetwork()
110
6.11.6
CMAPI_WLAN_GetScanResults()
110
6.11.7
CMAPI_WLAN_Scan_Async()
111
6.11.8
CMAPI_WLAN_Connect()
112
6.11.9
CMAPI_WLAN_ConnectKnownNetwork()
113
6.11.10
CMAPI_WLAN_Disconnect()
114
6.11.11
CMAPI_WLAN_GetConnectionMode()
114
6.11.12
CMAPI_WLAN_SetConnectionMode()
115
6.11.13
CMAPI_WLAN_ResetDevice()
116
6.11.14
CMAPI_WLAN_GetConnectedParameters()
116
6.11.15
CMAPI_WLAN_SetConnectedParameters()
117
6.11.16
CMAPI_WLAN_CancelOperation()
118
6.11.17
CMAPI_WLAN_ConnectWPS()
119
6.11.18
CMAPI_WLAN_ConnectPinWPS()
119
6.11.19
CMAPI_WLAN_ConnectionState()
120
6.11.20
CMAPI_WLAN_ScanNetwork()
121
6.12
Statistics APIs
122
6.12.1
CMAPI_NetStatistic_GetConnectionStatistics()
122
6.13
Information Status APIs
123
6.13.1
CMAPI_Information_GetPINStatus()
123
6.13.2
CMAPI_Information_GetPLMNName()
123
6.13.3
CMAPI_Information_GetNetworkSelectionMode()
123
6.13.4
CMAPI_Information_GetSignalStrength()
125
6.13.5
CMAPI_Information_GetCSNetworkRegistration()
126
6.13.6
CMAPI_Information_GetPSNetworkRegistration()
126
6.13.7
CMAPI_Information_GetAPN()
126
6.13.8
CMAPI_Information_GetIPAddress()
128
6.13.9
CMAPI_Information_GetRoamingStatus()
129
6.13.10
CMAPI_Information_GetDriverVersion()
130
6.13.11
CMAPI_Information_GetRATType()
131
6.13.12
CMAPI_Information_GetQoS()
131
6.13.13
CMAPI_Information_GetWLANConnection()
134
6.13.14
CMAPI_Information_GetRadioState()
134
6.14
SMS Management APIs
137
6.14.1
CMAPI_SMS_Send()
137
6.14.2
CMAPI_SMS_Get()
137
6.14.3
CMAPI_SMS_Delete()
138
6.14.4
CMAPI_SMS_GetIDList()
139
6.14.5
CMAPI_SMS_Update()
140
6.14.6
CMAPI_SMS_GetSMSCAddress()
140
6.14.7
CMAPI_SMS_SetSMSCAddress()
140
6.14.8
CMAPI_SMS_GetValidityPeriod()
142
6.14.9
CMAPI_SMS_SetValidityPeriod()
142
6.14.10
CMAPI_SMS_GetDeliveryReport ()
143
6.14.11
CMAPI_SMS_SetDeliveryReport ()
144
6.14.12
CMAPI_SMS_GetRecordCount()
144
6.14.13
CMAPI_SMS_GetUnreadRecordCount()
145
6.15
USSD Management APIs
147
6.15.1
CMAPI_USSD_Request()
147
6.15.2
CMAPI_USSD_Release()
147
6.16
GNSS APIs
149
6.16.1
CMAPI_GNSS_SetState()
149
6.16.2
CMAPI_GNSS_GetState()
149
6.16.3
CMAPI_GNSS_SetTrackingParameters()
150
6.16.4
CMAPI_GNSS_GetTrackingParameters()
150
6.16.5
CMAPI_GNSS_SetAGPSConfig()
152
6.16.6
CMAPI_GNSS_GetAGPSConfig()
153
6.16.7
CMAPI_GNSS_SetAutomaticTracking()
153
6.16.8
CMAPI_GNSS_GetAutomaticTracking ()
154
6.16.9
CMAPI_GNSS_GetDevicePosition()
155
6.16.10
CMAPI_GNSS_SetSystemTime()
155
6.17
Data Push Service Management APIs
157
6.17.1
CMAPI_Push_Enable()
157
6.17.2
CMAPI_Push_Disable()
157
6.17.3
CMAPI_Push_GetRadioType()
158
7.
CMAPI-2
160
7.1
Introduction
160
7.2
Registration APIs
160
7.2.1
CMAPI_Callback_Register()
160
7.2.2
CMAPI_Callback_Unregister()
160
7.3
Callback APIs
160
7.3.1
CMAPI_Callback_DetectDevicesComplete()
160
7.3.2
CMAPI_Callback_DeviceChanged()
162
7.3.3
CMAPI_Callback_GetNetworkList_Async_Complete()
162
7.3.4
CMAPI_Callback_Connect_Async_Complete()
162
7.3.5
CMAPI_Callback_Disconnect_Async_Complete()
164
7.3.6
CMAPI_Callback_CancelConnect_Async_Complete()
164
7.3.7
CMAPI_Callback_SessionStateChange()
165
7.3.8
CMAPI_Callback_BearerStatusChange()
165
7.3.9
CMAPI_Callback_TrafficChannelDormancy()
166
7.3.10
CMAPI_Callback_CDMA2000ActivationState()
167
7.3.11
CMAPI_Callback_ScanNetworkComplete()
167
7.3.12
CMAPI_Callback_RadioState()
168
7.3.13
CMAPI_Callback_SetRadioState_Async_Complete()
168
7.3.14
CMAPI_Callback_Roaming()
168
7.3.15
CMAPI_Callback_SignalStrength()
168
7.3.16
CMAPI_Callback_GNSS()
170
7.3.17
CMAPI_Callback_SMS()
171
7.3.18
CMAPI_Callback_ByteCount
171
7.3.19
CMAPI_Callback_USSD()
171
7.3.20
CMAPI_Callback_QoSChange()
171
7.3.21
CMAPI_Callback_RFInformationChange()
173
7.3.22
CMAPI_Callback_PINPUKStatus()
173
7.3.23
CMAPI_Callback_ScanComplete()
174
7.3.24
CMAPI_Callback_WLANNewAvailableNetwork()
174
7.3.25
CMAPI_Callback_WLANConnectionStatus ()
174
7.3.26
CMAPI_Callback_PUSHReceived()
175
7.3.27
CMAPI_Callback_OMADMStatus()
176
7.3.28
CMAPI_Callback_UICC_ToolKitProactiveCommand()
176
7.3.29
CMAPI_Callback_UICC_DeviceTerminalProfile()
178
8.
Error Logger
179
Appendix A.
Change History (Informative)
182
A.1
Approved Version History
182
A.2
Draft/Candidate Version <current version> History
182
Appendix B.
Static Conformance Requirements (Normative)
187
B.1
SCR for XYZ Client
187
B.2
SCR for XYZ Server
187
Appendix C.
Typical scenario for use of OpenCMAPI in Mobile Broadband - Laptop context (Informative)
188
C.1
Typical Scenario in laptop environment – Installation user experience
188
C.2
Typical Scenario in laptop environment – CM Application device management
188
C.3
Typical Scenario in laptop environment - Deployment and Installation
189
Appendix D.
Consideration for implementation (Informative)
191
D.1
One Server many clients - Single server
191
D.2
One server per client – Multiple servers
191
D.3
Implementation aspects
191
D.3.1
Client side aspects
191
D.3.2
Server side aspects:
191
D.3.3
Deployment
191
D.4
Summary
192

Figures

189Figure 1: Configuration of OpenCMAPI redistributable installer

190Figure 2: Example of CM Application installer

192Figure 3: Open CM API as a server process

Tables

9Table 1: Example Table

1.
Scope

This specification of the OpenCMAPI defines an interface, through which connection management services are made available to different applications.

The specification addresses the requirements enumerated in [OpenCMAPI-RD] and adheres to the architecture described in [OpenCMAPI-AD].
2. References
2.1 Normative References

	[3GPP TR 21.905]
	“TR 21.905 Technical Specification Group Services and System Aspects; Vocabulary for 3GPP Specifications”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/21_series/21.905/

	[3GPP TS 22.011]
	“TS 22.011 Technical Specification Group Services and System Aspects; Service accessibility”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/22_series/22.011/

	[3GPP TS 22.022]
	“TS 22.022 Technical Specification Group Services and System Aspects; Personalisation of Mobile Equipment (ME), Mobile functionality specification”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/22_series/22.022/

	[3GPP TS 22.030]
	“TS 22.030 Technical Specification Group Services and System Aspects; Man-Machine Interface (MMI) of the User Equipment (UE)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/22_series/22.030/

	[3GPP TS 22.101]
	“TS 22.101 Technical Specification Group Services and System Aspects; Service aspects; Service principles”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/22_series/22.101/

	[3GPP TS 23.003]
	“TS 23.003 Technical Specification Group Services and System Aspects; Numbering, addressing and identification”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/23_series/23.003/

	[3GPP TS 23.038]
	“TS 23.038 Technical Specification Group Services and System Aspects; Alphabets and language-specific information”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/23_series/23.038/

	[3GPP TS 24.090]
	“TS 24.090 Technical Specification Group Core Network and Terminals; Unstructured Supplementary Service Data (USSD)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/24_series/24.090/

	[3GPP TS 31.101]
	“TS 31.101 Technical Specification Group Core Network and Terminals; UICC-terminal interface; Physical and logical characteristics, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.101/

	[3GPP TS 31.111]
	“TS 31.111 Technical Specification Group Core Network and Terminals; Universal Subscriber Identity Module (USIM), Application Toolkit (USAT)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.111/

	[3GPP TS 31.102]
	“TS 31.102 Technical Specification Smart Cards; Characteristics of the Universal Subscriber Identity Module (USIM) application”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.102/

	[3GPP TS 31.103]
	“TS 31.103 Technical Specification Group Core Network and Terminals; Characteristics of the IP Multimedia Services Identity Module (ISIM) application”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.103/

	[3GPP TS 31.111]
	“TS 31.111 Technical Specification Group Core Network and Terminals; Universal Subscriber Identity Module (USIM), Application Toolkit (USAT)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.111/

	[3GPP TS 33.401]
	“TS 33.401 Technical Specification Group Services and System Aspects; 3GPP System Architecture Evolution (SAE); Security architecture”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/33_series/33.401/

	[3GPP TS 33.402]
	“TS 33.402 Technical Specification Group Services and System Aspects; System Architecture Evolution (SAE); Security aspects of non-3GPP accesses”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/33_series/33.402/

	[3GPP TS 51.011]
	“TS 51.011 Technical Specification Group Terminals; Specification of the Subscriber Identity Module-Mobile Equipment (SIM - ME) interface”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/51_series/51.011/

	[3GPP TS 51.014]
	“TS 51.014 Technical Specification Group Terminals; Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface (Release 4)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/51_series/51.014/

	[3GPP2 C.S0016]
	“Over-the-Air Service Provisioning of Mobile Stations in Spread Spectrum Systems”, 3rd Generation Partnership Project 2 (3GPP2), Technical Specification 3GPP2 C.S0016,
URL: http://www.3gpp2.org/

	[3GPP2 C.S0023]
	“Removable User Identity Module for Spread Spectrum Systems”, 3rd Generation Partnership Project 2 (3GPP2), Technical Specification 3GPP2 C.S0023,
URL: http://www.3gpp2.org/

	[3GPP2 C.S0035]
	“CDMA Card Application Toolkit (CCAT)”, 3rd Generation Partnership Project 2 (3GPP2), Technical Specification 3GPP2 C.S0035,
URL: http://www.3gpp2.org/

	[3GPP2 C.S0065]
	“Cdma2000 Application on UICC for Spread Spectrum Systems”, 3rd Generation Partnership Project 2 (3GPP2), Technical Specification 3GPP2 C.S0065,
URL: http://www.3gpp2.org/

	[3GPP2 C.S0068]
	“ME Personalization for cdma2000 Spread Spectrum Systems”, 3rd Generation Partnership Project 2 (3GPP2), Technical Specification 3GPP2 C.S0068,
URL: http://www.3gpp2.org/

	[DMClientAPIFw v1.0]
	“Enabler Release for OMA Device Management Client API framework”, OMA-ER-DMClientAPIfw-V1_0, Open Mobile Alliance™,
URL: http://www.openmobilealliance.org/

	[ETSI TR 102 216]
	“TR 102 216 Technical Report Smart Cards; Vocabulary for Smart Card Platform specifications”, v3.0.0, European Telecommunications Standards Institute (ETSI),
URL: http://www.etsi.org

	[ETSI TS 102 221]
	“TS 102 221 Technical Specification, Smart Cards; UICC-Terminal interface; Physical and logical characteristics”, European Telecommunications Standards Institute (ETSI),
URL: http://www.etsi.org

	[ETSI TS 102 223]
	“TS 102 223 Technical Specification, Smart Cards; Card Application Toolkit (CAT)”, European Telecommunications Standards Institute (ETSI),
URL: http://www.etsi.org

	[OpenCMAPI-AD]
	“Open Connection Manager API Architecture”, Open Mobile Alliance™, OMA-AD-OpenCMAPI-V1_0-20111101-C.doc,
URL:http://www.openmobilealliance.org/

	[OpenCMAPI-RD]

	“Open CM API Requirements”, Open Mobile Alliance™, OMA-RD-OpenCMAPI-V1_0-20111101-C.doc,
URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	AID
	Application IDentifier as defined in [ETSI TR 102 216] and specified in [ETSI TS 102 221].

	Cloud Device
	Device that needs to be connected and using online services to be fully functional.

	Connection Manager Application
	An entity or application that manages different network connections based on user profiles associated with these connections.

	CSIM
	A CDMA2000 Subscriber Identity Module is an application defined in [3GPP2 C.S0065] residing on the UICC to register services provided by 3GPP2 mobile networks with the appropriate security.

	Device
	.A device in the context of OpenCMAPI is defined as a hardware unit which is exposed through a proprietary driver and containing at least one radio for the purpose of two way communication. A device could contain more than one radio and in this case is referred to as a multi-function device. Example: 3GPP2 and also Wi-Fi/WLAN

	Dormant
	Connection still active but no traffic on tx and rx. In 3GPP context, PDP context is established but no traffic.

	ISIM
	An IP Multimedia Services Identity Module is an application defined in [3GPP TS 31.103] residing in the memory of the UICC, providing IP service identification, authentication and ability to set up Multimedia IP Services.

	NAA
	Network Access Application as defined in [ETSI TR 102 216]. Examples of NAA on UICC: CSIM, ISIM, USIM.

	Network Identifier
	Network Identifier as specified in [3GPP TS 23.003].

	Operator Identifier
	Operator Identifier as specified in [3GPP TS 23.003].

	Profile/User Profile/Connection Profile
	The term Profile or User Profile or Connection Profile will be used to identify the information needed to establish a connection. There are two types of Connection Profiles: cellular profiles for connection to cellular and WLAN profiles for connection to WLAN

	Push Service
	A service utilizing PUSH delivery mechanism that enables the mobile device to receive data traffic initiated by a dedicated server.

	QNC
	Quick Net Connect is a 2G data technology for circuit-switched 2G wireless networks

	R-UIM
	A Removable User Identity Module is a standalone module defined in [3GPP2 C.S0023] to register services provided by 3GPP2 mobile networks with the appropriate security.

	SIM
	A Subscriber Identity Module is a standalone module defined in [3GPP TS 51.011] to register services provided by 2G mobile networks with the appropriate security.

	UICC
	As defined in [OMA-DICT] and whose interface is specified in [3GPP TS 31.101].

	UIM
	A User Identity Module is a module defined in [3GPP2 C.S0023] to register services provided by 3GPP2 mobile networks with the appropriate security. The UIM can either be a removable UIM (R-UIM) or a non-removable UIM.

	USIM
	A Universal Subscriber Identity Module is an application defined in [3GPP TS 31.102] residing in the memory of the UICC to register services provided by 3GPP mobile networks with the appropriate security.

3.3
Abbreviations

	3GPP
	3rd Generation Partnership Project

	3GPP2
	3rd Generation Partnership Project 2

	AAA
	Authentication, Authorization and Accounting

	ACCOLC
	Access Overload Class

	AID
	Application Identifier

	AKA
	Authentication and Key Agreement

	AN-AAA
	Access Network AAA

	API
	Application Programming Interface

	APN
	Access Point Name

	ARA-M
	Access Rule Application Master

	ARF
	Access Rule Files

	CDMA
	Code Division Multiple Access

	CHAP
	Challenge Handshake Authentication Protocol

	CM
	Connection Manager

	CSIM
	CDMA2000 Subscriber Identity Module

	DM
	Device Management

	DNS
	Domain Name System

	EAP
	Extensible Authentication Protocol

	EDGE
	Enhanced Data rates for GSM Evolution

	ERI
	Enhanced Roaming Indicator

	ESN
	Electronic Serial Number

	ETSI
	European Telecommunications Standards Institute

	e-UTRAN
	evolved Universal Terrestrial Radio Access Network

	GAN
	Generic Access Network

	GERAN
	GSM EDGE Radio Access Network

	GNSS
	Global Navigation Satellite System

	GPRS
	General Packet Radio Service

	GPS
	Global Positioning System

	GSM
	Global System for Mobile communications

	HA
	Home Agent

	HSPA
	High Speed Packet Access

	ISIM
	IP Multimedia Services Identity Module

	LTE
	Long Term Evolution

	MAC
	Media Access Control

	MDN
	Mobile Directory Number

	MEID
	Mobile station Equipment Identifier

	MIN
	Mobile Identification Number

	MMS
	Multimedia Messaging Service

	MN-AAA
	Mobile Node AAA

	MN-HA
	Mobile Node Home Agent

	MSID
	Mobile Station Identifier

	MSISDN
	Mobile Station International Subscriber Directory Number

	NAA
	Network Access Application

	NDIS
	Network Driver Interface Specification

	NIA
	Network-Initiated Alert

	NMEA
	National Marine Electronics Association

	ODM
	Original Device Manufacturer

	OEM
	Original Equipment Manufacturer

	OMA
	Open Mobile Alliance

	OpenCMAPI
	Open Connection Manager (CM) Application Programming Interface (API)

	PAP
	Password Authentication Protocol

	PDN
	Public Data Network

	PIN
	Personal Identification Number

	PLMN
	Public Land Mobile Network

	PRI
	Preferred Roaming Indicator

	PRL
	Preferred Roaming List

	PSK
	PreShared Key

	PUK
	Personal Unlocking Key also called UNBLOCK PIN.

	QoS
	Quality of Service

	RAS
	Remote Access Service

	RAT
	Radio Access Technologies

	RFC
	Request For Comments

	RSSI
	Received Signal Strength Indicator

	RTN
	Reset to factory defaults

	R-UIM
	Removable User Identity Module

	SCI
	Slot Cycle Index

	SCM
	Station Class Mark

	SCP
	Session Configuration Protocol

	SID
	System Identifier

	SIM
	Subscriber Identity Module

	SMS
	Short Message Service

	SMS-C
	Short Message Service Center

	SN
	Sequence Number

	SPC
	Service Programming Code

	SSID
	Service Set Identifier

	UI
	User Interface

	UICC
	Universal Integrated Circuit card

	UIM
	User Identity Module

	UMA
	Unlicensed Mobile Access

	UMTS
	Universal Mobile Telecommunications System

	USIM
	Universal Subscriber Identity Module

	USSD
	Unstructured Supplementary Service Data

	UTRAN
	Universal Terrestrial Radio Access Network

	VPN
	Virtual Private Network

	WEP
	Wired Equivalent Privacy

	Wi-Fi
	Wireless Fidelity

	WiMAX
	Worldwide Interoperability for Microwave Access

	WISPr
	Wireless Internet Service Provider roaming

	WLAN
	Wireless Local Area Network

	WPA2
	Wi-Fi Protected Access Version 2

	WPS
	Wireless Protected Setup

	WWAN
	Wireless Wide Area Network

4. Introduction

With the multiplicity of networks available and the need for more connectivity, there is a market demand for a standardized API to provide connection management functionalities which would facilitate development and integration of Connection Manager Applications as well as to provide more status information about the connection to any application using mobile data services.

The goal of the OMA OpenCMAPI is to facilitate the development of, or even the adaptation of existing, Connection Manager Applications to the mobile environment and to provide additional services such as Information Status to applications relying on connectivity to mobile networks.

In this context, the Technical Specification for the OpenCMAPI provides resource definitions, data structures elements and defines APIs related to the connection management aspects.
4.1 Version 1.0

Version 1.0 of the Open CM API specification addresses the following aspects through the different Interfaces:

· [CMAPI-1]

· Security and concurrency control function , e.g. access control and authorization

· Device Discovery & Device Handling

· Device Services

· Cellular Network Connection Management

· PIN/PUK Management

· Interaction with the UICC

· WLAN connection management

· Information Status handling

· Statistics handling

· GPS handling

· SMS&USSD management

· Push Data service management

· [CMAPI-2]: Callbacks & Registration/Deregistration to receive callbacks

5. Design Convention and data structure definitions
5.1 Design convention

Throughout the document the following terms will be used to denote absolute sizes of memory:

· byte will be used to denote 8 bit data values,
· word will be used to denote 2 byte values,
· dword will be used to denote 2 word values,
· qword will be used to denote 2 dword values,

· byte parameter [256] will indicate a 256 bytes long parameters,
· UTF8 will be used to represent a UTF8 byte buffer with null terminating character (the API is responsible to convert all data strings received from the device into UTF8).
· All structure definitions within this specification will be finite in size.This will serve to allow the caller to allocate a single block of memory for each passed in parameter. Any variable length data (like UTF8 strings) will reside after the finite structure(s) in memory and a pointer will be used to indicate where UTF8 strings and other finite structures reside. Either the caller or callee will layout the structures in this memory, depending on if the values are input or output. The caller will layout the memory where there is some data input and the callee will be responsible to layout (or re-layout) the memory when the data is output (or input/output). In either output case, the callee will signal insufficient size with a return code and indicate the necessary minimum size with the corresponding size parameter.
Editor Note: to review the usage of pointer and the consistency of the related data type structures in the entire TS.
5.2 Optional Function (s)

If an API function is mentioned as Optional and not supported by the implementation of the OpenCMAPI, it shall at least support the call of the function and the dedicated generic return value.

5.3 Data Type Definitions
5.3.1 RadioType
	Definition RadioType

	This prototype defines an enumeration of radio types. The following enumeration will be used throughout this document to define which radio a function operates on.

	RadioType
	byte
	 The following radio types are supported:
· 0x01: GSM

· 0x02: WCDMA/UMTS

· 0x04: CDMA
· 0x08: EVDO
· 0x10: TD_SCDMA

· 0x20: LTE

· 0x40: WLAN

5.3.2 RadioState
	Definition RadioState

	This prototype defines an enumeration of radio power states.

	RadioState
	dword
	The following radio states are supported:

· 0x00000001: Radio On (Full Power)

· 0x00000002: Radio On (Power Saving)- Optional

· 0x00000003: Radio Off (Device still powered on)

· 0x00000004: Radio Off (Device Off including hardware switch)

5.3.3 RFInfoType

	Definition RFInfo Type

	This type defines a structure representing the information of a single RF link.

	Field Name
	Type
	Description

	pRadio
	RadioType
	See RadioType definition

	maxDataRateUL
	Dword
	Maximum bit rate supported for uplink in bit/s. The maximum data rate is set by the currently used technology on the network and the capability of the device and is the maximum supported which the device reports.

	maxDataRateDL
	Dword
	Maximum bit rate supported for downlink in bit/s. The maximum data rate is set by the currently used technology on the network and the capability of the device and is the maximum supported which the device reports.

	frequencyBand
	UTF8*
	Contains the frequency band of the radio. This MAY also contain a postfix qualifier where appropriate (EX: “900”, “1900 PCS”, “1800 DCS”)

	
	
	

	channelNumberUL
	UTF8*
	Channel number in use for the up link. May be comma separated if necessary. This is traffic channel only and does not include the control channels if used.

	
	
	

	channelNumberDL
	UTF8*
	Channel number in use for the down link. May be comma separated if necessary. This is traffic channel only and does not include the control channels if used.

	
	
	

5.3.4 PLMNNameType
	Definition PLMNNameType

	This prototype defines a structure which describes the information related to the PLMN name

	Field Name
	Type
	Description

	PLMNName
	byte*
	The name of the PLMN according to 3GPP and/or 3GPP2 name resolution [3GPP TS 22.101]

	PLMNNameLength
	dword
	The length of the name of the PLMN

	DCS
	word
	The Data Coding Scheme [3GPP TS 23.038] & [3GPP TS 31.101]

5.3.5 NetworkInfoType
	Definition NetworkInfoType

	This prototype defines a structure which describes the information related to the network / PLMN

	Field Name
	Type
	Description

	systemID
	dword
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	PLMNName
	PLMNNameType*
	The PLMN Name

	NetworkStatus
	dword
	Specifies the status of the network:
· 0x00:Registered

· 0x01: Available

· 0x02: Forbidden

	PreferredStatus
	dword
	Specifies if the Network is in the preferred PLMN list or not:

· 0x01: Network is in the preferred PLMN list

· 0x02: Network is NOT in the preferred PLMN list

5.3.6 CellularProfileType
	Definition CellularProfileType

	This prototype defines a structure which describes a Cellular Profile Type

	Field Name
	Type
	Description

	CellularProfileName
	UTF8*
	The name of the Cellular Profile

	UserName
	UTF8*
	The user name assotiated to the connection

	Password
	UTF8*
	The password assotiated with the connection

	PhoneNum
	UTF8*
	The phone number assotiated with the connection

	APN
	UTF8*
	The APN used for this connection

	IP
	UTF8*
	The IP address

	PrimaryDNS
	UTF8*
	The primary DNS

	SecondaryDNS
	UTF8*
	The secondary DNS

	AuthType
	dword
	The Authentication Protocol type:

· 0x00: CHAP only
· 0x01: PAP only
· 0x02: Automatic

	IPAddrType
	dword
	The type of the IP address:

· 0x00: IPv4
· 0x01: IPv6
· 0x02: IPv4v6

	UseDhcpForIP
	Boolean
	Use DHCP for IP address. If this is true, then the IP field is unused.

	UseDhcpForDNS
	Boolean
	Use DHCP for DNS address. If this is true, then the PrimaryDNS and SecondaryDNS fields are unused.

	TimeoutSeconds
	dword
	The time out in seconds

	WINSPreferred
	UTF8*
	Optional - The preferred WINS (Windows Internet Naming Service)

	WINSAlternated
	UTF8*
	Optional - The alternated WINS (Windows Internet Naming Service)

5.3.7 QoSStructure

	Definition QoSStructure

	This defines the structure used to communicate QoS event information.

	validFeatures
	dword
	Based on the different traffic classes various features in this method are valid/invalid. This parameter describes which values are valid. If the defined bit is not set it means the corresponding parameter is not used and should not be used for any purpose by the application.

· 0x00000001: Traffic Class

· 0x00000002: Maximum Bitrate

· 0x00000004: Guaranteed Bitrate

· 0x00000008: Delivery Order

· 0x00000010: Maximum SDU Size

· 0x00000020: SDU Format Information

· 0x00000040: SDU Error Ratio

· 0x00000080: Residual Bit Error Ratio

· 0x00000100: Delivery of Erroneous SDUs

· 0x00000200: Transfer Delay

· 0x00000400: Traffic Handling Priority

· 0x00000800: Allocation Retention Priority

· 0x00001000: Source Statistics Descriptor

· 0x00002000: Signaling Indication

· 0x00004000: Priority Level

· 0x00008000: Pre-emption Capability

· 0x00010000: Pre-emption Vulnerability

	trafficClass
	dword
	The traffic class defines the type of application for which the bearer service is optimized.

· 0x00: Conversational

· 0x01: Streaming

· 0x02 Interactive

· 0x03 Background

	maximumBitRate
	dword
	Maximum bitrate in kbps.

	guaranteedBitrate
	dword
	Guaranteed bitrate in kbps.

	deliveryOrder
	dword
	Indicates if in-sequence delivery is provided

· 0x00: Not provided

· 0x01: Provided

	maximumSDUSize
	dword
	The maximum SDU size for which the network will satisfy the negotiated QoS. In Octets.

	SDUFormatInformation
	dword
	The list of possible exact sized of SDUs supported

· 0x01:

· 0x02:

	SDUErrorRatio
	dword
	Indicates the fraction of SDUs lost or detected as erroneous.

	residualBitErrorRatio
	dword
	Indicates the undetected bit error ratio in the delivered SDUs

	deliveryOfErroneousSDUs
	dword
	Indicates whether SDUs detected as erroneous shall be delivered or discarded.

· 0x00: Yes

· 0x01: No

· 0x02: Detection is not used

	transferDelay
	dword
	Indicates maximum delay for 95th percentile of the distribution of delay for all delivered SDUs during the lifetime of a bearer service (reported in milliseconds).

	trafficHandlingPriority
	dword
	Defines the relative importance for handling of all SDUs belonging to the bearer compared to the SDUs of other bearers

	allocationRetentionPriority
	dword
	Defines the relative importance compared to other bearers for allocation and retention of the bearer.

	sourceStatisticsDescriptor
	dword
	Defines the characteristics of the source of submitted SDUs

· 0x00: Speech

· 0x01: Unknown

	signallingIndication
	dword
	Defines the signaling nature of the submitted SDUs.

· 0x00: Yes

· 0x01: No

	priorityLevel
	dword
	The Evolved Allocation/Retention Priority Level

	preemptionCapability
	dword
	The Evolved Allocation/Retention Pre-emption Capability

· 0x00: Yes

· 0x01: No

	preemptionVulnerability
	dword
	The Evolved Allocation/Retention Pre-emption Vulnerability

· 0x00: Yes

· 0x01: No

5.3.8 WLAN SecurityType
	Definition WLAN SecurityType

	This prototype defines an enumeration of security types for WLAN.

	WLANSecurityType
	dword
	 The following security types are supported:

· 0x00000001: Open (no security)

· 0x00000002: WEP

· 0x00000004: WPA

· 0x00000008: WPA2

· 0x00000010: WPA_ENTERPRISE

· 0x00000020: WPA2_ENTERPRISE

5.3.9 WLANNetwork

	Definition WLANNetwork

	This prototype defines a structure which describes a WLAN network

	Field Name
	Type
	Description

	pSSID
	UTF8*
	The service set identifier

	pBSSID
	UTF8*
	The basic service set identifier

	pFriendlyName
	UTF8*
	Optional - A name used to identify this network. If not filled, then the name used will be the SSID.

	WLANSecurityType
	dword
	The type(s) of security used for this network. See WLANSecurityType

	mode
	dword
	Specifies if the network can be automatically connected if located.

· 0x00000000: Manual

· 0x00000001: Automatic

	hidden
	dword
	Specifies if the SSID is being actively broadcast

· 0x00000000: SSID is broadcast

· 0x00000001: SSID is hidden

	pKey
	UTF8*
	Optional – This is only needed for items requiring a static key like WEP and PSK.

	EAPAuthenticationMethod
	dword
	Optional - The EAP Authentication Method used by the network.

	pEap
	byte*
	Optional - The EAP definition. This could be a proprietary format implementation of the Buffer (to be checked)

	pEapSize
	dword
	Contains the length in bytes of the EAP configuration. If not used should be set to “0”.

5.3.10 Located_WLANNetwork

	Definition Located_WLANNetwork

	This prototype defines a structure which describes a WLAN network.

	Field Name
	Type
	Description

	pNetwork
	WLANNetwork*
	Please see WLANNetwork

	rssi
	dword
	The signal strength in dBm

	known
	dword
	Identifies if this is a known network

· 0x00000000: Unknown

· 0x00000001: Known (Known networks are networks SSID or networks identifiers prelisted by the operator or that have already been used/predefined by the user)

5.3.11 ConnectedParameters

	Definition ConnectedParameters

	This prototype defines a structure which describes an existing network connection (currently applies only to WLAN)

	Field Name
	Type
	Description

	pIPAddress
	UTF8*
	The IP Address

	pSubnetMask
	UTF8*
	The subnet mask

	pHttpProxy
	UTF8*
	The Http proxy.

	pMACAddress
	UTF8*
	The MAC address

	pDefaultGateway
	UTF8*
	The default Gateway

5.3.12 EAPAuthenticationMethod
	Definition EAPAuthenticationMethod

	This prototype defines an enumeration of the most commonly EAP authentication methods supported.

	EAPAuthenticationMethod
	dword
	The following EAP Authentication methods are supported (in decimal format accordingly to IANA Extensible Authentication Protocol (EAP) Registry list):

· 4: MD5-Challenge

· 6: Generic Token Card (GTC)

· 13: EAP-TLS

· 17: LEAP

· 18: EAP-SIM

· 21: EAP-TTLS

· 23: EAP-AKA

· 25: PEAP

· 29: EAP MS-CHAP-V2

· 43: EAP-FAST
· 47: EAP-PSK

· 49: EAP-IKEv2

· 50: EAP-AKA’

5.3.13 SMSRecord
	Definition SMSRecord

	This prototype defines a structure which describes a SMS record

	Field Name
	Type
	Description

	msgID
	dword
	The message ID

	isRead
	dword
	A flag to indicate if the message in the inbox has been read or not:
· 0x00: read
· 0x01: unread

	position
	dword
	The current position of the message:
· 0x01: inbox
· 0x02: sentbox (the message has been sent out successfully)
· 0x03: draft box
· 0x04: outbox (the outgoing message)

	result
	dword
	The result of the action to send the SMS:
· 0x00: failed to send message;
· 0x01: succeeded to send message

	msgType
	dword
	The type of message:

· 0x00: normal message
· 0x01: message report
· 0x02: MMS alert
· 0x03: voice mail

	totalPack
	dword
	The total package number

	currentPack
	dword
	The current package sequence number

	refNumber
	dword
	The reference number of the SMS

	msgLocation
	dword
	To indicate where the SMS is stored:

· 0x00: in the SIM/R-UIM/NAA on UICC;
· 0x01: in the local device;
· 0x02: in the terminal device, like PC

	time
	UTF8*
	The time (local time) when the message was received in the inbox or was sent in the sandbox
The time format should follow : YYYY-MM-DD HH:MM:SS

	pPhoneNumber
	UTF8*
	The targeted phone number, each number length < 24, more than one number could be included, each of them is separated by ',', and "\0\0" indicates end of the send numbers, dynamic memory allocation

	charset
	word
	The charset of the user data of the SMS:
· 0X00: GSM 7 bit

· 0X01: GSM 8 bit

· 0X02: UCS2

	pMsgContent
	UTF8*
	The content of the message (length < 2048, "\0\0" indicates end of message, dynamic memory allocation)

5.3.14 PINPUKStatusType
	Definition PINPUKStatusType

	This prototype defines a structure which describes the information related to the status of the PIN or PUK

	Field Name
	Type
	Description

	pNAAName
	UTF8*
	The name of an active NAA.

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	pStatus
	byte
	The status of the PINs/PUKs. The field is a binary bitmask and MAY indicate multiple values.

· Bit 8 to Bit 1

· XXXXXXX0: PIN 1 not verified (PIN 1 lock feature disabled)

· XXXXXXX1: PIN 1 verified (PIN 1 lock feature enabled)

· XXXXXX0X: PIN 1 disabled

· XXXXXX1X: PIN 1 enabled

· XXXXX0XX: PIN 1 blocked

· XXXXX1XX: PIN 1 unblocked

· XXXX0XXX: PUK 1 blocked

· XXXX1XXX: PUK 1 unblocked

· XXX0XXXX: PIN 2 not verified (PIN 2 lock feature disabled)

· XXX1XXXX: PIN 2 verified (PIN 2 lock feature enabled)

· XX0XXXXX: PIN 2 disabled

· XX1XXXXX: PIN 2 enabled

· X0XXXXXX: PIN 2 blocked

	pPIN1retry
	byte
	The number of retry attempts left for the PIN 1 (in decimal format).

	pPUK1retry
	byte
	The number of retry attempts left for the PUK 1 (in decimal format).

	pPIN2retry
	byte
	The number of retry attempts left for the PIN 2 (in decimal format).

	pPUK2retry
	byte
	The number of retry attempts left for the PUK 2 (in decimal format).

5.3.15 UICC Status Words

The [ETSI TS 102 221] Status Words (see the following table as an example) defined for this function shall be available for CM Application developers into the logger:
	Status words (SW1 SW2)
	Description
	ENABLE PIN

	90 00
	
Normal ending of the command
	*

	91 XX
	
Normal ending of the command, with extra information from the proactive UICC containing a command for the terminal. Length 'XX' of the response data
	*

	62 00
	
No information given, state of non volatile memory unchanged
	*

	63 CX
	
Command successful but after using an internal update retry routine 'X' times

Verification failed, 'X' retries remaining (For the VERIFY PIN command, SW1SW2 indicates that the command was successful but the PIN was not correct and there are 'X' retries left. For all other commands it indicates the number of internal retries performed by the card to complete the command.)
	*

	64 00
	
No information given, state of non-volatile memory unchanged
	*

	65 00
	
No information given, state of non-volatile memory changed
	*

	65 81
	
Memory problem
	*

	67 XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Wrong length)
	*

	68 00
	
No information given
	*

	68 81
	
Logical channel not supported
	*

	68 82
	
Secure messaging not supported
	*

	69 00
	
No information given
	*

	69 83
	
Authentication/PIN method blocked
	*

	69 84
	
Referenced data invalidated
	*

	69 89
	
Command not allowed - secure channel - security not satisfied
	*

	6A 81
	
Function not supported
	*

	6A 86
	
Incorrect parameters P1 to P2
	*

	6A 88
	
Referenced data not found
	*

	6B 00
	
Wrong parameter(s) P1-P2
	*

	6E 00
	
Class not supported
	*

	6F XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Technical problem, no precise diagnosis)
	*

5.3.16 CallbackStatus

	Definition CallbackStatus

	This prototype defines an enumeration of callback status. This is necessary for those callbacks which are initiated with an explicit request.

	Status
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The device has entered a power state which does not allow the requested information to be retrieved.

	0x00000003
	The referenced device is no longer present.

	0x00000004
	Timeout occured

	0x00000005
	Network search timeout

5.3.17 CallbackID

	Definition CallbackID

	This prototype defines an enumeration of callback ID to register to or unregister from.

	Field Name
	Type
	Description

	CallbackID
	dword
	Callback ID:

· 0x00000001: Devices Detection Complete

· 0x00000002: Device Changed - Device Addition and Removal

· 0x00000003: GetNetworkList Async Complete

· 0x00000004: Connect Complete

· 0x00000005: Disconnect Complete

· 0x00000006: Cancellation of connection Complete

· 0x00000007: Session State Change

· 0x00000008: Bearer Status Change

· 0x00000009: Traffic Channel Dormancy

· 0x0000000A: CDMA 2000 Activation State

· 0x0000000B: ScanNetworkComplete

· 0x0000000C: Radio Power State Change
· 0x0000000D: SetRadioState Async Complete
· 0x0000000E: Roaming

· 0x0000000F: Signal Strengh
· 0x00000010: GNSS
· 0X00000011: SMS Received
· 0x00000012: Byte Count
· 0x00000014: USSD Message

· 0x00000015: QoS change

· 0x00000016: RF Information change

· 0x00000017: PIN PUK Status

· 0x00000018: WLAN Scan complete

· 0x00000019: WLAN New network available

· 0x0000001A: WLAN Connection Status

· 0X0000001B: PUSH message received

· 0x0000001C: OMA DM Status

· 0x0000001D: UICC ToolKit Proactive Command callback
· 0x0000001E: UICC Device Terminal Profile callback

5.3.18 NAANameType
	Definition NAANameType

	This prototype defines a structure which describes the NAA name.

	Field Name
	Type
	Description

	strNAAName
	UTF8*
	NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.
If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	strApplicationLabel
	UTF8*
	Application Label (see [ETSI TS 102 221]) corresponding to the NAA or empty if SIM or R-UIM or if there is no Application Label available. It is recommended that the length does not exceed 32 bytes.

6. CMAPI-1
6.1 Introduction

The CMAPI-1 interface is mainly a Synchronous Interface with maximum timeout and possibility of cancellation.

However, for long operations (typically more than 7 seconds before the result is available), Asynchronous versions of the API functions are specified in completion of their Synchronous version.

6.2 API Management

6.2.1 CMAPI_API_Open()

The CMAPI_API_Open() function is used to initialize the OpenCMAPI and also initialize an internal security context. The security request argument is intentionally unspecified. This allows the OpenCMAPI implementations the opportunity to implement innovative and value added security models.
The security request input serves as the credentials which authenticate the caller to the API. It is implementation specific and could consist of a buffer holding a username and password or something more complex such as a certificate. It is the API user responsibility to consult with the service provider in order to understand how to format the security request structure.
	Prototype

	dword CMAPI_API_Open (dword accessLevel, byte* pSecurityRequest, dword pSecurityRequestSize)

	Parameters

	Field Name
	Mode
	Description

	accessLevel
	Input
	The access level requested:

· 0x00000001 – Connection Manager Application
· 0x00000002 – Non Connection Manager Application
· 0xF0000000 - 0xFFFFFFFF – Reserved for proprietary access level implementation.

	pSecurityRequest
	Input
	The represents a proprietary means of identification and credential presentation to the OpenCMAPI implementation. Each OpenCMAPI vendor is able to customize the type and amount of data to be submitted.

	pSecurityRequestSize
	Input
	The size for the buffer in bytes of the security request structure.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded and the caller as been successfully authenticated.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The authentication has been denied. Please seek proper credentials for your access level.

	0x00000004
	The security request was malformed. Please consult vendor materials and/or output log.

6.2.2 CMAPI_API_Close()
The CMAPI_API_Close() function is used to deallocate any internal API structures including the security context.
	Prototype

	dword CMAPI_API_Close ()

	Parameters

	Field Name
	Mode
	Description

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.3 Device Discovery APIs
6.3.1 CMAPI_Discovery_DetectDevices()

The CMAPI_Discovery_DetectDevices() function is used to direct the OpenCMAPI to actively search for new devices and to check for removal of devices. This is a manually triggered operation. The OpenCMAPI implementation is likely able to alert the application as to a device addition/removal if the application registers for the “Device Detection callback” using the CMAPI_Callback_Register method.

	Prototype

	dword CMAPI_Discovery_DetectDevices (Callback method)

	Parameters

	Field Name
	Mode
	Description

	method
	Input
	The method to invoke when the detect devices is finished.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.3.2 CMAPI_Discovery_GetDevice()

The CMAPI_Discovery_GetDevice() function is used to discover information about the devices within the system.

The opaque handle or deviceID is used to eliminate any possible confusion resulting from one device appearing and another disappearing in a short timespan. The deviceID is supplied to the technology specific API calls in order to obtain more detailed information related to the device.

	Prototype

	dword CMAPI_Discovery_GetDevice (dword deviceID, RadioType* pRadio, dword* pDeviceCapability, dword* pConnectionType, dword* pDeviceType, UTF8* pDescription, dword* pDescriptionLength,)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The device ID of the device concerned

	pRadio
	Output
	See RadioType definition

	pDeviceCapability
	Output
	The additional capabilities not related to radio type supported by the device:

· 0x00000000: No additional capability
· 0x00000001: GPS
· 0x00000002: AGPS in the Control Plane
· 0x00000004: AGPS in the User Plane
· 0x00000008: Reserved for future use
· 0x00000010: Reserved for future use
· 0x00000020: Reserved for future use

· Any combination of the above

	pConnectionType
	Output
	The type of the device connection:
· 0x00000001: USB

· 0x00000002: IRDA

· 0x00000004: Bluetooth
· 0x00000008: Internal Bus
· 0x00000010: Serial
· Any combination of the above

	pDeviceType
	Output
	The type of device this message refers to.

· 0x00000001: Embedded modem

· 0x00000002: USB modem

· 0x00000003: Mobile phone acting as modem

	pDescription
	Output
	The description of the device. Intended to be descriptive and displayed by an application.

	pDescriptionLength
	Input/Output
	On input contains the length of the buffer in bytes of description or if insufficient contains the necessary size

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The deviceID references a non-existing device

	0x00000003
	The description buffer needs to be larger; the description length is set to the minimum number of bytes required.

	0x00000004
	The unique identifier buffer needs to be larger; the unique identifier length is set to the minimum number of bytes required.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.3.3 CMAPI_Discovery_OpenDevice()

The CMAPI_Discovery_OpenDevice() function is used to “open” a device within the system. The device is identified by the UniqueIdentifier obtained in earlier call to CMAPI_Discovery_DetectDevices(). The function returns an opaque handle or device ID which is used to eliminate any possible confusion resulting from one device appearing and another disappearing in a short timespan. The deviceID is supplied to the technology specific API calls in order to obtain more detailed information related to the device.

	Prototype

	dword CMAPI_Discovery_OpenDevice (dword* pDeviceID, UTF8* UniqueIdentifier)

	Parameters

	Field Name
	Mode
	Description

	pDeviceID
	Output
	An opaque handle which is used to identify and reference this device in other OpenCMAPI calls. The deviceID is valid from the moment the application receives it from CMAPI_Discovery_OpenDevice until it calls CMAPI_Discovery_CloseDevice. During this period it is a reference to this device. After CloseDevice has been called the deviceID has no meaning and should not be used again.

	UniqueIdentifier
	Input
	The unique identification of this specific device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The UniqueIdentifier is referencing a non-existing device

	0x00000003
	The device is already opened.

	0x00000004
	Maximum number of device that the API can handle per client is reached (can be 1), close another open device handle.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.3.4 CMAPI_Discovery_CloseDevice()

The CMAPI_Discovery_CloseDevice() function is used to “close” a device within the system. The device is identified by the deviceID obtained in earlier call to CMAPI_Discovery_OpenDevice().

	Prototype

	dword CMAPI_Discovery_CloseDevice (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	An opaque handle or deviceID which was obtained in a call to CMAPI_Discovery_OpenDevice. If deviceID is 0, all devices opened by the calling application will be closed.

Any outstanding operation will be terminated (e.g. Async operation)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The deviceID references a non-existing device or a device which is not open

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.4 Cellular Network Management APIs
6.4.1 CMAPI_Network_GetRFInfo()

The CMAPI_Network_GetRFInfo() function is used to get information about RF (Radio access technology, band class, data rate supported and channel)
	Prototype

	
dword CMAPI_Network_GetRFInfo (dword deviceID, RFInfo* pRFInfoList, dword* pRFInfoListSize, word* RFInfoListElements)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pRFInfoList
	Output
	The List of RF Information. See RFInfoType. The RFInfo structures will be laid out at the front of the structure.

	pRFInfoListSize
	Input/Output
	The number of bytes in the RFInfoList buffer.

	pRFInfoListElements
	Output
	The number of elements in the RF Information List

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	
	

	
	

	
	

	
	The RfInfoList buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.4.2 CMAPI_Network_GetHomeInformation ()
The CMAPI_Network_GetHomeInformation() function is used to get information about home network of the subscriber
	Prototype

	
dword CMAPI_Network_GetHomeInformation (dword deviceID, UTF8* homeNetworkName, dword* length)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	homeNetworkName
	Output
	MCC/MNC of home network

	length
	Output
	Buffer length

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Buffer not large enough

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.4.3 CMAPI_Network_GetServingInformation ()
The CMAPI_Network_GetServingInformation() function is used to get information about serving network of the subscriber
	Prototype

	
 dword CMAPI_Network_GetServingInformation (dword deviceID, UTF8* servingNetworkName, dword* length)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	servingNetworkName
	Output
	MCC/MNC of serving network

	length
	Output
	Buffer length

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Buffer not large enough

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.5 Connection Management APIs
6.5.1 CMAPI_NetConnectSrv_MgrCellularProfile()

The CMAPI_NetConnectSrv_MgrCellularProfile() function is used to manage cellular profiles, including add/delete/update a profile information.

	Prototype

	dword CMAPI_NetConnectSrv_MgrCellularProfile (dword deviceID, const UTF8* CellularProfileName, CellularProfileType* CellularProfile , dword Operation)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Cellular Profile Name, the unique identity for a profile

	CellularProfile
	Input
	The details information about the profile.

	Operation
	Input
	The operation type to operate the profile, including Add, Delete, Update:

· 0x01: Add a profile

· 0x02: Delete a profile

· 0x03: Update a profile

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The profile name is already existing, only happen when creating a profile with a existing name

	0X00000003
	The profile name does not exist (This happens when requesting to delete or update a cellular profile)

	0X00000004
	The profile can not be updated while currently in use (connected)

	0x00000005
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0xF0000001
	The cellular profile name is not valid

	0xF0000002
	The user name is not valid

	0xF0000003
	The password is not valid

	0xF0000004
	The phone number is not valid

	0xF0000005
	The APN is not valid

	0xF0000006
	The IP Address is not valid

	0xF0000007
	The primary DNS address is not valid

	0xF0000008
	The secondary DNS address is not valid

	0xF0000009
	The Auth type is not valid

	0xF000000a
	The IPAddrType is not valid

	0xF000000b
	The profile type is not valid

	0xF000000c
	The timeout is not valid

6.5.2 CMAPI_NetConnectSrv_GetCellularProfile()

The CMAPI_NetConnectSrv_GetCellularProfile () function is used to get the details of a specific Cellular Profile.
	Prototype

	dword CMAPI_NetConnectSrv_GetCellularProfile (dword deviceID, UTF8* CellularProfileName, CellularProfileType* pCellularProfile, dword* pCellularProfileSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The profile name for the Get operation

	pCellularProfile
	Output
	The details for the profile information

	pCellularProfileSize
	Input/Output
	The size of the cellular profile buffer on input or if insufficient contains the necessary size

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The profile name is not existing

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	
	The buffer size if insufficient.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.5.3 CMAPI_NetConnectSrv_GetCellularProfileList()

The CMAPI_NetConnectSrv_GetCellularProfileList() function is used to get a list of all Cellular Profile names.
	Prototype

	dword CMAPI_NetConnectSrv_GetCellularProfileList (dword deviceID, UTF8* pCellularProfileNameList, dword* pCellularProfileNameListSize, dword* CellularProfileNameListCount)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pCellularProfileNameList
	Output
	The buffer to contain the list of profile names. The Cellular Profile Name pointers will be laid out at the front of the buffer.

	pCellularProfileNameListSize
	Input/Output
	The size of the buffer on input or if insufficient contains the necessary size

	CellularProfileNameListCount
	Output
	Number of entries in the list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The buffer is not sufficient to hold the data, the pCellularProfileNameListSize will contain the minimum number of bytes required.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.5.4 CMAPI_NetConnectSrv_SelectNetwork ()

The CMAPI_NetConnectSrv_SelectNetwork () function is used to select the current network mode and PLMN.

	Prototype

	dword CMAPI_NetConnectSrv_SelectNetwork (dword deviceID, byte Mode, const UTF8* PLMNID, dword radio)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Mode
	Input
	The mode to select network mode:
· 0X00:automatic network selection

· 0X01:manual network selection

	PLMNID
	Input
	The PLMN ID is not used in the case of automatic network selection

	radio
	Input
	Which Radio technology is used = cf. RadioType definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The deviceID references a non-existent device or a device which is not open

	0x00000003
	The radio references a radio which the device does not support.

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.5.5 CMAPI_NetConnectSrv_GetNetworkList_Sync()
 The CMAPI_NetConnectSrv_GetNetworkList_Sync() will search and compile a list of available Networks. The calling thread will be blocked until the search has completed.
	Prototype

	dword CMAPI_NetConnectSrv_GetNetworkList_Sync (dword deviceID, dword Timeout, NetworkInfoType* pNetworkInfo, dword* pNetworkInfoSize, dword* pNetworkInfoCount)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Timeout
	Input
	The maximum time out for the network search (in seconds)

	pNetworkInfo
	Output
	The Network Information (see NetworkInfoType definition) buffer. The NetworkInfo structures will be laid out at the front of the buffer.

	pNetworkInfoSize
	Input/Output
	The size of the network info buffer or if insufficient contains the necessary size

	pNetworkInfoCount
	Output
	The total number of elements in the array of NetworkInfo

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	
	The size of the network info buffer is insufficient. pNetworkInfoSize contains the minimum number of bytes required.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.5.6 CMAPI_NetConnectSrv_GetNetworkList_Async()
The CMAPI_NetConnectSrv_GetNetworkList_Async () is used to initiate the search of the Network list. The calling thread returns immediately. The result is reported in callback CMAPI_Callback_GetNetworkList_Async_Complete().
	Prototype

	dword CMAPI_NetConnectSrv_GetNetworkList_Async (dword deviceID, dword Timeout)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Timeout
	Input
	The maximum time for the network search (in seconds).

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.5.7 CMAPI_NetConnectSrv_GetCurrentConnType()

The CMAPI_NetConnectSrv_GetCurrentConnType() function is used to get the current connection type.
	Prototype

	
dword NetConnectSrv_GetCurrentConnType (dword deviceID, dword* currentConnType)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	currentConnType
	Output
	The connection type: DIAL UP(RAS), NDIS

· 0x00: DIAL_UP(RAS)

· 0x01: NDIS

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.5.8 CMAPI_NetConnectSrv_Connect_Async ()

The CMAPI_NetConnectSrv_Connect_Async () function is used to connect to a network. CMAPI_NetConnectSrv_Connect_Async is asynchronous; it initiates a connection and then returns immediately. When the connection has finished the Callback CMAPI_Callback_Connect_Async_Complete is invoked.
	Prototype

	dword CMAPI_NetConnectSrv_Connect_Async (dword deviceID, dword ConnType, CellularProfileType* CellularProfile)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	ConnType
	Input
	The connection type: DIAL UP(RAS), NDIS

· 0x00: DIAL_UP(RAS)

· 0x01: NDIS

	CellularProfile
	Input
	The cellular profile information for connection

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The authentication is failed

	0X00000004
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	0x00000005
	The deviceID references a non-existent device or a device which is not open

	0x00000006
	The requested bearer is not possible

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.5.9 CMAPI_NetConnectSrv_Disconnect_Async()
The CMAPI_NetConnectSrv_Disconnect_Async() function is used to disconnect from the network. CMAPI_NetConnectSrv_Disconnect_Async is asynchronous; it initiates the disconnect operation and then returns immediately. When the disconnect operation has finished the Callback CMAPI_Callback_Disconnect_Async_Complete is invoked.
	Prototype

	dword CMAPI_NetConnectSrv_Disconnect_Async (dword deviceID, dword ConnType, CellularProfileType* CellularProfile)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	ConnType
	Input
	The connection type: DIAL UP (RAS), NDIS

· 0x00: DIAL_UP(RAS)

· 0x02: NDIS

	CellularProfile
	Input
	The profile information for disconnection

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	There is no connection to disconnect from

	0X00000004
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	0x00000005
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.5.10 CMAPI_NetConnectSrv_CancelConnect_Async()
The CMAPI_NetConnectSrv_CancelConnect_Async () function is used to cancel of connect operation (as a result of a call to CMAPI_NetConnectSrv_Connect_Async). CMAPI_NetConnectSrv_CancelConnect_Async is asynchronous; it initiates the cancelation of an ongoing connect operation and then returns immediately. When the cancellation of the connect operation has finished the Callback CMAPI_Callback_CancelConnect_Async_Complete is invoked.
	Prototype

	dword CMAPI_NetConnectSrv_CancelConnect_Async (dword deviceID, CellularProfileType* CellularProfile)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfile
	Input
	The profile information for disconnection

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	There is no connecting session for cancellation

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000004
	The Connection is releasing

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.6 Network Management APIs
6.6.1 CMAPI_NetCon_GetConnectionStatus()
The CMAPI_NetCon_GetConnectionStatus() is used to obtain information about the connection status.
	Prototype

	
 dword CMAPI_NetCon_GetConnectionStatus (dword deviceID, dword* connectionStatus, dword* pTypes, UTF8* IPAddress, qword* dataRate, qword* txPackets, qword* rxPackets, qword* txBytes, qword* rxBytes, dword* duration)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	connectionStatus
	Output
	Connection status values:

· 0x00000000: Connected

· 0x00000001: Disconnected (it may be possible to distinguish between passive and active disconnection)

· 0x00000002: Connecting

· 0x00000003: Disconnecting

· 0x00000004: Scanning

· 0x00000010: Unknown state

	pTypes
	Output
	Indication of the radio access technology currently used
In the case of a device with multiple radios, there MAY be multiple settings returned.
· 0x00000010: GSM service

· 0x00000020: GPRS service

· 0x00000040: EDGE service

· 0x00000100: CDMA service

· 0x00000200: QNC service

· 0x00000400: 1X-RTT service

· 0x00000800: EV-DO service

· 0x00001000: EV-DV service

· 0x00002000: IOTA service

· 0x00004000: IOTA REVA service

· 0x01000000: UMTS service

· 0x02000000: HSDPA service (Included for legacy purpose, not all operators use HSDPA+)

· 0x04000000: HSUPA service

· 0x08000000: HSPA Plus service

· 0x10000000: PHS service

· 0x20000000: FOMA service

· 0x40000000: LTE service

· 0x80000000: WLAN service

	IPAddress
	Output
	IPaddress on interface

	dataRate
	Output
	Connection Data Rate in kbit/s

	txPackets
	Output
	Number of packets transmitted since connection establishment

	rxPackets
	Output
	Number of packets transmitted since connection establishment

	txBytes
	Output
	Number of bytes transmitted since connection establishment

	rxBytes
	Output
	Number of bytes received since connection establishment

	duration
	Output
	Number of seconds elapsed since connection establishment

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.6.2 CMAPI_NetCon_SetAutoConnectMode()
The CMAPI_NetCon_SetAutoConnectMode() function is used to set/disable “autoconnect” mode. When the autoconnect functionality is triggered, the default profile for the device will be used to make the connection. The default profile must be set in the CMAPI_NetCon_SetDefaultProfile method.
	Prototype

	
dword CMAPI_NetCon_SetAutoConnectMode (dword deviceID, enum mode, UTF8* pinCode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	mode
	Input
	· Enable-home: Enable for home network

· Enable-all: Enable for home and roaming network

· Disable: Disable autoconnect

	pinCode
	Input
	PIN-code (if PIN protection is enabled)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0x00000022
	A default profile has not been set for this device.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.6.3 CMAPI_NetCon_SetDefaultProfile()
The CMAPI_NetCon_SetDefaultProfile() function is used to identify the profile that shall be used when the device is in auto connect mode (See CMAPI_NetCon_SetAutoConnectMode).
	Prototype

	
 dword CMAPI_NetCon_SetDefaultProfile (dword deviceID, UTF8* CellularProfileNamedefault)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileNamedefault

	Input
	The cellular profile name per default (reference CellularProfileName)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	
	The cellular profile name does not exist

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.6.4 CMAPI_NetCon_SetPermittedBearers()
The CMAPI_NetCon_SetPermittedBearers() function is used to restrict the permitted mobile bearer when connecting to the selected network.
	Prototype

	
 dword CMAPI_NetCon_SetPermittedBearers (dword deviceID, dword bearers)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	bearers
	Input
	Bearer (s) selected:
· 0x01: GSM

· 0x02: WCDMA/UMTS

· 0x04: CDMA

· 0x08: EVDO

· 0x10: TD_SCDMA

· 0x20: LTE
Automatic will be realized by selecting multiple bearers in the bitmap

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The deviceID references a non-existent device or a device which is not open

	0x00000003
	The device does not offer this capability

	0x00000004
	This configuration is not supported

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	
	The OpenCMAPI implementation cannot perform this operation since there is currently a connection which prevents the request. NOTE: The OpenCMAPI implementation may be able to apply the change in some conditions and may return success instead of this return code in some connected conditions.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.6.5 CMAPI_NetCon_GetPermittedBearers()
The CMAPI_NetCon_GetPermittedBearers() function is used to get the current permitted bearers.
	Prototype

	
 dword CMAPI_NetCon_GetPermittedBearers (dword deviceID, dword* bearers)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	bearers
	Output
	Bearer (s) selected:
· 0x01: GSM

· 0x02: WCDMA/UMTS

· 0x04: CDMA

· 0x08: EVDO

· 0x10: TD_SCDMA

· 0x20: LTE
Automatic will be realized by selecting multiple bearers in the bitmap

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7 CDMA2000 APIs
6.7.1 CMAPI_cdma2000_SetACCOLC ()
The CMAPI_cdma2000_SetACCOLC() function is used to set the Access Overload Class (ACCOLC) for cdma2000 devices.
	Prototype

	
 dword CMAPI_cdma2000_SetACCOLC (dword deviceID, UTF8* SPC, byte accolc)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SPC
	Input
	The Service Programming Code (SPC).

	accolc
	Input
	New value of Access Overload Class parameter (range 0 to 15).

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.2 CMAPI_cdma2000_GetACCOLC()

The CMAPI_cdma2000_GetACCOLC() function is used to retrieve the current value of the Access Overload Class (ACCOLC) for cdma2000 devices.
	Prototype

	
dword CMAPI_cdma2000_GetACCOLC (dword deviceID, byte* pAccolc)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pAccolc
	Output
	Pointer to current value of Access Overload Class parameter (range 0 to 15).

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.3 CMAPI_cdma2000_SetCDMANetworkParameters()

The CMAPI_cdma2000_SetCDMANetworkParameters() function is used to set the values of certain cdma2000-specific network parameters.
	Prototype

	
 dword CMAPI_cdma2000_SetCDMANetworkParameters (dword deviceID, UTF8* SPC, dword ForceRev0, dword CustomSCP, dword Protocol, dword Broadcast, dword Application, dword Roaming)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SPC
	Input
	The Service Programming Code (SPC).

	ForceRev0
	Input
	(Optional) Force CDMA 1x-EV-DO Rev. 0 mode

	CustomSCP
	Input
	(Optional) Use a custom config for CDMA 1x-EV-DO SCP

	Protocol
	Input
	(Optional) Protocol mask for custom SCP config

	Broadcast
	Input
	(optional) Custom mask for broadcast Session Configuration Protocol (SCP) configuration:

· 0x00000001: Generic broadcast enabled

· All other values reserved for future use

	Application
	Input
	(optional) Application mask for custom SCP configuration:

· 0x00000001: SN multiflow packet application

· 0x00000002: Enhanced SN multiflow packet application

· All other values reserved for future use

	Roaming
	Input
	(optional) Roaming preference:

· 0: Automatic

· 1: Home only

· 2: Affiliated only (restrict roaming to a network having a roaming agreement (affiliation) with the Home operator)
· 3: Home and Affiliated

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.4 CMAPI_cdma2000_GetCDMANetworkParameters()

The CMAPI_cdma2000_GetCDMANetworkParameters() function is used to retrieve the values of certain cdma2000-specific network parameters.
	Prototype

	
 dword CMAPI_cdma2000_GetCDMANetworkParameters (dword deviceID, byte* pSCI, byte* pSCM, byte* pRegHomeSID, byte* pRegForeignSID, byte* pRegForeignNID, dword* pBroadcast, dword* pApplication, dword* pRoaming)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pSCI
	Output
	Slot cycle index (0xFF if unknown)

	pSCM
	Output
	Station class mark (0xFF if unknown)

	pRegHomeSID
	Output
	Registration on home system:

· 0: Disabled

· 1: Enabled

· 0xFF: Unknown

	pRegForeignSID
	Output
	Registration on foreign system:

· 0: Disabled

· 1: Enabled

· 0xFF: Unknown

	pRegForeignNID
	Output
	Registration on foreign network:

· 0: Disabled

· 1: Enabled

· 0xFF: Unknown

	pBroadcast
	Output
	Custom mask for broadcast Session Configuration Protocol (SCP) configuration:

· 0x00000001: Generic broadcast enabled

· 0xFFFFFFFF: Unknown

· All other values reserved for future use

	pApplication
	Output
	Application mask for custom SCP configuration:

· 0x00000001: SN multiflow packet application

· 0x00000002: Enhanced SN multiflow packet application

· 0xFFFFFFFF: Unknown

· All other values reserved for future use

	pRoaming
	Output
	Roaming preference:

· 0: Automatic

· 1: Home only

· 2: Affiliated only

· 3: Home and Affiliated

· 0xFFFFFFFF: Unknown

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.5 CMAPI_cdma2000_GetANAAAAAuthenticationStatus()

The CMAPI_cdma2000_GetANAAAAAuthenticationStatus() function is used to retrieve the value of the most recent ANA AAA authentication attempt status for cdma2000 devices.
	Prototype

	
dword CMAPI_cdma2000_GetANAAAAAuthenticationStatus (dword deviceID, dword* pStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pStatus
	Output
	Outcome of the most recent ANA AAA authentication attempt:

· 0: Failure

· 1: Success

· 2: Not attempted

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.6 CMAPI_cdma2000_GetPRLVersion()

The CMAPI_cdma2000_GetPRLVersion() function is used to retrieve the value of the Preferred Roaming List (PRL) version in use for cdma2000 devices.
	Prototype

	
 dword CMAPI_cdma2000_GetPRLVersion (dword deviceID, word* pPRLVersion)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pPRLVersion
	Output
	PRL version number

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.7 CMAPI_cdma2000_GetERIFile()

The CMAPI_cdma2000_GetERIFile() function is used to retrieve the contents of the Enhanced Roaming Indicator (ERI) file in use for cdma2000 devices.
	Prototype

	
 dword CMAPI_cdma2000_GetERIFile (dword deviceID, byte* pFile, dword* pFileSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pFile
	Output
	Pointer to memory area that will contain contents of the ERI file when this function returns.

	pFileSize
	Input/Output
	On input, contains the maximum number of bytes that can be stored in the memory area pointed to by pFile; on output, contains the number of bytes actually written to the memory area by GetERIFile or if insufficient contains the necessary size

	
	
	

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	
	The pFile buffer was insufficient, pFileSize contains the minimum number of bytes required.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.8 CMAPI_cdma2000_ActivateAutomatic()

The CMAPI_cdma2000_ActivateAutomatic() function commands the device to perform automatic activation using a specified activation code.
	Prototype

	
 dword CMAPI_cdma2000_ActivateAutomatic (dword deviceID, UTF8* ActivationCode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	ActivationCode
	Input
	The activation code (maximum length is 12 characters).

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.9 CMAPI_cdma2000_ActivateManual()

The CMAPI_cdma2000_ActivateManual() function commands the device to perform manual activation using the specified parameters.
	Prototype

	
 dword CMAPI_cdma2000_ActivateManual (dword deviceID, UTF8* SPC, word SID, UTF8* MDN,
UTF8* MIN, dword PRLSize, UTF8* PRL, UTF8* MNHA, UTF8* MNAAA)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SPC
	Input
	The 6-digit Service Programming Code (SPC)

	SID
	Input
	System identification number (SID)

	MDN
	Input
	Mobile Directory Number (MDN) value

	MIN
	Input
	Mobile Identity Number (MIN) value

	PRL
	Input
	(Optional) PRL file contents

	PRLSize
	Input
	(Optional) Size in bytes of the Preferred Roaming List (PRL)

	MNHA
	Input
	(Optional) MN-HA value

	MNAAA
	Input
	(Optional) MN-AAA value

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.10 CMAPI_cdma2000_ValidateSPC()

The CMAPI_cdma2000_ValidateSPC() function commands the device to validate a Service Programming Code (SPC) [3GPP2 C.S0016].
	Prototype

	
 dword CMAPI_cdma2000_ValidateSPC (dword deviceID, UTF8* SPC)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SPC
	Input
	The SPC (six-digit value)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The SPC is valid.

	0X00000003
	The SPC is invalid.

	0x00000005
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.11 CMAPI_OMADM_StartSession()

The CMAPI_OMADM_StartSession() function starts an OMA DM session to configure the values of various cdma2000 network information as specified by the session type in its input parameter.
	Prototype

	
 dword CMAPI_OMADM_StartSession (dword deviceID, dword SessionType, dword* pSessionIdentifier)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SessionType
	Input
	Type of session to be started:

· 0: Client-initiated device configuration

· 1: Client-initiated PRL update

· 2: Client-initiated hands-free activation

· 3: (optional) Client-initiated Firmware Update

	pSessionIdentifier
	Output
	 Identifies the session and which can be referenced when required, such as tracking active sessions, cancelling the session, etc.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.12 CMAPI_OMADM_CancelSession()

The CMAPI_OMADM_CancelSession() cancels an ongoing OMA DM session.
	Prototype

	
 dword CMAPI_OMADM_CancelSession (dword deviceID, dword sessionIdentifier)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	sessionIdentifier
	Input
	(optional) The session identifier which was returned when the session was started.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	Unrecognized session identifier.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.13 CMAPI_OMADM_GetSessionInfo()

The CMAPI_OMADM_GetSessionInfo() function returns information about the currently active OMA DM session (or the most recent session if none is active).
	Prototype

	
dword CMAPI_OMADM_GetSessionInfo (dword deviceID, dword SessionType, dword SessionState, dword FailureReason, byte RetryCount, word SessionPause, word TimeRemaining)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SessionType
	Input
	Type of session:

· 0: Client-initiated device configuration

· 1: Client-initiated PRL update

· 2: Client-initiated hands-free activation

· 3: Device-initiated hands-free activation

· 4: Network-initiated PRL update

· 5: Network-initiated device configuration

· 6: (optional) Client-initiated firmware update

· 7: (optional) Network-initiated firmware update

	SessionState
	Input
	State of the session:

· 0x00: Complete, information was updated

· 0x01: Complete, update information unavailable

· 0x02: Complete, no new update available

· 0x03: Failed
· 0x04: Retrying

· 0x05: Connecting

· 0x06: Connected

· 0x07: Authenticated

· 0x08: Mobile Directory Number (MDN) downloaded

· 0x09: Mobile Station Identifier (MSID) downloaded

· 0x0A: PRL downloaded

· 0x0B: Mobile IP profile downloaded

	FailureReason
	Input
	Session failure reason:

· 0x00: Unknown

· 0x01: Network is unavailable

· 0x02: Server is unavailable

· 0x03: Authentication failed

· 0x04: Maximum number of retries exceeded

· 0x05: Session is canceled

	RetryCount
	Input
	Session retry count

	SessionPause
	Input
	Time (in seconds) to pause between retries

	TimeRemaining
	Input
	Time (in seconds) remaining until next retry (when session state is Retrying)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.14 CMAPI_OMADM_GetPendingNIA()

The CMAPI_OMADM_GetPendingNIA() function returns information about a Network-Initiated Alert (NIA) that is commanding the device to establish a DM session with a DM server to perform the requested configuration operation.
	Prototype

	
dword CMAPI_OMADM_GetPendingNIA (dword deviceID, dword* pSessionType, word* pSessionID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pSessionType
	Output
	Type of session to be started:

· 0x04: Network-initiated PRL update

· 0x05: Network-initiated device configuration

· 0x06: (optional) Firmware Update

	pSessionID
	Output
	Session ID for the NIA request

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.15 CMAPI_OMADM_SendSelection()

The CMAPI_OMADM_SendSelection() returns the response from the device to a Network-Initiated Alert (NIA) that is commanding the device to establish a DM session. The device/user can either reject or accept the session request from the network.
	Prototype

	
dword CMAPI_OMADM_SendSelection (dword deviceID, dword selection, dword sessionID, dword defer)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	selection
	Input
	Response selected to the NIA:

· 0x00000000: Reject

· 0x00000001: Accept

· 0x00000002: Defer

	sessionID
	Input
	Session ID from the NIA request

	defer
	Input
	Specifies that the server is able to defer.

· 0x00000000: Defer allowed

· 0x00000001: Defer is not allowed

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.16 CMAPI_OMADM_GetFeatureSettings()

The CMAPI_OMADM_GetFeatureSettings() function returns information about the settings of OMA DM features, indicating for each one whether OMA DM can be currently used for the specified configuration operation.
	Prototype

	
 dword CMAPI_OMADM_GetFeatureSettings (dword deviceID, dword* pProvisioning, dword* pPRLUpdate, dword* pFirmwareUpdate)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pProvisioning
	Output
	Setting of device provisioning service update feature:

· 0x00: Disabled

· 0x01: Enabled

	pPRLUpdate
	Output
	Setting of PRL service update feature:

· 0x00: Disabled

· 0x01: Enabled

	pFirmwareUpdate
	Output
	(optional) Setting of Firmware update feature:

· 0x00: Disabled

· 0x01: Enabled

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.17 CMAPI_OMADM_SetProvisioningFeature()

The CMAPI_OMADM_SetProvisioningFeature() function is used to enable and disable the OMA DM device service provisioning update feature.
	Prototype

	
 dword CMAPI_OMADM_SetProvisioningFeature (dword deviceID, dword provFeatureState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	provFeatureState
	Input
	State of device provisioning service update:

· 0x00: Disable
· 0x01: Enable

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.18 CMAPI_OMADM_SetPRLUpdateFeature()

The CMAPI_OMADM_SetPRLUpdateFeature() function is used to enable and disable the OMA DM PRL update feature.
	Prototype

	
 dword CMAPI_OMADM_SetPRLUpdateFeature (dword deviceID, dword PRLUpdateFeatureState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	PRLUpdateFeatureState
	Input
	State of PRL update feature:

· 0x00: Disable

· 0x01: Enable

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.19 CMAPI_OMADM_SetFirmwareUpdateFeature()

The optional CMAPI_OMADM_SetFirmwareUpdateFeature() function is used to enable and disable the OMA DM Firmware update feature.
	Prototype

	
 dword CMAPI_OMADM_SetFirmwareUpdateFeature (dword deviceID, dword firmwareUpdateFeatureState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	firmwareUpdateFeatureState
	Input
	State of Firmware update feature:

· 0x00: Disable

· 0x01: Enable

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.20 CMAPI_OMADM_ResetToFactoryDefaults()

The CMAPI_OMADM_ResetToFactoryDefaults() function is used to reset the device to factory default.
	Prototype

	
dword CMAPI_OMADM_ResetToFactoryDefaults (dword deviceID, dword SPCCode, dword dwReason)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SPCCode
	Input
	(Optional) Valid SPC

	dwReason
	Input
	· 0x01: PRI Update

· 0x02: RTN Reset (SPC required)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.21 CMAPI_OMADM_InitiateOTASP()

The CMAPI_OMADM_InitiateOTASP() function is used for activating the device using OTA activation. This function allows configuring parameters such as MDN, MIN, Home SID, MN-HA and AAA key. Existing PRL may also be replaced with a new PRL.

	Prototype

	
 dword CMAPI_OMADM_InitiateOTASP (dword deviceID, UTF8* ActivationCode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	ActivationCode
	Input
	Valid Activation Code (SPC code)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	An invalid activation code is entered.

	0X00000003
	Activation failed (other than invalid activation code).

	0X00000004
	Device cannot be activated while connected.

	0x00000005
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.22 CMAPI_OMADM_SetPRL()
The CMAPI_OMADM_SetPRL() function is used to update PRL/PLMN by uploading a PRL file.
	Prototype

	
 dword CMAPI_OMADM_SetPRL (dword deviceID, UTF8* PRLFilepath)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	PRLFilepath
	Input
	Valid PRL file path.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	File does not exist at the given path.

	0X00000003
	An invalid PRL file is entered.

	0x00000004
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.23 CMAPI_MobileIP_SetState()
The CMAPI_MobileIP_SetState() function is used to set the current Mobile IP state of the device.

	Prototype

	dword CMAPI_MobileIP_SetState (dword deviceID, dword mode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	mode
	Input
	The new setting of the device’s Mobile IP mode:
· 0x00000000: Mobile IP off (simple IP only)
· 0x00000001: Mobile IP preferred
· 0x00000002: Mobile IP only

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.24 CMAPI_MobileIP_GetState()
The CMAPI_MobileIP_GetState () function is used to retrieve the current Mobile IP state of the device.

	Prototype

	dword CMAPI_CMAPI_MobileIP_GetState (dword deviceID, dword* pMode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pMode
	Output
	 Pointer to the current setting of the device’s Mobile IP mode:
· 0x00000000: Mobile IP off (simple IP only)

· 0x00000001: Mobile IP preferred
· 0x00000002: Mobile IP only

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.25 CMAPI_MobileIP_SetActiveProfile()
The CMAPI_MobileIP_SetActiveProfile() function is used to set the index of the Mobile IP profile that the device will use. There can be several Mobile IP profiles configured on the device, each of which is identified by a unique index.

	Prototype

	dword CMAPI_MobileIP_SetActiveProfile (dword deviceID, UTF8* SPC, byte index)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SPC
	Input
	 The Service Programming Code (SPC).

	index
	Input
	Index of the mobile IP profile that will be made the active one.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.26 CMAPI_MobileIP_GetActiveProfile()
The CMAPI_MobileIP_GetActiveProfile() function is used to retrieve the index of the Mobile IP profile that the device is currently using.

	Prototype

	dword CMAPI_MobileIP_GetActiveProfile (dword deviceID, byte* pIndex)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pIndex
	Output
	Pointer to the index of the currently active mobile IP profile.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.27 CMAPI_MobileIP_SetProfile()
The CMAPI_MobileIP_SetProfile () function is used to configure the contents of a Mobile IP profile on the device. The function takes as arguments the index of the Mobile IP profile that will be modified and the profile values that will be set by the function.

	Prototype

	dword CMAPI_MobileIP_SetProfile (dword deviceID, UTF8* SPC, byte index, byte Enabled, dword Address, dword PriHA, dword SecHA, byte RevTunn, UTF8* NAI, dword HASPI, dword AAASPI, UTF8* MNHA, UTF8* MNAAA)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SPC
	Input
	The Service Programming Code (SPC).

	index
	Input
	Index of the mobile IP profile that is being set with this function.

	Enabled
	Input
	(Optional) Enable profile: 0x00: No (disable), any other value: Yes (enable)

	Address
	Input
	(Optional) Home IPv4 address

	PriHA
	Input
	(Optional) Primary Home Agent IPv4 address

	SecHA
	Input
	(Optional) Secondary Home Agent IPv4 address

	RevTunn
	Input
	(Optional) Reverse tunneling mode: 0x00: No (Disabled), any other value: Enabled

	NAI
	Input
	(Optional) Network Access Identifier

	HASPI
	Input
	(Optional) Home Agent Security Parameter Index

	AAASPI
	Input
	(Optional) AAA server Security Parameter Index

	MNHA
	Input
	(Optional) MN-HA key

	MNAAA
	Input
	(Optional) AAA key

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.28 CMAPI_MobileIP_GetProfile()
The CMAPI_MobileIP_GetProfile () function is used to retrieve the contents of a Mobile IP profile on the device. The function takes as arguments the index of the Mobile IP profile that will be retrieved and the profile values that will be returned by the function.

	Prototype

	dword CMAPI_MobileIP_GetProfile (dword deviceID, byte index, byte* pEnabled, dword* pAddress, dword* pPriHA, dword* pSecHA, byte* pRevTunn, UTF8* pNAI, dword* pNAISize, dword* pHASPI, dword* pAAASPI, dword* pHAState, dword* pAAAState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	index
	Input
	Index of the mobile IP profile that is being set with this function.

	pEnabled
	Output
	Profile status:
· 0x00: Disabled;
· 0x01: Enabled;
· 0xFF: Unknown

	pAddress
	Output
	Home IPv4 address (0xFFFFFFFF: Unknown)

	pPriHA
	Output
	Primary Home Agent IPv4 address (0xFFFFFFFF: Unknown)

	pSecHA
	Output
	Secondary Home Agent IPv4 address (0xFFFFFFFF: Unknown)

	pRevTunn
	Output
	Reverse tunneling status: 0x00: Disabled; 0x01: Enabled; 0xFF: Unknown

	pNAI
	Output
	Network Access Identifier

	pNAISize
	Input/Output
	Number of bytes in the NAI buffer or if insufficient contains the necessary size

	pHASPI
	Output
	Home Agent Security Parameter Index (0xFFFFFFFF: Unknown)

	pAAASPI
	Output
	AAA server Security Parameter Index (0xFFFFFFFF: Unknown)

	pHAState
	Output
	Home Agent Key state:
· 0x00000000: Unset
· 0x00000001: Set, default value
· 0x00000002: Set, non-default value
· 0xFFFFFFFF: Unknown

	pAAAState
	Output
	AAA Key state:
· 0x00000000: Unset
· 0x00000001: Set, default value
· 0x00000002: Set, non-default value
· 0xFFFFFFFF: Unknown

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	
	The nai buffer is insufficient. pNaiSize contains the minimum number of bytes required.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.29 CMAPI_MobileIP_SetParameters()
The CMAPI_MobileIP_SetParameters() function is used to set various parameters that configure the behavior of the device’s Mobile IP client.

	Prototype

	dword CMAPI_MobileIP_SetParameters (dword deviceID, UTF8* SPC, dword Mode, byte RetryLimit, byte RetryInterval, byte ReRegPeriod, byte ReRegTraffic, byte HAAuthenticator, byte HA2002bis)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SPC
	Input
	Service Programming Code (SPC)

	Mode
	Input
	(Optional) Mobile IP mode:

· 0x00000000: Mobile IP off (simple IP only)
· 0x00000001: Mobile IP preferred

· 0x00000002: Mobile IP only

	RetryLimit
	Input
	(Optional) Mobile IP registration attempt retry limit

	RetryInterval
	Input
	(Optional) Mobile IP registration attempt retry interval (i.e. time between registration attempts) in minutes

	ReRegPeriod
	Input
	(Optional) Mobile IP re-registration period (time after which current registration expires) in minutes

	ReRegTraffic
	Input
	(Optional) Determines whether to re-register only if there has been data traffic since last registration (0x00: Disabled; any other value: Enabled)

	HAAuthenticator
	Input
	(Optional) State of MH-HA authenticator calculator (0x00: Disabled; any other value: Enabled)

	HA2002bis
	Input
	(Optional) Determines whether to use RFC2002bis authentication instead of RFC2002 (0x00: RFC2002; any other value: RFC2002bis)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.30 CMAPI_MobileIP_GetParameters()
The CMAPI_MobileIP_GetParameters() function is used to retrieve the current values of the parameters that configure the behavior of the device’s Mobile IP client.

	Prototype

	dword CMAPI_MobileIP_GetParameters (dword deviceID, dword* pMode, byte* pRetryLimit, byte* pRetryInterval, byte* pReRegPeriod, byte* pReRegTraffic, byte* pHAAuthenticator, byte* pHA2002bis)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pMode
	Output
	Mobile IP mode:
· 0x00000000: Mobile IP off (simple IP only)
· 0x00000001: Mobile IP preferred
· 0x00000002: Mobile IP only

· 0xFFFFFFFF: Unknown

	pRetryLimit
	Output
	Mobile IP registration attempt retry limit (0xFF if unknown)

	pRetryInterval
	Output
	Mobile IP registration attempt retry interval (i.e. time between registration attempts) in minutes (0xFF if unknown)

	pReRegPeriod
	Output
	Mobile IP re-registration period (time after which current registration expires) in minutes (0xFF if unknown)

	pReRegTraffic
	Output
	Determines whether to re-register only if there has been data traffic since last registration (0x00: Disabled; 0x01: Enabled; 0xFF: Unknown)

	pHAAuthenticator
	Output
	State of MH-HA authenticator calculator (0x00: Disabled; 0x01: Enabled; 0xFF: Unknown)

	pHA2002bis
	Output
	(Optional) Determines whether to use RFC2002bis authentication instead of RFC2002 (0x00: Disabled; 0x01: Enabled; 0xFF: Unknown)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.7.31 CMAPI_MobileIP_GetLastError()
The CMAPI_MobileIP_GetLastError() function is used to retrieve the last Mobile IP error that occurred (refer to RFC3344 for a list of error codes).

	Prototype

	dword CMAPI_MobileIP_GetLastError (dword deviceID, dword* pError)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pError
	Output
	Pointer to the most recent Mobile IP error code:

· 0x00000000: Success
· Any other value: Error code as defined in [RFC3344]

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8 Device Service APIs

6.8.1 CMAPI_DevSrv_GetManufacturerName ()

The CMAPI_DevSrv_GetManufacturerName() function retrieves the name of the manufacturer of the device.
	Prototype

	dword CMAPI_DevSrv_GetManufacturerName (dword deviceID, UTF8* pManufacturerName, dword* pManufacturerNameSize)

	Parameters

	Field Name
	 Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pManufacturerName
	Output
	The name of the device manufacturer

	pManufacturerNameSize
	Input/Output
	The size in byte of pManufacturerName buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0x00000014
	The device is not in a power state which allows this operation.

	
	The manufacturer name buffer is not large enough.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.2 CMAPI_DevSrv_GetManufacturerModel()
The CMAPI_DevSrv_GetManufacturerModel() function retrieves the product model ID of the device.
	Prototype

	dword CMAPI_DevSrv_GetManufacturerModel (dword deviceID, UTF8* pModel, dword* pModelSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pModel
	Output
	The product model ID of the device

	pModelSize
	Input/Output
	The size in byte of pModel buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0x00000014
	The device is not in a power state which allows this operation.

	
	The model buffer size is not large enough.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.3 CMAPI_DevSrv_GetDeviceName()
The CMAPI_DevSrv_GetDeviceName() function retrieves the commercial name of the Device.
	Prototype

	dword CMAPI_DevSrv_GetDeviceName (dword deviceID, UTF8* pDeviceName, dword* pDeviceNameSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pDeviceName
	Output
	The commercial name of the Device

	pDeviceNameSize
	Input/Output
	The size in byte of pDeviceName buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0x00000014
	The device is not in a power state which allows this operation.

	
	The device name buffer is not large enough.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.4 CMAPI_DevSrv_GetHardwareVersion()
The CMAPI_DevSrv_GetHardwareVersion() function retrieves the hardware version of the Device.
	Prototype

	dword CMAPI_DevSrv_GetHardwareVersion (dword deviceID, UTF8* pHardwareVersion, dword* pHardwareVersionSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pHardwareVersion
	Output
	The hardware version of the Device

	pHardwareVersionSize
	Input/Output
	The size in byte of pHardwareVersion buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0x00000014
	The device is not in a power state which allows this operation.

	
	The hardware version buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.5 CMAPI_DevSrv_GetProductType()
The CMAPI_DevSrv_GetProductType() function retrieves the product type of the device.
	Prototype

	dword CMAPI_DevSrv_GetProductType (dword deviceID, dword* pProductType)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pProductType
	Output
	Pointer to get the product type in bitmap.
In the case of a device with multiple radios, there MAY be multiple settings returned. The bitmap definition follows the definition of RadioType:
· 0x00000001: GSM

· 0x00000002: WCDMA/UMTS

· 0x00000004: CDMA

· 0x00000008: EVDO

· 0x00000010: TD_SCDMA

· 0x00000020: LTE

· 0x00000040: WLAN

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.6 CMAPI_DevSrv_GetIMSI()
The CMAPI_DevSrv_GetIMSI() function retrieves the active IMSI(s) info from SIM/R-UIM/NAA on UICC.
	Prototype

	dword CMAPI_DevSrv_GetIMSI (dword deviceID, dword systemID, UTF8* pIMSI, dword* pIMSISize, UTF8 * pNAAname, dword* pNAAnameSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	pIMSI
	Output
	The IMSI.

	pIMSISize
	Input/Output
	The size in byte of pIMSI buffer

	pNAAname
	Output
	pNAAname (see CMAPI_DevSrv_GetNAAavailable())

	pNAAnameSize
	Input/Output
	The size in byte of pNAAname buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000009
	System not supported by the device

	0X00000013
	The device does not contain hardware which supports this operation.

	0x00000014
	The device is not in a power state which allows this operation.

	
	The IMSI buffer is not large enough

	
	The NAA name buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.7 CMAPI_DevSrv_GetMDN()

The CMAPI_DevSrv_GetMDN() function retrieves the MDN info (only applicable to 3GPP2 systems).

	Prototype

	dword CMAPI_DevSrv_GetMDN (dword deviceID, UTF8* pMDNInfo, dword* pMDNInfoSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pMDNInfo
	Output
	The MDN info.

	pMDNInfoSize
	Input/Output
	The size in byte of pMDNInfo buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X00000021
	The requested data is not meaningful for a 3GPP device.

	
	The MDN info buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.8 CMAPI_DevSrv_GetIMEI()

The CMAPI_DevSrv_GetIMEI() function retrieves the IMEI info (only applicable to 3GPP systems).

	Prototype

	dword CMAPI_DevSrv_GetIMEI (dword deviceID, UTF8* pIMEIInfo, dword* pIMEIInfoSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pIMEIInfo
	Output
	The IMEI info.

	pIMEIInfoSize
	Input/Output
	The size in byte of pIMEIInfo buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X00000022
	The requested data is not meaningful for a 3GPP2 device.

	
	The IMEI Info buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.9 CMAPI_DevSrv_GetESN()

The CMAPI_DevSrv_GetESN() function retrieves the ESN info (only applicable to 3GPP2 systems).

	Prototype

	dword CMAPI_DevSrv_GetESN (dword deviceID, UTF8* pESNInfo, dword* pESNInfoSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pESNInfo
	Output
	The ESN info.

	pESNInfoSize
	Input/Output
	The size in bytes of pESNInfo buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X00000021
	The requested data is not meaningful for a 3GPP device.

	
	The ESN Info buffer is not large enough.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.10 CMAPI_DevSrv_GetMEID()

The CMAPI_DevSrv_GetMEID() function retrieves the MEID info (only applicable to 3GPP2 systems).

	Prototype

	dword CMAPI_DevSrv_GetMEID (dword deviceID, UTF8* pMEIDInfo, dword* pMEIDInfoSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pMEIDInfo
	Output
	The MEID info.

	pMEIDInfoSize
	Input/Output
	The size in byte of pMEIDInfo buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X00000021
	The requested data is not meaningful for a 3GPP device.

	
	The MEID Info buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.11 CMAPI_DevSrv_GetMSISDN()

The CMAPI_DevSrv_GetMSISDN() function retrieves the MSISDN info from the active NAA in the SIM/UICC (only applicable to 3GPP systems).

	Prototype

	dword CMAPI_DevSrv_GetMSISDN (dword deviceID, UTF8* pMSISDNInfo, dword* pMSISDNInfoSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pMSISDNInfo
	Output
	The list of MSISDN numbers (see [3GPP TS 51.011] or [3GPP TS 31.102] for details).

Each MSISDN number will be separated by character “,”.

Each field of an MSISDN number (Alpha Identifier, TON value in decimal format, NPI value in decimal format, Dialling Number/SSC value in decimal format...) will be separated by a space.

“Length of BCD number/SSC contents”, “Capability/Configuration1 Record Identifier” and “Extension1 Record Identifier” are not transmitted.

	pMSISDNInfoSize
	Input/Output
	The size in byte of pMSISDNInfo buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X00000022
	The requested data is not meaningful for a 3GPP2 device.

	
	The MSISDN buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.12 CMAPI_DevSrv_GetDeviceStatus ()

The CMAPI_DevSrv_GetDeviceStatus() function retrieves the device status.

	Prototype

	dword CMAPI_DevSrv_GetDeviceStatus (dword deviceID, dword* pDeviceStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pDeviceStatus
	Output
	Pointer to get the product type in bitmap
Bit 7 | Bit 6 | Bit 5 | Bit 4 || Bit 3 | Bit 2 | Bit 1 | Bit 0

N/A | N/A | N/A | N/A || N/A | N/A | device availability | device presence

Device unplugged : (in binary) 0 0 0 0 0 0 0 0 (this value can used for unplugged and for unknown status)

Device plugged but unavailable : 0 0 0 0 0 0 0 1

Device plugged and available : 0 0 0 0 0 0 1 1

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.13 CMAPI_DevSrv_GetFirmwareVersion()

The CMAPI_DevSrv_GetFirmwareVersion() function retrieves the firmware version of the device.

	Prototype

	dword CMAPI_DevSrv_GetFirmwareVersion (dword deviceID, UTF8* pFwVersion, dword* pFwVersionSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pFwVersion
	Output
	The firmware version of the device.

	pFwVersionSize
	Input/Output
	The size in byte of pFwVersion buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	
	The FWVersion buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.14 CMAPI_DevSrv_GetOpenCMAPIVersion()

The CMAPI_DevSrv_GetOpenCMAPIVersion() function retrieves the version number of the OpenCMAPI used. This call will return the same version number without regard for the device.
	Prototype

	dword CMAPI_DevSrv_GetOpenCMAPIVersion (UTF8* pOpenCMAPIVersion, dword* pOpenCMAPIVersionSize)

	Parameters

	Field Name
	Mode
	Description

	pOpenCMAPIVersion
	Output
	The version number of the OpenCMAPI used.
The version number will be formatted in decimal as “x.y.z <vendor specific string> (coded in UTF8 format)”.

The x.y.z will indicate the major(x), minor(y), and point (z) release of the API (for example 1.0.0 to identify release 1.0) There will be a single space (“ “) following the version number if there is a vendor specific string. The vendor specific string is entirely optional and may contain any identification or versioning information the supplier of the API wishes to supply.

	pOpenCMAPIVersionSize
	Input/Output
	The size in byte of pOpenCMAPIVersion buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	
	The OpenCMAPIVersion buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.15 CMAPI_DevSrv_GetRFSwitch()

The CMAPI_DevSrv_GetRFSwitch() function retrieves the radio switch status (Radio On / Off).

	Prototype

	dword CMAPI_DevSrv_GetRFSwitch (dword deviceID, dword* pRFStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pRFStatus
	Output
	Pointer to get the radio switch status in bitmap.
In the case of a device with multiple radios, there MAY be multiple settings returned. The bitmap definition follows the definition of RadioType:

· 0x00000000: All Radio OFF
· 0x00000001: GSM

· 0x00000002: WCDMA/UMTS

· 0x00000004: CDMA

· 0x00000008: EVDO

· 0x00000010: TD_SCDMA

· 0x00000020: LTE

· 0x00000040: WLAN

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.16 CMAPI_DevSrv_SetRadioState()

The CMAPI_DevSrv_SetRadioState() function is used to set the radio power state of the device.
	Prototype

	dword CMAPI_DevSrv_SetRadioState (dword deviceID, RadioType radio, RadioState state)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	Please see the definition of RadioType

	state
	Input
	Please see the definition of RadioState

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Requested state is not supported.

	0X00000003
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.17 CMAPI_DevSrv_SetRadioState_Async()

The CMAPI_DevSrv_SetRadioState_Async() function is used to set the power state of a radio within a device. CMAPI_DevSrv_SetRadioState_Async is asynchronous; it initiates a change of the power state and then returns immediately. When the change of the radio power state has finished, the callback CMAPI_Callback_SetRadioState_Async_Complete is invoked.
NOTE: Shutting the power of the device completely off may result in an additional callback which indicates a device removal.
	Prototype

	dword CMAPI_DevSrv_SetRadioState_Async (dword deviceID, RadioType radio, RadioState state)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	radio
	Input
	Please see the definition of RadioType

	state
	Input
	Please see the definition of RadioState

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The deviceID references a non-existing device or a device which is not open.

	0x00000003
	 The radio references a radio which the device does not support.

	0x00000004
	The device does not support the indicated power state. (ex power saving)

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.18 CMAPI_DevSrv_GetControlKeyStatus()
The CMAPI_DevSrv_GetControlKeyStatus() function is used to get the specified Mobile Equipment (device) de-personalization control key status.

	Prototype

	dword CMAPI_DevSrv_GetControlKeyStatus (dword deviceID, dword systemID, dword controlKeyID, dword* controlKeyStatus, dword* verifyRetriesLeft, dword* unblockRetriesLeft)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	systemID
	Input
	The radio system, either GPP or 3GPP2, to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	controlKeyID
	Input
	The ID of the specified Control Key:

· 0x00000000: Network Control Key (NCK, only applicable for 3GPP systems)

· 0x00000001: Network Subset Control Key (NSCK, only applicable for 3GPP systems)

· 0x00000002: Service Provider Control Key (SPCK)

· 0x00000003: Corporate Control Key (CCK)

· 0x00000004: Personalization Control Key (PCK)
· 0x00000005: Network Type 1 Control Key (NCK1, only applicable for 3GPP2 systems)

· 0x00000006: Network Type 2 Control Key (NCK2, only applicable for 3GPP2 system)

· 0x00000007: HRPD Network Control Key (HNCK, only applicable for 3GPP2 systems)

See [3GPP TS 22.022] and [3GPP2 C.S0068] for Control Keys definition and procedures.

	controlKeyStatus
	Output
	Control Key Status:

· 0x00000000: Deactivated

· 0x00000001: Activated

· 0x00000002: Blocked

	verifyRetriesLeft
	Output
	The number of retries left after which the control key will be blocked

	unblockRetriesLeft
	Output
	The number of unblock retries left after which the control key will be permanently blocked

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	Control Key not supported by this system (when an ID of a 3GPP2 only Control Key is sent to a 3GPP system device or when an ID of a 3GPP only Control Key is sent to a 3GPP2 system device).

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.19 CMAPI_DevSrv_DeactivateControlKey()

The CMAPI_DevSrv_DeactivateControlKey() function is used to deactivate the specified Mobile Equipment (device) de-personalization control key. Activation of the control key is performed outside the control of the OpenCMAPI.

	Prototype

	dword CMAPI_DevSrv_DeactivateControlKey (dword deviceID, dword systemID, dword controlKeyID, UTF8* controlKeyValue, dword* verifyRetriesLeft)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	systemID
	Input
	The radio system, either 3GPP or 3GPP2, to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	controlKeyID
	Input
	The ID of the specified Control Key:

· 0x00000000: Network Control Key (NCK, only applicable for 3GPP systems)

· 0x00000001: Network Subset Control Key (NSCK, only applicable for 3GPP systems)

· 0x00000002: Service Provider Control Key (SPCK)

· 0x00000003: Corporate Control Key (CCK)

· 0x00000004: Personalization Control Key (PCK)
· 0x00000005: Network Type 1 Control Key (NCK1, only applicable for 3GPP2 systems)

· 0x00000006: Network Type 2 Control Key (NCK2, only applicable for 3GPP2 system)

· 0x00000007: HRPD Network Control Key (HNCK, only applicable for 3GPP2 systems)

See [3GPP TS 22.022] and [3GPP2 C.S0068] for Control Keys definition and procedures.

	controlKeyValue
	Input
	Control Key de-personalization decimal (Maximum 16 digits)

	verifyRetriesLeft
	Output
	The number of retries left after which the control key will be blocked

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	Control Key not supported by this system (when an ID of a 3GPP2 only Control Key is sent to a 3GPP system device or when an ID of a 3GPP only Control Key is sent to a 3GPP2 system device).

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.8.20 CMAPI_DevSrv_UnblockControlKey() (Optional)

The CMAPI_DevSrv_UnblockControlKey() function is used to unblock the specified Mobile Equipment (device) de-personalization control key.

	Prototype

	dword CMAPI_DevSrv_UnblockControlKey (dword deviceID, dword systemID, dword controlKeyID, UTF8* controlKeyUnblockValue, dword* unblockRetriesLeft)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	controlKeyID
	Input
	The ID of the specified Control Key:

· 0x00000000: Network Control Key (NCK, only applicable for 3GPP systems)

· 0x00000001: Network Subset Control Key (NSCK, only applicable for 3GPP systems)

· 0x00000002: Service Provider Control Key (SPCK)

· 0x00000003: Corporate Control Key (CCK)

· 0x00000004: Personalization Control Key (PCK)
· 0x00000005: Network Type 1 Control Key (NCK1, only applicable for 3GPP2 systems)

· 0x00000006: Network Type 2 Control Key (NCK2, only applicable for 3GPP2 system)

· 0x00000007: HRPD Network Control Key (HNCK, only applicable for 3GPP2 systems)

See [3GPP TS 22.022] and [3GPP2 C.S0068] for Control Keys definition and procedures.

	controlKeyUnblockValue
	Input
	Control Key unblock decimal (Maximum 16 digits)

	unblockRetriesLeft
	Output
	The number of unblock retries left after which the control key will be permanently blocked

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	Control Key not supported by this system (when an ID of a 3GPP2 only Control Key is sent to a 3GPP system device or when an ID of a 3GPP only Control Key is sent to a 3GPP2 system device).

	0x00000008
	This function is not supported by this implementation

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.9 PINs/PUKs Management APIs
6.9.1 CMAPI_DevSrv_GetNAAavailable()
The CMAPI_DevSrv_GetNAAavailable() function is used to get all the available NAAs and the corresponding Application labels.
	Prototype

	dword CMAPI_DevSrv_GetNAAavailable (dword deviceID, NAANameType* pNAAList, dword* pNAAListSize, dword* pNAAListCount)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pNAAList
	Output
	

See NAANameType.

The NAAList structures will be laid out at the front of the buffer.

	pNAAListSize
	Input/Output
	The number of bytes in the NAA List buffer or if insufficient contains the necessary size

	pNAAListCount
	IOutput
	The number of elements in the array pointed by the pNAAname

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000003
	The size for the pstNNAlist buffer is not sufficient, the dwNAAListsize will contain the number bytes required.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XFFFFFFFF
	Not supported by the device (if a device does not support the feature)

6.9.2 CMAPI_DevSrv_EnablePIN()
The CMAPI_DevSrv_EnablePIN() function is used to enable PIN protection.
	Prototype

	dword CMAPI_DevSrv_EnablePIN (dword deviceID, byte PinType, const UTF8* pszPinCode , const UTF8* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	PinType
	Input
	The type of the PIN: 0—PIN, 1—PIN2

	pszPinCode
	Input
	PIN code, value '0' ~ '9', 4-8 digit length.

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated
NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000003
	Wrong PIN (note: or using a specific pin_get_status function after fatal error…)

	0X00000004
	PIN is blocked. PUK (UNBLOCK PIN) needed (note: or using a specific pin_get_status function after fatal error…)

	0X00000005
	Invalid parameter(s) (note: or using a specific pin_get_status function after fatal error…)

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.9.3 CMAPI_DevSrv_DisablePIN()
The CMAPI_DevSrv_DisablePIN() function is used to disable PIN protection.
	Prototype

	dword CMAPI_DevSrv_DisablePIN (dword deviceID, byte PinType, const UTF8* pszPinCode, byte* pbtRetry, const UTF8* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	PinType
	Input
	The type of PIN: 0—PIN, 1—PIN2

	pszPinCode
	Input
	PIN code, value '0' ~ '9', 4-8 digit length.

	pbtRetry
	Output
	Number of attempts left

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000003
	Wrong PIN (note: or using a specific PINPUK_get_status function after fatal error…)

	0X00000004
	PIN is blocked. PUK (UNBLOCK PIN) needed (note: or using a specific PINPUK_get_status function after fatal error…)

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.9.4 CMAPI_DevSrv_VerifyPIN()
The CMAPI_DevSrv_VerifyPIN() function is used to verify a PIN.
	Prototype

	dword CMAPI_DevSrv_VerifyPIN (dword deviceID, byte PinType, const UTF8* pszPinCode, byte* pbtRetry,const UTF8* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	PinType
	Input
	The type of PIN: 0—PIN, 1—PIN2

	pszPinCode
	Input
	PIN code, value '0' ~ '9', 4-8 digit length.

	pbtRetry
	Output
	Number of attempts left

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000003
	Wrong PIN (note: or using a specific pin_get_status function after fatal error…)

	0X00000004
	PIN is blocked. PUK (UNBLOCK PIN) needed (note: or using a specific pin_get_status function after fatal error…)

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.9.5 CMAPI_DevSrv_UnblockPIN()
The CMAPI_DevSrv_UnblockPIN() function is used to unblock a PIN.
	Prototype

	dword CMAPI_DevSrv_UnblockPIN (dword deviceID, byte PukType, const UTF8* pszPuk, const UTF8* pszNewPinCode, byte* pbtRetry, const UTF8* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	PukType
	Input
	The type of PUK: 0—PUK, 1—PUK2

	pszPuk
	Input
	PUK code, value '0' ~ '9', 8 digit length.

	pszPinCode
	Input
	New PIN code, value '0' ~ '9', 4-8 digit length.

	pbtRetry
	Output
	Number of attempts left

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000003
	Wrong PUK (note: or using a specific pin_get_status function after fatal error…)

	0X00000004
	PUK (UNBLOCK PIN) blocked.

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.9.6 CMAPI_DevSrv_ChangePIN()
The CMAPI_DevSrv_ChangePIN() function is used to change a PIN.
	Prototype

	dword CMAPI_DevSrv_ChangePIN (dword deviceID, byte PinType, const UTF8* pszOldPinCode, const UTF8* pszNewPinCode, byte* pbtRetry, const UTF8* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	PinType
	Input
	The type of PIN: 0—PIN, 1—PIN2

	pszOldPinCode
	Input
	Old PIN code, value '0' ~ '9', 4-8 digit length.

	pszNewPinCode
	Input
	New PIN code, value '0' ~ '9', 4-8 digit length.

	pbtRetry
	Output
	Number of attempts left

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existing device or a device which is not open

	0X00000003
	Wrong Old PIN (note: or using a specific pin_get_status function after fatal error…)

	0X00000004
	Old PIN is blocked. PUK (UNBLOCK PIN) needed (note: or using a specific pin_get_status function after fatal error…)

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.10 UICC Management APIs
Editor Note: Requirements UICC-002, UICC-003, UICC-004 & UICC-011 are not covered – need to be addressed
6.10.1 CMAPI_UICC_GetICCID()

The CMAPI_UICC_GetICCID() function is used to get the ICCID.
	Prototype

	dword CMAPI_UICC_GetICCID (dword deviceID, UTF8* pICCID, dword* pICCIDSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pICCID
	Output
	The ICCID value as specified in [ETSI TS 102 221].

	pICCIDSize
	Input/Output
	The size in byte of pICCID buffer.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	
	The ICCID buffer is not large enough.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.10.2 CMAPI_UICC_GetTerminalProfile()
The device SHALL support the class “s”, “Support of CAT over the modem interface”, as specified in [ETSI TS 102 223].

The CMAPI_UICC_GetTerminalProfile() function is used for the Connection Manager Application to get the last TERMINAL PROFILE sent by the device to the SIM/R-UIM/UICC.
	Prototype

	dword CMAPI _UICC_GetTerminalProfile (dword deviceID, byte terminalProfile[256])

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	terminalProfile
	Output
	The hexadecimal value of the TERMINAL PROFILE as specified in the chapter “Structure and coding of the TERMINAL PROFILE” of [ETSI TS 102 223] for the core part, in the chapter “Structure and coding of the TERMINAL PROFILE” of [3GPP TS 31.111] for the 3GPP specific part, in the chapter “Structure and coding of the TERMINAL PROFILE” of [3GPP2 C.S0035] for the 3GPP2 specific part.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.10.3 CMAPI_UICC_SetTerminalProfile()

The device SHALL support the class “s”, “Support of CAT over the modem interface”, as specified in [ETSI TS 102 223].

The CMAPI_UICC_SetTerminalProfile() function is used to transmit to the SIM/R-UIM/UICC via the device the ToolKit functions (i.e.: the TERMINAL PROFILE) that are supported by the Connection Manager Applications.

If several Connection Manager Applications are running in parallel, the Connection Manager API shall verify that there is no overlap between the TERMINAL PROFILE sent by the device and by each of the Connection Manager Applications as specified in [ETSI TS 102 223] (see normative annex). If an overlap exists the Connection Manager API shall send a return value identifying the overlapping ToolKit functions. If an overlap exists between several Connection Manager Applications, the ToolKit functions of the first Connection Manager Application having sent a CMAPI_UICC_SetTerminalProfile() will take precedence over the overlapping ToolKit functions of the other Connection Manager Applications.
The device SHALL combine the facilities provided by the device and the facilities provided by the Connection Manager Applications (also called CAT clients within the Connected Entity in [ETSI TS 102 223]) as specified in [ETSI TS 102 223] before sending the combined TERMINAL PROFILE to the SIM/R-UIM/UICC.
	Prototype

	dword CMAPI_UICC_SetTerminalProfile (dword deviceID, byte terminalProfile[256], byte overlappingToolkit[256])

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	terminalProfile
	Input
	The hexadecimal value of the TERMINAL PROFILE as specified in the chapter “Structure and coding of the TERMINAL PROFILE” of [ETSI TS 102 223] for the core part, in the chapter “Structure and coding of the TERMINAL PROFILE” of [3GPP TS 31.111] for the 3GPP specific part, in the chapter “Structure and coding of the TERMINAL PROFILE” of [3GPP2 C.S0035] for the 3GPP2 specific part.

	overlappingToolKit
	output
	(optional) Overlapping ToolKit function - The hexadecimal value of the TERMINAL PROFILE corresponding only to the overlapping Toolkit functions. This field is only present with Return value 0X20000003”.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0X20000003
	The function succeeded except for the overlapping ToolKit functions with the device or another or other Connection Manager Application(s)

6.10.4 CMAPI_UICC_SendToolKitEnvelopeCommand()

The device SHALL support the class “s”, “Support of CAT over the modem interface”, as specified in [ETSI TS 102 223].

The CMAPI_UICC_SendToolKitEnvelopeCommand() function is used for the Connection Manager Application to transmit to the SIM/R-UIM/UICC via the device any ToolKit ENVELOPE command that is supported by the Connection Manager Application and for which no overlapping was identified (see CMAPI_UICC_SetTerminalProfile() and [ETSI TS 102 223]).

	Prototype

	dword CMAPI_UICC_SendToolKitEnvelopeCommand (dword deviceID, byte envelopeCommand[256])

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	envelopeCommand
	Input
	The hexadecimal value of the ENVELOPE Command as specified in the chapter “ENVELOPE Commands” of [ETSI TS 102 223] for the core part, in the chapter “ENVELOPE Commands” of [3GPP TS 31.111] for the 3GPP specific part, in the chapter “ENVELOPE Commands” of [3GPP2 C.S0035] for the 3GPP2 specific part.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000003
	ENVELOPE command was not sent to SIM/R-UIM/UICC as overlapping was detected.

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.10.5 CMAPI_UICC_SendTerminalResponse()

The device SHALL support the class “s”, “Support of CAT over the modem interface”, as specified in [ETSI TS 102 223].

The CMAPI_UICC_SendTerminalResponse() function is used for the Connection Manager Application to send a TERMINAL RESPONSE to the SIM/R-UIM/UICC via the device answering to any ToolKit Proactive Command received via the Callback CMAPI_UICC_ToolKitProactiveCommand (see callback chapter).
	Prototype

	dword CMAPI_UICC_SendTerminalResponse (dword deviceID, byte terminalResponse[256])

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	terminalResponse
	Input
	The hexadecimal value of the TERMINAL RESPONSE as specified in the chapter “Structure and coding of the TERMINAL RESPONSE” of [ETSI TS 102 223] for the core part, in the chapter “Structure and coding of the TERMINAL RESPONSE” of [3GPP TS 31.111] for the 3GPP specific part, in the chapter “Structure and coding of the TERMINAL RESPONSE” of [3GPP2 C.S0035] for the 3GPP2 specific part.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11 WLAN APIs
6.11.1 CMAPI_WLAN_IsSupported()

The CMAPI_WLAN_IsSupported() function is used to determine if WLAN functionality is supported
	Prototype

	dword CMAPI_WLAN_IsSupported (dword deviceID, dword* pWlanSupport)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pWlanSupport
	Output
	 Indicates WLAN support:
· 0x00000001: WLAN Supported

· 0x00000002: WLAN NOT supported (Device do not support WLAN capability)
· 0x00000003: WLAN NOT supported (other reason)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.2 CMAPI_WLAN_AddKnownNetwork()

The CMAPI_WLAN_AddKnownNetwork() function is used to add a network to the known network list.
	Prototype

	dword CMAPI_WLAN_AddKnownNetwork (dword index, WLANNetwork* pNetwork)

	Parameters

	Field Name
	Mode
	Description

	index
	Input
	The zero based index which describes the position of the network in the known networks list. Any existing subsequent entry will have their previous index adjusted to be one larger.

	pNetwork
	Input
	The network to add to the known networks list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The specified index is to large and would leave a gap in the known networks list

	0x00000003
	Index is not valid for user defined networks. Please try a higher index.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0xF0000001
	The SSID is invalid

	0xF0000002
	The BSSID is invalid

	0xF0000003
	The Friendly Name is invalid

	0xF0000004
	The security parameter is invalid

	0xF0000005
	The mode parameter is invalid

	0xF0000006
	The hidden parameter is invalid

	0xF0000007
	The key is invalid

	0xF0000009
	The EAP authentication method is invalid

	0xF0000009
	The EAP configuration is invalid

6.11.3 CMAPI_WLAN_UpdateKnownNetwork()

The CMAPI_WLAN_UpdateKnownNetwork() function is used to update an existing known network record.
	Prototype

	dword CMAPI_WLAN_UpdateKnownNetwork (dword index, WLANNetwork* pNetwork)

	Parameters

	Field Name
	Mode
	Description

	index
	Input
	The zero based index which describes the position of the network in the known networks list.

	pNetwork
	Input
	The updated network info to reside at the index in the known networks list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	No record exists at the specified index.

	0x00000003
	Predefined networks are not able to be modified.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0xF0000001
	The SSID is invalid

	0xF0000002
	The BSSID is invalid

	0xF0000003
	The Friendly Name is invalid

	0xF0000004
	The security parameter is invalid

	0xF0000005
	The mode parameter is invalid

	0xF0000006
	The hidden parameter is invalid

	0xF0000007
	The key is invalid

	0xF0000009
	The EAP authentication method is invalid

	0xF0000009
	The EAP configuration is invalid

6.11.4 CMAPI_WLAN_DeleteKnownNetwork()

The CMAPI_WLAN_DeleteKnownNetwork() function is used to remove the entry from the known networks list at the specified index.
	Prototype

	dword CMAPI_WLAN_DeleteKnownNetwork (dword index)

	Parameters

	Field Name
	Mode
	Description

	index
	Input
	The index of the record to remove from the known networks list. Any subsequent records will have their index decremented.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	No network exists at the specified index.

	0x00000003
	Predefined networks are not able to be modified

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.5 CMAPI_WLAN_GetKnownNetwork()

The CMAPI_WLAN_GetKnownNetwork() function is used to retrieve the known network record information
	Prototype

	dword CMAPI_WLAN_GetKnownNetwork (dword index, WLANNetwork* pNetwork, dword* pNetworkSize)

	Parameters

	Field Name
	Mode
	Description

	index
	Input
	The index of the known network to retrieve.

	pNetwork
	Output
	The known network record.

	pNetworkSize
	Input/Output
	The size of the structure WLAN network structure

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	No network exists at the specified index.

	0x00000003
	The size of the network structure is not large enough pNetworkSize contains the minimum size required.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.6 CMAPI_WLAN_GetScanResults()

The CMAPI_WLAN_GetScanResults() function is used to retrieve the list of available WLAN networks. Invoking this call does not force an operation on the device like scanning; it simply retrieves the most recent scan list.
	Prototype

	dword CMAPI_WLAN_GetScanResults (dword deviceID, WLANNetwork* pScanList, dword* pScanListSize, dword* pScanListCount)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pScanList
	Output
	The buffer to hold the scan list entry

	pScanListSize
	Input/Output
	Contains the number of bytes of the network buffer on input. If buffer size is not sufficient, this will contain the number of bytes needed in the structure on return.

	pScanListCount
	Output
	The number of entries in the scan list

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The buffer is insufficient. pScanListSize contains the minimum number of bytes necessary to hold the scan list.

	0x00000003
	The scan list buffer is not large enough, pScanListSize contains the minimum size required.

	0X00000004
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.7 CMAPI_WLAN_Scan_Async()

The CMAPI_WLAN_Scan_Async() function is used to initiate a scan for WLAN networks. This initiates an asynchronous process to discover networks. This operation occurs asynchronously.
	Prototype

	dword CMAPI_WLAN_Scan_Async (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.8 CMAPI_WLAN_Connect()

The CMAPI_WLAN_Connect() function is used to connect to a WLAN network. This operation occurs asynchronously.
	Prototype

	dword CMAPI_WLAN_Connect (dword deviceID, WLANNetwork* pNetwork, dword associationTimeout, dword grantTimeout,)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pNetwork
	Input
	Specifies the network to connect.

	associationTimeout
	Input
	Specifies the number of milliseconds to allow an association to the network to be setup before reporting failure.

	grantTimeout
	Input
	Specifies the number of milliseconds to allow a DHCP operation to proceed before reporting failure.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.9 CMAPI_WLAN_ConnectKnownNetwork()

The CMAPI_WLAN_ConnectKnownNetwork() function is used to connect to a WLAN network in the known networks list. This operation occurs asynchronously.
	Prototype

	dword CMAPI_WLAN_ConnectKnownNetwork (dword deviceID, UTF8* SSID, UTF8* BSSID, dword associationTimeout, dword grantTimeout)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SSID
	Input
	The SSID of the known network

	BSSID
	Input
	(Optional) The BSSID of the known network

	associationTimeout
	Input
	Specifies the number of milliseconds to allow an association to the network to be setup before reporting failure.

	grantTimeout
	Input
	Specifies the number of milliseconds to allow a DHCP operation to proceed before reporting failure.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The SSID does not reference a valid known network.

	0X00000003
	The deviceID references a non-existent device or a device which is not open

	0x00000004
	The BSSID does not reference a valid known network

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.10 CMAPI_WLAN_Disconnect()

The CMAPI_WLAN_Disconnect() function is used to disconnect any connected WLAN network.
	Prototype

	dword CMAPI_WLAN_Disconnect (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	There is no existing WLAN connection

	0X00000003
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.11 CMAPI_WLAN_GetConnectionMode()

The CMAPI_WLAN_GetConnectionMode() function is used to determine if connectivity is being actively sought by the enabler or if manual connection requests are required.
	Prototype

	dword CMAPI_WLAN_GetConnectionMode (dword deviceID, dword* pMode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pMode
	Output
	Indicates connectivity mode.

· 0x00000001: Auto connect to known networks

· 0x00000002: Manual connect (known and unknown networks)

· 0x00000003: Manual connect (only to known networks – subject to some policies)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.12 CMAPI_WLAN_SetConnectionMode()

The CMAPI_WLAN_SetConnectionMode() function is used to change the connectivity mode. Changing connectivity mode will not affect any established connection.
	Prototype

	dword CMAPI_WLAN_SetConnectionMode (dword deviceID, dword mode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	mode
	Input
	Indicates connectivity mode.

· 0x00000001: Auto connect to known networks

· 0x00000002: Manual connect

· 0x00000003: Manual connect (only to known networks)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Security mode does not allow connectivity to unknown networks.

	0X00000003
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.13 CMAPI_WLAN_ResetDevice()

The CMAPI_WLAN_ResetDevice() function is used to reset the device. This causes the device to be power cycled.
	Prototype

	dword CMAPI_WLAN_ResetDevice (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.14 CMAPI_WLAN_GetConnectedParameters()

The CMAPI_WLAN_GetConnectedParameters() function is used to retrieve values related to the associated network.
	Prototype

	dword CMAPI_WLAN_GetConnectedParameters (dword deviceID, ConnectedParameters* pParameters, dword* pParametersSize, UTF8* pMacAddress, dword* pMacAddressSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pParameters
	Output
	The ip address, mask, proxy information

	pParametersSize
	Input/Output
	The size of the pParameters buffer in bytes

	pMacAddress
	Output
	The physical address of the access point

	pMacAddressSize
	Input/Output
	The size of the pMacAddress buffer in bytes

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The pParameters buffer is not large enough. pParametersSize contains the minimum buffer length required.

	0x00000003
	The pMacAddress buffer is not large enough. pMacAddressSize contains the minimum buffer length required.

	0X00000004
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.15 CMAPI_WLAN_SetConnectedParameters()

The CMAPI_WLAN_SetConnectedParameters() function is used to set various attributes of an existing connection.

	Prototype

	dword CMAPI_WLAN_SetConnectedParameters (dword deviceID, ConnectedParameters* pParameters)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pParameters
	Input
	The parameters to set.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Operation is prohibited by security policy.

	0X00000003
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.16 CMAPI_WLAN_CancelOperation()

The CMAPI_WLAN_CancelOperation () function is used to cancel any pending operation like connect or scan.

	Prototype

	dword CMAPI_WLAN_CancelOperation (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	No pending operation.

	0X00000003
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.17 CMAPI_WLAN_ConnectWPS()
The CMAPI_WLAN_ConnectWPS() function is used to initiate a connection with the WPS button push method.
	Prototype

	dword CMAPI_WLAN_ConnectWPS (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.18 CMAPI_WLAN_ConnectPinWPS()
The CMAPI_WLAN_ConnectPinWPS() function is used to initiate a connection with the WPS pin method.
	Prototype

	dword CMAPI_WLAN_ConnectPinWPS (dword deviceID, byte* pPin, dword length,)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pPin
	Input
	The pin entered by the user in hexadecimal.

	length
	Input
	The length of the pin provided in bytes.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The pin was malformed or incorrect size

	0X00000003
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.19 CMAPI_WLAN_ConnectionState()
The CMAPI_WLAN_ConnectionState() function is used to determine if WLAN is connected.
	Prototype

	dword CMAPI_WLAN_ConnectionState (dword deviceID, dword* pStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pStatus
	Output
	 Indicates WLAN connectivity.

· 0x00000001: WLAN Connected

· 0x00000002: WLAN Connecting

· 0x00000003: WLAN Disconnected

· 0x00000004: WLAN Disconnecting

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.11.20 CMAPI_WLAN_ScanNetwork()
The CMAPI_WLAN_ScanNetwork() function is used to check the availability of a specific network.
	Prototype

	dword CMAPI_WLAN_ScanNetwork (dword deviceID, WLANNetwork* pNetwork)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pNetwork
	Input
	The network to search for

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.12 Statistics APIs
6.12.1 CMAPI_NetStatistic_GetConnectionStatistics()
The CMAPI_NetStatistic_GetConnectionStatistics() function is used to obtain network traffic statistics info
	Prototype

	
 word CMAPI_NetStatistic_GetConnectionStatistics (dword deviceID, qword* TX, qword* RX, qword* averageTX, qword* averageRX, qword* maxTX, qword* maxRX, qword* duration, dword* overflow)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	TX
	Output
	Bytes sent for a given connection

	RX
	Output
	Bytes received for a given connection

	averageTX
	Output
	Average upload speed in Bit/s for the given connection

	averageRX
	Output
	Average download speed in Bit/s for the given connection

	maxTX
	Output
	Maximum upload speed in Bit/s for the given connection

	maxRX
	Output
	Maximum download speed in Bit/s for the given connection

	duration
	Output
	The connection duration

	overflow
	Output
	Bitmap parameter to signal overflow argument

· 0X01: TX overflow

· 0X02: RX overflow
· 0x04: duration overflow

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000003
	The device is not connected

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13 Information Status APIs
6.13.1 CMAPI_Information_GetPINStatus()

The CMAPI_Information_GetPINStatus () function is used to return the status of the PINs and PUKs of all active SIM/R-UIM/NAA on UICC for a dedicated device.
	Prototype

	dword CMAPI_Information_GetPINStatus (dword deviceID, PINPUKStatustype* PINPUKStatusList, dword* PINPUKStatusListSize, dword* PINPUKStatusListCount)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	PINPUKStatusList
	Output
	The status of the PINs/PUKs for all active NAAs (see PINPUKStatusType definition). The PINPUKStatus structures will be laid out at the front of the buffer.

	PINPUKStatusListSize
	Input/Output
	The size of the PINPUKStatusList buffer or if insufficient contains the necessary size

	PINPUKStatusListCount
	Output
	Contains the number of entries in the PINPUKStatusList

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The deviceID references a non-existing device or a device which is not open

	0x00000003
	 Device (i.e.: WLAN only device that does not support NAA on UICC for authentication) does not support the requested function.

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	
	The PINPUKStatusList is not large enough.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.2 CMAPI_Information_GetPLMNName()

The CMAPI_Information_GetPLMNName() function is used to obtain the PLMN name as defined in 3GPP TS 22.101.
	Prototype

	dword CMAPI_Information_GetPLMNName (dword deviceID, RadioType radio, byte type, byte* pData, dword* pDataSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	See RadioType definition

	type
	Input
	The type of data desired.

· 0x00: Text

· 0x01: Graphic

	pData
	Output
	The data which represents the PLMN name.

	pDataSize
	Input/Output
	The size of the data.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The type of data requested is not present

	0x00000003
	The buffer is not large enough to hold the required data. pDataSize is set to the minimum required size in bytes.

	0x00000004
	The radio references a radio which the device does not support.

	0X00000005
	The deviceID references a non-existent device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.3 CMAPI_Information_GetNetworkSelectionMode()

The CMAPI_Information_GetNetworkSelectionMode() function is used to determine the network selection mode.
	Prototype

	dword CMAPI_Information_GetNetworkSelectionMode (dword deviceID, RadioType radio, dword* pState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	See RadioType definition

	pState
	Output
	The state of the network selection mode:

· 0x00000000: Automatic (Manual operator selection permitted)

· 0x00000001: Manual (manual operator selection active, may return to automatic)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0x00000003
	The radio references a radio which the device does not support.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.4 CMAPI_Information_GetSignalStrength()

The CMAPI_Information_GetSignalStrength() function is used obtain the current signal strength value, the percentage of signal present and the signal quality.
	Prototype

	dword CMAPI_Information_GetSignalStrength (dword deviceID, RadioType radio, dword* pSignalStrengthRaw, dword* pSignalStrengthPercent, dword* pSignalQualityPercent)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	See RadioType definition

	pSignalStrengthRaw
	Output
	The signal strength value in dBm

	pSignalStrengthPercent
	Output
	The signal strength as a percentage - SHOULD be adjusted to device capabilities.

	pSignalQualityPercent
	Output
	The signal quality as a percentage - SHOULD be adjusted to device capabilities.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Remote system not present

	0x00000003
	The radio references a radio which the device does not support.

	0X00000004
	The deviceID references a non-existent device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.5 CMAPI_Information_GetCSNetworkRegistration()

The CMAPI_Information_GetCSNetworkRegistration() function is used to determine if a circuit switched registration is present.
	Prototype

	dword CMAPI_Information_GetCSNetworkRegistration (dword deviceID, RadioType radio, byte* pState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	See RadioType definition

	pState
	Output
	Indicates if a circuit switched registration is present

· 0x00: Not Registered
· 0x01: Registered

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0x00000003
	The radio references a radio which the device does not support.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.6 CMAPI_Information_GetPSNetworkRegistration()

The CMAPI_Information_GetPSNetworkRegistration() function is used to determine if a packet switched attachment is present.
	Prototype

	dword CMAPI_Information_GetPSNetworkRegistration (dword deviceID, RadioType radio, byte* pState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	See RadioType definition

	pState
	Output
	Indicates if a packet switched attachment is present

· 0x00: Not attached

· 0x01: Attached

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0x00000003
	The radio references a radio which the device does not support.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.7 CMAPI_Information_GetAPN()

The CMAPI_Information_GetAPN() function is to obtain the apn identifier.

To iterate through the supplied APNs, the caller would start at the 0 index and monotonically increment the index until the error code indicates there are no more records available.
The APN is defined in [3GPP TS 23.003] as of consisting of a mandatory Network Identifier and an optional Operator Identifier.
	Prototype

	dword CMAPI_Information_GetAPN (dword deviceID, RadioType radio, dword index, UTF8* pNetworkIdentifier, dword* pNetworkIdentifierSize, UTF8* pOperatorIdentifier, dword* pOperatorIdentifierSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	See RadioType definition

	index
	Input
	The index of the entry to return (-1 returns the current APN in use)

	pNetworkIdentifier
	Output
	The network identifier

	pNetworkIdentifierSize
	Input, Output
	The size of the network identifier buffer

	pOperatorIdentifier
	Output
	The operator identifier

	pOperatorIdentifierSize
	Input, Output
	The size of the operator identifier buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The supplied index identifies a record which does not exist.

	0x00000003
	Current APN cannot be retrieved because there is no connection.

	0x00000004
	The network identifier buffer is not large enough, pNetworkIdentifierSize holds the minimum necessary size in bytes

	0x00000005
	The operator identifier buffer is not large enough, pOperatorIdentifierSize holds the minimum necessary size in bytes.

	0x00000006
	The radio references a radio which the device does not support.

	0X00000007
	The deviceID references a non-existent device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.8 CMAPI_Information_GetIPAddress()

The CMAPI_Information_GetIPAddress() function is used to retrieve the current IP address assigned to the device and the type of the address assigned.
	Prototype

	dword CMAPI_Information_GetIPAddress (dword deviceID, UTF8* pIPv4Address, dword* pIPv4AddressSize, UTF8* pIPv6Address, dword* pIPv6AddressSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pIPv4Address
	Output
	The IPv4 address for the current connection

	pIPv4AddressSize
	Input, Output
	The IPv4 address size

	pIPv6Address
	Output
	The IPv6 address for the current connection

	pIPv6AddressSize
	Input, Output
	The IPv6 address size

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Not connected

	0x00000003
	IP Address is not currently assigned (advisable to retry call)

	0x00000004
	Authentication failure

	0x00000005
	The address buffer is not large enough, pAddressSize contains the minimum required size in bytes.

	0x00000006
	 The radio references a radio which the device does not support.

	0X00000007
	The deviceID references a non-existent device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.9 CMAPI_Information_GetRoamingStatus()

The CMAPI_Information_GetRoamingStatus() function is used to retrieve the current roaming status.
	Prototype

	dword CMAPI_Information_GetRoamingStatus (dword deviceID, byte* pState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pState
	Output
	Indication of the roaming state

· 0x00: Home

· 0x01: Roaming

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Remote system is not present.

	0x00000003
	 The radio references a radio which the device does not support.

	0X00000004
	The deviceID references a non-existent device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.10 CMAPI_Information_GetDriverVersion()

The CMAPI_Information_GetDriverVersion() function is used to retrieve the driver version.
	Prototype

	dword CMAPI_Information_GetDriverVersion (dword deviceID, UTF8* pVersion, dword* pVersionSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pVersion
	Output
	Indicates the driver version number

	pVersionSize
	Input, Output
	The size of the data

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Version buffer is not large enough, pVersionSize contains the required size in bytes.

	0X00000003
	The deviceID references a non-existent device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.11 CMAPI_Information_GetRATType()

The CMAPI_Information_GetRATType() function is used to retrieve the radio access technology.
	Prototype

	dword CMAPI_Information_GetRATType (dword deviceID, RadioType radio, dword* pTypes)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	See RadioType definition

	pTypes
	Output
	Indication of the radio access technology currently used

In the case of a device with multiple radios, there MAY be multiple settings returned.
· 0x00000010: GSM service

· 0x00000020: GPRS service

· 0x00000040: EDGE service

· 0x00000100: CDMA service

· 0x00000200: QNC service

· 0x00000400: 1X-RTT service

· 0x00000800: EV-DO service

· 0x00001000: EV-DV service

· 0x00002000: IOTA service

· 0x00004000: IOTA REVA service

· 0x01000000: UMTS service

· 0x02000000: HSDPA service (Included for legacy purpose, not all operators use HSDPA+)

· 0x04000000: HSUPA service

· 0x08000000: HSPA Plus service

· 0x10000000: PHS service

· 0x20000000: FOMA service

· 0x40000000: LTE service

· 0x80000000: WLAN service

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Remote system is not present

	0x00000003
	 The radio references a radio which the device does not support.

	0X00000004
	The deviceID references a non-existent device or a device which is not open

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.12 CMAPI_Information_GetQoS()

The CMAPI_Information_GetQoS() function is used to retrieve the QoS parameters related to the network as defined in 3GPP TS 23.107.
	Prototype

	dword CMAPI_Information_GetQoS (dword deviceID, RadioType radio, dword* pFeaturesValid, byte* pTrafficClass, dword* pMaximumBitrate, dword* pGuaranteedBitrate, byte* pDeliveryOrder, dword* pMaximumSDUSize, byte* pSDUFormatInformation, dword* pSDUErrorRatio, dword* pResidualBitErrorRatio, byte* pDeliveryOfErroneousSDUs, dword* pTransferDelay, dword* pTrafficHandlingPriority, dword* pAllocationRetentionPriority, byte* pSourceStatisticsDescriptor, byte* pSignallingIndication, dword* pPriorityLevel, byte* pPreemptionCapability, byte* pPreemptionVulnerability)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	See RadioType definition

	pFeaturesValid
	Output
	Based on the different traffic classes various features in this method are valid/invalid. This parameter describes which values are valid. If the defined bit is not set it means the corresponding parameter is not used and should not be used for any purpose by the application.

· 0x00000001: Traffic Class

· 0x00000002: Maximum Bitrate

· 0x00000004: Guaranteed Bitrate

· 0x00000008: Delivery Order

· 0x00000010: Maximum SDU Size

· 0x00000020: SDU Format Information

· 0x00000040: SDU Error Ratio

· 0x00000080: Residual Bit Error Ratio

· 0x00000010: Delivery of Erroneous SDUs

· 0x00000020: Transfer Delay

· 0x00000040: Traffic Handling Priority

· 0x00000080: Allocation Retention Priority

· 0x00000100: Source Statistics Descriptor

· 0x00000200: Signaling Indication

· 0x00000400: Priority Level

· 0x00000800: Pre-emption Capability

· 0x00001000: Pre-emption Vulnerability

	pTrafficClass
	Output
	The traffic class defines the type of application for which the bearer service is optimized.

· 0x00: Conversational

· 0x01: Streaming

· 0x02 Interactive

· 0x03 Background

	pMaximumBitrate
	Output
	Maximum bitrate in kbps.

	pGuaranteedBitrate
	Output
	Guaranteed bitrate in kbps.

	pDeliveryOrder
	Output
	Indicates if in-sequence delivery is provided

· 0x00: Not provided

· 0x01: Provided

	pMaximumSDUSize
	Output
	The maximum SDU size for which the network will satisfy the negotiated QoS. In Octets.

	pSDUFormatInformation
	Output
	The list of possible exact size of SDUs supported

· 0x01:

· 0x02:

	pSDUErrorRatio
	Output
	Indicates the fraction of SDUs lost or detected as erroneous.

	pResidualBitErrorRatio
	Output
	Indicates the undetected bit error ratio in the delivered SDUs

	pDeliveryOfErroneousSDUs
	Output
	Indicates whether SDUs detected as erroneous shall be delivered or discarded.

· 0x00: Yes

· 0x01: No

· 0x02: Detection is not used

	pTransferDelay
	Output
	Indicates maximum delay for 95th percentile of the distribution of delay for all delivered SDUs during the lifetime of a bearer service. reported in milliseconds.

	pTrafficHandlingPriority
	Output
	Defines the relative importance for handling of all SDUs belonging to the bearer compared to the SDUs of other bearers

	pAllocationRetentionPriority
	Output
	Defines the relative importance compared to other bearers for allocation and retention of the bearer.

	pSourceStatisticsDescriptor
	Output
	Defines the characteristics of the source of submitted SDUs

· 0x00: Speech

· 0x01: Unknown

	pSignallingIndication
	Output
	Defines the signaling nature of the submitted SDUs.

· 0x00: Yes

· 0x01: No

	pPriorityLevel
	Output
	The Evolved Allocation/Retention Priority Level

	pPreemptionCapability
	Output
	The Evolved Allocation/Retention Pre-emption Capability

· 0x00: Yes

· 0x01: No

	pPreemptionVulnerability
	Output
	The Evolved Allocation/Retention Pre-emption Vulnerability

· 0x00: Yes

· 0x01: No

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Remote system not present

	0x00000003
	QoS unsupported

	0x00000004
	The radio references a radio which the device does not support.

	0X00000005
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.13 CMAPI_Information_GetWLANConnection()

The CMAPI_Information_GetWLANConnection() function is used to retrieve identifying data of the currently connected network.
	Prototype

	dword CMAPI_Information_GetWLANConnection (dword deviceID, UTF8* pSSID, dword* pSSIDSize, byte* pBSSID, dword* pBSSIDSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pSSID
	Output
	The SSID of the current connection

	pSSIDSize
	Input, Output
	The size of the SSID buffer in bytes.

	pBSSID
	Output
	The BSSID of the current connection

	pBSSIDSize
	Input, Output
	The size of the BSSID buffer in bytes.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000022
	Not connected

	0x00000003
	The SSID buffer is not large enough. pSSIDSize contains the minimum required buffer size in bytes.

	0x00000004
	The BSSID buffer is not large enough. pBSSIDSize contains the minimum required buffer size in bytes.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.13.14 CMAPI_Information_GetRadioState()

The CMAPI_Information_GetRadioState() function is used to return the power state of a radio within a device.
	Prototype

	dword CMAPI_Information_GetRadioState (dword deviceID, RadioType radio, RadioState* pState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	radio
	Input
	Please see the definition of RadioType

	pState
	Output
	Please see the definition of RadioState

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The deviceID references a non-existing device or a device which is not open.

	0x00000003
	The radio references a radio which the device does not support.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14 SMS Management APIs
6.14.1 CMAPI_SMS_Send()
The CMAPI_SMS_Send() function is used to send SMS.

	Prototype

	dword CMAPI_SMS_Send (dword deviceID, SMSRecord* pRecord)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pRecord
	Input
	The message needs to be sent

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.2 CMAPI_SMS_Get()

The CMAPI_SMS_Get()function is used to retrieve the message.

	Prototype

	dword CMAPI_SMS_Get (dword deviceID, SMSRecord* pRecord, dword* pRecordSize, dword iFrom)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pRecord
	Output
	The SMS record

	pRecordSize
	Input/Output
	The size of the record buffer or if insufficient contains the necessary size

	iFrom
	Input
	To indicate where the SMS record is

· 0: from SIM/R-UIM/NAA on UICC
· 1: from local device

· 2: from the terminal device, like PC

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	
	The record buffer is not large enough.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.3 CMAPI_SMS_Delete()
The CMAPI_SMS_Delete() function is used to delete SMS.

	Prototype

	dword CMAPI_SMS_Delete (dword deviceID, dword msgID, dword iFrom)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	msgID
	Input
	The message ID

	iFrom
	Input
	To indicate where the SMS record is

· 0: from SIM/R-UIM/NAA on UICC
· 1: from local device

· 2: from the terminal device, like PC

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.4 CMAPI_SMS_GetIDList()
The CMAPI_SMS_GetIDList() function is used to get the list of SMS stored on local device or SIM or the terminal device like PC.

	Prototype

	dword CMAPI_SMS_GetIDList (dword deviceID, dword systemID, dword* pIDList, dword* plDListSize, dword* plCount, dword iFrom)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	plIDList
	Output
	 This is a list of dword values which reference SMS record identifiers.

	plIDListSize
	Input/Output
	The size of the ID List buffer in bytes or if insufficient contains the necessary size.

	plCount
	Output
	The number of the SMS IDs in the list.

	iFrom
	Input
	To indicate where the SMS record is

· 0: from SIM/R-UIM/NAA on UICC
· 1: from local device

· 2: from the terminal device, like PC

	
	
	

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000009
	System not supported by the device

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.5 CMAPI_SMS_Update()
The CMAPI_SMS_Update() is used to update the status of the SMS.

e

	Prototype

	dword CMAPI_SMS_Update (dword deviceID, SMSRecord* pRecord)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pRecord
	Input
	The SMS needs to be updated.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.6 CMAPI_SMS_GetSMSCAddress()
The CMAPI_SMS_GetSMSCAddress() function is used to get the address of SMSC.

	Prototype

	dword CMAPI_SMS_GetSMSCAddress (dword deviceID, UTF8* pSMSCValue, dword* btSMSCSize, UTF8* pPSIValue, dword* btPSISize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pSMSCValue
	Output
	The address of SMSC.

	btSMSCSize
	Input/Output
	The size in byte of pSMSCValue buffer.

	pPSIValue
	Output
	(Optional) The Public Service Identity of the SMSC

	btPSISize
	Input/Output
	The size in byte of pPSIValue buffer.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	
	SMSCValue buffer is not large enough

	
	PSIValue buffer is not large enough

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.7 CMAPI_SMS_SetSMSCAddress()
The CMAPI_SMS_SetSMSCAddress() function is used to set the address of SMSC.

	Prototype

	dword CMAPI_SMS_SetSMSCAddress (dword deviceID, const UTF8* pSMSCValue, const UTF8* pPSIValue)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pSMSCValue
	Input
	The address of the SMSC.

	pPSIValue
	Input
	(Optional) The Public Service Identity of the SMSC

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.8 CMAPI_SMS_GetValidityPeriod()

The CMAPI_SMS_GetValidityPeriod() function is used to get the validity period setting.
	Prototype

	dword CMAPI_SMS_GetValidityPeriod (dword deviceID, dword* period)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	period
	Output
	The validity period of SMS

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.9 CMAPI_SMS_SetValidityPeriod()

The CMAPI_SMS_SetValidityPeriod() function is used to set the period of validity of a SMS.

	Prototype

	dword CMAPI_SMS_SetValidityPeriod (dword deviceID, dword period)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	period
	Input
	 The duration the SMSC keeps a message and tries to deliver it

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.10 CMAPI_SMS_GetDeliveryReport ()

The CMAPI_SMS_GetDeliveryReport() function is used to get the delivery report setting, i.e., on or off
	Prototype

	dword CMAPI_SMS_GetDeliveryReport (dword deviceID, dword* DeliveryReportswitch)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	DeliveryReportswitch
	Output
	· 0x00 switch off
· 0x01 switch on,

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.11 CMAPI_SMS_SetDeliveryReport ()

The CMAPI_SMS_SetDeliveryReport() function is used to set the delivery report “On” or “Off”.
	Prototype

	dword CMAPI_SMS_SetDeliveryReport (dword deviceID, dword DeliveryReportswitch)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	DeliveryReportswitch
	Input
	· 0x00 switch off
· 0x01 switch on,

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.12 CMAPI_SMS_GetRecordCount()

The CMAPI_SMS_GetRecordCount() function is used to get the number of the SMS record.
	Prototype

	dword CMAPI_SMS_GetRecordCount (dword deviceID, dword systemID, dword iFrom, dword* plResult)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	iFrom
	Input
	To indicate where the SMS record is

· 0: from SIM/R-UIM/NAA on UICC
· 1: from local device

· 2: from the terminal device, like PC

	plResult
	Output
	The number of the SMS record

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000009
	System not supported by the device

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.14.13 CMAPI_SMS_GetUnreadRecordCount()

The CMAPI_SMS_GetUnreadRecordCount() function is used to get the number of the unread SMS record.
	Prototype

	dword CMAPI_SMS_GetUnreadRecordCount (dword deviceID, dword systemID, dword iFrom, dword* pIResult)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	iFrom
	Input
	To indicate where the SMS record is

· 0: from SIM/R-UIM/NAA on UICC
· 1: from local device

· 2: from the terminal device, like PC

	plResult
	Output
	The number of the unread SMS record

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000009
	System not supported by the device

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.15 USSD Management APIs
6.15.1 CMAPI_USSD_Request()
The CMAPI_USSD_Request() function is used to build up a USSD request to the network.

	Prototype

	dword CMAPI_USSD_Request (dword deviceID, UTF8* USSDData, dword* USSDStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	USSDData
	Input
	The USSD content

	USSDStatus
	Output
	The status of the USSD request:
· 0x00000000: Done

· 0x00000001: Action Required

· 0x00000002: Cancelled

· 0x00000003: Other client responded

· 0x00000004: Network Timeout
· 0x00000005: operation not supported

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.15.2 CMAPI_USSD_Release()
The CMAPI_USSD_Release() function is used to release the USSD session, if success, the USSD operation will end, without waiting for the release event report from the network.

	Prototype

	dword CMAPI_USSD_Release (dword deviceID, dword* USSDStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	USSDStatus
	Output
	The status of the USSD request:
· 0x00000000: Done

· 0x00000001: Action Required

· 0x00000002: Cancelled

· 0x00000003: Other client responded

· 0x00000004: Network Timeout
· 0x00000005: operation not supported

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16 GNSS APIs
6.16.1 CMAPI_GNSS_SetState()
The CMAPI_GNSS_SetState() function is used to set the state of the GNSS functionality on the device.
	Prototype

	dword CMAPI_GNSS_SetState (dword deviceID, dword GNSSState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	GNSSState
	Input
	State of GNSS functionality:
· 0x00000000: Disabled

· 0x00000001: Enabled

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16.2 CMAPI_GNSS_GetState()

The CMAPI_GNSS_GetState() function is used to retrieve the state of the GNSS functionality on the device, including whether GNSS is enabled and the state of GNSS tracking.

	Prototype

	dword CMAPI_GNSS_GetState (dword deviceID, dword* pGNSSState, dword* pTrackingStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pGNSSState
	Output
	State of GNSS:
· 0: Disabled
· 1: Enabled

	pTrackingStatus
	Output
	GNSS tracking status:

· 0: Unknown – cannot be found somewhere else

· 1: Inactive

· 2: Active

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16.3 CMAPI_GNSS_SetTrackingParameters()

The CMAPI_GNSS_SetTrackingParameters() function is used to set the values of parameters that control the operation of GNSS tracking on the device.
	Prototype

	dword CMAPI_GNSS_SetTrackingParameters (dword deviceID, dword operation, dword interval, byte timeout, dword accuracy)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	operation
	Input
	GNSS session operating mode:
· 0: Standalone

· 1: MS Assisted
· 2: MS Based

	interval
	Input
	Interval between position fixes. The value range of interval is in seconds and must be greater than or equal to timeout

	timeout
	Input
	Maximum amount of time used to calculate each position fix (in seconds)

	accuracy
	Input
	Position accuracy threshold (in meters)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16.4 CMAPI_GNSS_GetTrackingParameters()

The CMAPI_GNSS_GetTrackingParameters() function is used to retrieve the values of parameters that control the operation of GNSS tracking on the device.
	Prototype

	dword CMAPI_GNSS_GetTrackingParameters (dword deviceID, dword* pOperation, dword* pInterval, byte* pTimeout, dword* pAccuracy)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pOperation
	Output
	GNSS session operating mode:
· 0: Standalone

· 1: MS Assisted
· 2: MS Based

	pInterval
	Output
	Interval between position fixes (in seconds)

	pTimeout
	Output
	Maximum amount of time used to calculate each position fix (in seconds)

	pAccuracy
	Output
	Position accuracy threshold (in meters)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16.5 CMAPI_GNSS_SetAGPSConfig()

The CMAPI_GNSS_SetAGPSConfig() function is used to configure the Assisted GPS (AGPS) server IP address, port number and/or FQDN.

	Prototype

	dword CMAPI_GNSS_SetAGPSConfig (dword deviceID, dword serverAddress, dword serverPort, UTF8* serverFQDN)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	serverAddress
	Input
	 IPv4 address of AGPS server

	serverPort
	Input
	Port number of AGPS server

	serverFQDN
	Input
	Fully Qualified Domain Name (FQDN) of AGPS server

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16.6 CMAPI_GNSS_GetAGPSConfig()

The CMAPI_GNSS_GetAGPSConfig() function is used to retrieve the values of the Assisted GPS (AGPS) server IP address, port number and FQDN.
	Prototype

	dword CMAPI_GNSS_GetAGPSConfig (dword deviceID, dword* pServerAddress, dword* pServerPort, UTF8* pServerFQDN)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pServerAddress
	Input
	IPv4 address of AGPS server

	pServerPort
	Input
	Port number of AGPS server

	pServerFQDN
	Input
	Fully Qualified Domain Name (FQDN) of AGPS server

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16.7 CMAPI_GNSS_SetAutomaticTracking()

The CMAPI_GNSS_SetAutomaticTracking() function is used to enable and disable automatic GNSS tracking on the device.

	Prototype

	dword CMAPI_GNSS_SetAutomaticTracking (dword deviceID, dword tracking)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	tracking
	Input
	Automatic tracking session:
· 0: End currently active tracking session
· 1: start an automatic tracking session

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16.8 CMAPI_GNSS_GetAutomaticTracking ()

The CMAPI_GNSS_GetAutomaticTracking() function is used to retrieve the state of automatic GNSS tracking on the device.

	Prototype

	dword CMAPI_GNSS_GetAutomaticTracking (dword deviceID, dword* pTracking)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pTracking
	Output
	State of automatic tracking session:
· 0: No tracking session is active
· 1: A tracking session is active

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16.9 CMAPI_GNSS_GetDevicePosition()

The CMAPI_GNSS_GetDevicePosition() function is used to retrieve the current position of the device.

	Prototype

	dword CMAPI_GNSS_GetDevicePosition (dword deviceID, float* pLatitude, float* pLongitude, float* pAltitude, float* pDirection, float* pSpeed, dword *pAccuracy, UTF8* pTimestamp, dword* pTimestampSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pLatitude
	Output
	The current latitude in decimal degrees

	pLongitude
	Output
	The current longitude in decimal degrees

	pAltitude
	Output
	The current altitude in meters

	pDirection
	Output
	The current direction in degrees

	pSpeed
	Output
	 The speed in meters per second

	pAccuracy
	Output
	The estimated accuracy of the calculated position in meters

	pTimestamp
	Output
	The Timestamp of the current position. The time format should follow : YYYY-MM-DD HH:MM:SS+HH:MM (-HH:MM)

	pTimestampSize
	Input/Output
	The size of the timestamp buffer or if insufficient contains the necessary size

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	
	The timestamp buffer is not large enough.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.16.10 CMAPI_GNSS_SetSystemTime()

The CMAPI_GNSS_SetSystemTime() function is used to set the value of the system time that will be used by the device’s GNSS engine. An accurate system time value directly injected into the GNSS engine can reduce latencies when determining satellite locations as well as the device’s actual position.
	Prototype

	dword CMAPI_GNSS_SetSystemTime (dword deviceID, qword systemTime, word numTimeDiscontinuities)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	systemTime
	Input
	System time value

	numTimeDiscontinuities
	Input
	Number of system time discontinuities

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.17 Data Push Service Management APIs
6.17.1 CMAPI_Push_Enable()

The CMAPI_Push_Enable() function is used to turn on PUSH option to make applications using the OpenCMAPI Enabler able to receive PUSH messages. This function may be used when the PUSH service is based on different radio types which will be turned on/off individually. If the radio type is set to 0xFF then all PUSH services will be enabled.
	Prototype

	dword CMAPI_Push_Enable (dword deviceID, RadioType radio)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The device concerned

	radio
	Input
	Please see RadioType definition (bitwise combination of one or several types)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0x00000003
	The radio references a radio which the device does not support (exception, this error is not reported if the radio is set to 0xFF (all)).

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.17.2 CMAPI_Push_Disable()

The CMAPI_Push_Disable() function is used to turn off PUSH option to make applications using the OpenCMAPI Enabler unable to receive PUSH messages. This function may be used when the PUSH service is based on different radio types which will be turned on/off individually. If the radio type is set to 0xFF then all PUSH services will be disabled.
	Prototype

	dword CMAPI_Push_Disable (dword deviceID, RadioType radio)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The device concerned

	radio
	Input
	Please see RadioType definition (bitwise combination of one or several types)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0x00000003
	The radio references a radio which the device does not support (exception, this error is not reported if the radio is set to 0xFF (all))

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

6.17.3 CMAPI_Push_GetRadioType()

The CMAPI_Push_GetRadioType() function is used to get the current bearer type over which the PUSH session is established for an application.
	Prototype

	dword CMAPI_Push_GetRadioType (dword deviceID, RadioType* pRadio)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The device concerned

	pRadio
	Output
	Please see RadioType definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X00000002
	The deviceID references a non-existent device or a device which is not open

	0X00000013
	The device does not contain hardware which supports this operation.

	0X00000014
	The device is not in a power state which allows this operation.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7. CMAPI-2
7.1 Introduction
The CMAPI-2 is an Asynchronous Interface used to provide callbacks (i.e. Notifications) and the registration/deregistration mechanisms to receive these callbacks.
7.2 Registration APIs
This API is exposed by the OpenCMAPI layer.
7.2.1 CMAPI_Callback_Register()

The CMAPI_Callback_Register() function is used for the application to register for the callbacks which are expected to be received.

	Prototype

	dword CMAPI_Callback_Register (CallbackID ID, callback method)

	Parameters

	Field Name
	Mode
	Description

	ID
	Input
	See CallbackID definition

	method
	Input
	The callback method to use when event is triggered.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0X000000F1
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.2.2 CMAPI_Callback_Unregister()

The CMAPI_Callback_Unregister() function is used to turn off all callbacks or just some.

	Prototype

	dword CMAPI_Callback_Unregister (CallbackID ID)

	Parameters

	Field Name
	Mode
	Description

	ID
	Input
	See CallbackID definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

7.3 Callback APIs

These callbacks are exposed by the application.
7.3.1 CMAPI_Callback_DetectDevicesComplete()

The CMAPI_Callback_DetectDevicesComplete() function is used to communicate that a search and validation of the devices in the system is complete. This is a callback method which the OpenCMAPI invokes.

	Prototype

	dword CMAPI_Callback_DetectDevicesComplete (CallbackStatus status, dword devicesPresent, byte* uniqueIdentifierArray)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	devicesPresent
	Input
	The number of the devices currently present

	uniqueIdentifierArray
	Input
	An array of ‘devicesPresent’ strings, each of which uniquely identifies a detected device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID.
Although this member is declared as a single null-terminated string, it is actually a buffer that can hold multiple null-delimited unique identifiers. Each unique identifier is terminated by a single NULL character. The last unique identifier is terminated with a double NULL character ("\0\0") to indicate the end of the buffer.

7.3.2 CMAPI_Callback_DeviceChanged()
The CMAPI_Callback_DeviceChanged() function is used to communicate whenever there is a change in a given device state in particular to indicate that a device has become present or been removed and to notify all applications that have registered for this callback.
This callback could be used to identify the type of device supported for example if the device is used in tethering mode.
	Prototype

	dword CMAPI_Callback_DeviceChanged (dword deviceID, dword devicestate, RadioType radio, dword deviceCapability, dword connectionType, dword deviceType, UTF8* description, UTF8* uniqueIdentifier)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned if the device is already open

If the device is not opened: 0

	devicestate
	Input
	The new state of the device.

· 0x00000001: Unplugged

· 0x00000002: Unavailable

· 0x00000003: Available

	radio
	Input
	See RadioType definition

	deviceCapability
	Input
	The additional capabilities not related to radio type supported by the device:

· 0x00000000: No additional capability
· 0x00000001: GPS
· 0x00000002: AGPS in the Control Plane

· 0x00000004: AGPS in the User Plane
· 0x00000008: Reserved for future use
· 0x00000010: Reserved for future use
· 0x00000020: Reserved for future use

· Any combination of the above

	connectionType
	Input
	The type of the device connection.

· 0x00000001: USB

· 0x00000002: IRDA

· 0x00000004: Bluetooth

· 0x00000008: Internal Bus
· 0x00000010: Serial
· Any combination of the above

	deviceType
	Input
	The type of device this message refers to.

· 0x00000001: Embedded modem

· 0x00000002: USB modem

· 0x00000003: Mobile phone acting as modem

	description
	Input
	Description of the device. Intended to be descriptive and displayed by an application.

	uniqueIdentifier
	Input
	The unique identification of this specific device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID.

7.3.3 CMAPI_Callback_GetNetworkList_Async_Complete()

 This callback shows the result of a call made to CMAPI_NetConnectSrv_GetNetworkList_Async().
	Prototype

	dword CMAPI_Callback_GetNetworkList_Async_Complete (CallbackStatus status, dword deviceID, NetworkInfoType* NetworkInfo, dword NetworkInfoCount)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	NetworkInfo
	Input
	The Network Information (see NetworkInfoType definition)

	NetworkInfoCount
	Input
	The total number of elements in the array of NetworkInfo

7.3.4 CMAPI_Callback_Connect_Async_Complete()

The CMAPI_Callback_Connect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_Connect_Async .

	Prototype

	dword CMAPI_Callback_Connect_Async_Complete (CallbackStatus status, dword deviceID, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	result
	Input
	· 0x00000000 The connection succeeded

· 0x00000001 The connect attempt failed, reason : The network connection was refused by network

· 0x00000002 The connect attempt failed, reason : TBD

7.3.5 CMAPI_Callback_Disconnect_Async_Complete()

The CMAPI_Callback_Disconnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_Disconnect .

	Prototype

	dword CMAPI_Callback_Disconnect_Async_Complete (CallbackStatus status, dword deviceID, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	result
	Input
	· 0x00000000 The disconnect operation succeeded

· 0x00000001 The disconnect attempt failed, reason : TBD

7.3.6 CMAPI_Callback_CancelConnect_Async_Complete()

The CMAPI_Callback_CancelConnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_CancelConnect_Async.

	Prototype

	dword CMAPI_Callback_CancelConnect_Async_Complete (CallbackStatus status, dword deviceID, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	result
	Input
	· 0x00000000: The connect operation was cancelled.

· 0x00000001: The cancel operation failed, reason : TBD

7.3.7 CMAPI_Callback_SessionStateChange()

The CMAPI_Callback_SessionStateChange() function is used to communicate the session state change
	Prototype

	dword CMAPI_Callback_SessionStateChange (dword deviceID, dword connectionStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	connectionStatus
	Input
	The new status of the connection of the device:
· 0x00000000: Connected

· 0x00000001: Disconnected (it may be possible to distinguish between passive and active disconnection)

· 0x00000002: Connecting

· 0x00000003: Disconnecting

· 0x00000004: Scanning

· 0x00000010: Unknown state

7.3.8 CMAPI_Callback_BearerStatusChange()

The CMAPI_Callback_BearerStatusChange() function is used to communicate a bearer status change
	Prototype

	dword CMAPI_Callback_BearerStatusChange (dword deviceID, dword bearer)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	bearer
	Input
	Indication of the bearer:
· 0x00000001: No Service

· 0x00000002: Any packet oriented service

· 0x00000004: Any circuit switched service

· 0x00000010: GSM service

· 0x00000020: GPRS service

· 0x00000040: EDGE service

· 0x00000100: CDMA service

· 0x00000200: QNC service

· 0x00000400: 1X-RTT service

· 0x00000800: EV-DO service

· 0x00001000: EV-DV service

· 0x00002000: IOTA service

· 0x00004000: IOTA REVA service

· 0x01000000: UMTS service

· 0x02000000: HSDPA service (Included for legacy purpose, not all operators use HSDPA+)

· 0x04000000: HSUPA service

· 0x08000000: HSPA Plus service

· 0x10000000: PHS service

· 0x20000000: FOMA service

· 0x40000000: LTE service

· 0x40000000: WLAN service

7.3.9 CMAPI_Callback_TrafficChannelDormancy()

The CMAPI_Callback_TrafficChannelDormancy () function is used to communicate the changes in the traffic level.
	Prototype

	dword CMAPI_Callback_TrafficChannelDormancy (dword deviceID, dword state)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	state
	Input
	The new traffic channel dormancy state

· 0x00000000: Dormant. See definitions section. Marked Dormant after 10 seconds of no use.

· 0x00000001: Traffic channel in use.

7.3.10 CMAPI_Callback_CDMA2000ActivationState()

The CMAPI_Callback_CDMA2000ActivationState () function is used to communicate the changes in the CDMA 2000 Activation state
	Prototype

	dword CMAPI_Callback_CDMA2000ActivationState (CallbackStatus status, dword deviceID, dword state)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	state
	Input
	The new activation state

· 0x00000000: Service not activated

· 0x00000001: Service activated

· 0x00000002: Activation connecting

· 0x00000003: Activation connected

· 0x00000004: OTASP security authenticated

· 0x00000005: OTASP NAM downloaded

· 0x00000006: OTASP MDN downloaded

· 0x00000007: OTASP IMSI downloaded

· 0x00000008: OTASP PRL downloaded

· 0x00000009: OTASP SPC downloaded

· 0x00000010: OTASP settings committed.

7.3.11 CMAPI_Callback_ScanNetworkComplete()
The CMAPI_Callback_ScanNetworkComplete() function is called when a WLAN network scan has completed.
	Prototype

	dword CMAPI_Callback_ScanNetworkComplete (CallbackStatus status, dword deviceID, WLANNetwork* Network, dword present)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	Indicates the device which the scan network occurred on.

	Network
	Input
	The network identification.

	present
	Input
	The presence status of the Wlan network
· 0x00000000: Not present

· 0x00000001: Present

7.3.12 CMAPI_Callback_RadioState()

The CMAPI_Callback_RadioState() function is used to communicate changes in the radio power state.
	Prototype

	dword CMAPI_Callback_RadioState (dword deviceID, RadioType radio, RadioState state)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The device whose radio has changed power state.

	radio
	Input
	Please see RadioType definition

	state
	Input
	Please see RadioState definition

7.3.13 CMAPI_Callback_SetRadioState_Async_Complete()

The CMAPI_Callback_SetRadioState_Async_Complete() function is invoked as a result of a previous call to CMAPI_DevSrv_SetRadioState_Async.
	Prototype

	dword CMAPI_Callback_SetRadioState_Async_Complete (CallbackStatus status, dword deviceID, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	result
	Input
	· 0x00000000: The change of the power state succeeded

· 0x00000001: The change of the power state failed, reason: The radio references a radio which the device does not support.

· 0x00000002: The connect attempt failed, reason: The device does not support the indicated power state. (ex power saving)

7.3.14 CMAPI_Callback_Roaming()

The CMAPI_Callback_Roaming() function is used indicate changes in Roaming status
	Prototype

	dword CMAPI_Callback_Roaming (dword deviceID, dword state)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	state
	Input
	The Indication of the roaming state
· 0x00000000: Home PLMN (not roaming)

· 0x00000001: Roaming

7.3.15 CMAPI_Callback_SignalStrength()

The CMAPI_Callback_SignalStrength() function is used to return the current signal strength value, the percentage of signal present and the signal quality.
	Prototype

	dword CMAPI_Callback_SignalStrength (dword deviceID, RadioType radio, dword SignalStrengthRaw, dword SignalStrengthPercent, dword SignalQualityPercent)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	Please see RadioType definition

	SignalStrengthRaw
	Input
	The signal strength value in dBm.

	SignalStrengthPercent
	Input
	The signal strength as a percentage - SHOULD be adjusted to device capabilities.

	SignalQualityPercent
	Input
	The signal quality as a percentage - SHOULD be adjusted to device capabilities.

7.3.16 CMAPI_Callback_GNSS()

The CMAPI_Callback_GNSS() function is used to indicate a change in the GNSS state.
	Prototype

	dword CMAPI_Callback_GNSS (dword deviceID, dword state, dword fix, float latitude, float longitude, float altitude, float direction, float speed, dword accuracy, UTF8* timestamp)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	state

	Input

	Indication of the GNSS state

· 0x00000000: GNSS off

· 0x00000001: GNSS on

	fix
	Input
	Indication if the GNSS has a fix

· 0x00000000: No fix

· 0x00000001: Fix

	latitude
	Input
	The current latitude in decimal degrees

	longitude
	Input
	The current longitude in decimal degrees

	altitude
	Input
	 The current altitude in meters

	direction
	Input
	The current direction in degrees

	speed
	Input
	The speed in meters per second

	accuracy
	Input
	The estimated accuracy of the current position in meters

	timestamp
	Input
	The Timestamp of the current position. The time format should follow: YYYY-MM-DD HH:MM:SS+HH:MM (-HH:MM)

7.3.17 CMAPI_Callback_SMS()

The CMAPI_Callback_SMS () function is used to indicate that a new SMS message has been received and the number of messages in the mailbox.
	Prototype

	dword CMAPI_Callback_SMS (dword deviceID, dword mailbox, dword totalMessages, dword newMessages)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	mailbox
	Input
	Indication of the mailbox
· 0x00000000: Stored on SIM/R-UIM/NAA on UICC

· 0x00000001: Stored in phone memory

	totalMessages
	Input
	The total number of messages in the mailbox

	newMessages
	Input
	The current number of new messages in the mailbox

7.3.18 CMAPI_Callback_ByteCount
The CMAPI_Callback_ByteCount() function is used to indicate the current byte count. This is a periodic notification. This callback SHALL be made immediately when the application registers for this message. The callback SHALL also occur at a maximum of every 15 seconds when the connection is not Dormant. The OpenCMAPI implementation is free to make this callback sooner if deemed useful, in any event the callback MAY NOT occur with greater frequency than once a second. The byte count accumulates between the last connection and either a manual disconnect or some other event that causes the radio to be in disconnected state. This callback must not occur while in the disconnected state.
	Prototype

	dword CMAPI_Callback_ByteCount (dword deviceID, qword tx, qword rx, dword wrapped)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	tx
	Input
	The current count of tx bytes.

	rx
	Input
	The current count of rx bytes

	wrapped
	Input
	This is used to denote when tx and/or rx counters have overflowed. Counting will continue like normal and the indication will be set once for each overflow. The following definition is a bitwise combination and allows for tx and/or rx to be set at the same time.

· 0x00000000: No Overflow

· 0x00000001: Tx overflow

· 0x00000002: Rx overflow

7.3.19 CMAPI_Callback_USSD()

The CMAPI_Callback_USSD() function is used to communicate a USSD message.
	Prototype

	dword CMAPI_Callback_USSD (dword deviceID, dword status, const byte* data, dword length, byte coding)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	status
	Input
	The status

· 0x00000000: Done

· 0x00000001: Action Required

· 0x00000002: Cancelled

· 0x00000003: Other client responded

· 0x00000004: Network Timeout

	data
	Input
	The contents of the message in binary form.

	length
	Input
	The length of the data in bytes.

	coding
	Input
	The CBS Data Coding Scheme as defined in 3GPP TS 23.038

7.3.20 CMAPI_Callback_QoSChange()

The CMAPI_Callback_QoSChange() function is used to communicate a change in QoS as defined in 3GPP TS 23.107.
	Prototype

	dword CMAPI_Callback_QoSChange (dword deviceID, QoSStructure* QoS)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	QoS
	Input
	See QoS Structure definition

7.3.21 CMAPI_Callback_RFInformationChange()

The CMAPI_Callback_RFInformationChange() function is used to communicate a change related to RF.
	Prototype

	dword CMAPI_Callback_RFInformationChange (dword deviceID, UTF8* radioTechnology, dword radioTechnologySize, UTF8* bandClass, dword bandClassSize, UTF8* channel, dword channelSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radioTechnology
	Input
	Name of the technology in use

	radioTechnologySize
	Input
	Length of the technology

	bandClass
	Input
	Name of the band class in use

	bandClassSize
	Input
	Length of the band class

	channel
	Input
	Name of the channel in use

	channelSize
	Input
	Length of the channel

7.3.22 CMAPI_Callback_PINPUKStatus()

The CMAPI_Callback_PINPUKStatus() function is used to return the status of the PINs/PUKs for all active NAAs as soon as the status changes by any OpenCMAPI applications or any other applications.
	Prototype

	qword CMAPI_Callback_PINPUKStatus (dword deviceID, PINPUKStatusType* PINPUKStatusList, dword PINPUKStatusListCount)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	PINPUKStatusList
	Input
	The status of the PINs/PUKs for all active NAAs (see PINPUKStatusType definition)

	PINPUKStatusListCount
	Input
	The number of entries in the status list

7.3.23 CMAPI_Callback_ScanComplete()

The CMAPI_Callback_ScanComplete() function is used to notify that a scan for WLAN networks has been completed.
	Prototype

	dword CMAPI_Callback_ScanComplete (CallbackStatus status, dword deviceID, dword networks)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	networks
	Input
	The number of networks in the current scan list.

7.3.24 CMAPI_Callback_WLANNewAvailableNetwork()

The CMAPI_Callback_WLANNewAvailableNetwork() function is used to notify that a new network has been discovered.
	Prototype

	dword CMAPI_Callback_WLANNewAvailableNetwork (dword deviceID, WLANNetwork* network)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	network
	Input
	The new network which has been located. Please see WLANNetwork

7.3.25 CMAPI_Callback_WLANConnectionStatus ()

The CMAPI_Callback_WLANNotification() function is used to receive WLAN connection Status.
	Prototype

	dword CMAPI_Callback_WLANConnectionStatus (CallbackStatus status, dword deviceID, dword status)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	status
	Input
	WLAN event:

· 0x00000000: Connection attempt starting

· 0x00000001: Attempting association

· 0x00000002: Association failed

· 0x00000003: Attempting authentication

· 0x00000004: Authentication failed

· 0x00000005: Requesting IP address

· 0x00000006: IP grant failed

· 0x00000010: Connection complete
· 0x00000020: Disconnecting

· 0x00000021: Disconnected

7.3.26 CMAPI_Callback_PUSHReceived()

The CMAPI_Callback_PUSHReceived() function is used to notify an application when a new PUSH message has been received.
	Prototype

	dword CMAPI_Callback_PUSHReceived (dword deviceID, UTF8* contentType, UTF8* applicationID, byte* data, dword length)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The device concerned

	contentType
	Input
	The content type carried in the PUSH message

	applicationID
	Input
	The application id carried in the PUSH message (application ID in this context is the ID of the PUSH application)

	data
	Input
	The contents of the PUSH message in binary form.

	length
	Input
	The length of the data in bytes.

7.3.27 CMAPI_Callback_OMADMStatus()
This callback indicates any OMA-DM operation Progress or Status inbetween. The User Action flag will be set if Device API requires user action to be applied.
	Prototype

	dword CMAPI_Callback_OMADMStatus (CallbackStatus status, dword deviceID, dword OMADMBitMap, dword OMADMStatus, boolean userActionRequired)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	OMADMBitMap
	Input

	Device management operation under consideration.

· 0x00000001: HFA (Hands Free Activation)

· 0x00000002: HFA_CIDC (CIDC during HFA process)

· 0x00000003: HFA_CIPRL (CIPRL during HFA process)

· 0x00000004: HFA_CIFUMO (CIFUMO during HFA process)

· 0x00000005: CIDC

· 0x00000006: CIPRL

· 0x00000007: CIFUMO

· 0x00000008: NIDC

· 0x00000009: NIPRL
· 0x0000000A: NIFUMO

	OMADMStatus
	Input
	The status of all OMA-DM Operation listed below shall be informed via the OMA-DM callback function along with the above OMADMBitmap.

· 0x00000001: OMADM_STARTED (indicates the particular OMA-DM Session is Started)

· 0x00000002: OMADM_PROGRESS

· 0x00000003: OMADM_RESULT _SUCCESS (indicates the particular OMA-DM Session is Completed succesfully)

· 0x00000004: OMADM_RESULT_FAILURE (indicates the particular OMA-DM Session Failed)

· 0x00000005: OMADM_RESULT_CANCELED (result in case of user cancelling OMA-DM Session)

· 0x00000006: OMADM_SESSION_PROGRESS (particular OMA-DM Session is in progress)

· 0x00000007: OMADM_PACKAGE_AVAILABLE (FUMO package available)
· 0x00000008: OMADM_PACKAGE_DOWNLOADED (FUMO package downloaded)
· 0x00000009: OMADM_UPDATE_NOT_AVAILABLE (PRL update or FUMO update Not available)

· 0x0000000A: OMADM_NOTIFICATION_SENT_TO_SERVER (Device OMA-DM client sending final status notification to OMA Server completed)

· 0x0000000B: OMADM_HFA_START

· 0x0000000C: OMADM_HFA_CIFUMO

· 0x0000000D: OMADM_HFA_CIPRL

· 0x0000000E: OMADM_HFA_CIDC

· 0x0000000F: OMADM_HFA_END

	userActionRequired
	Input
	Indicates whether user action is required in response to the status received. Usually applies to FUMO Package Download and Update Device with FUMO Package.

· 0x00000000: No User Action Required

· 0x00000001: User Action Required

7.3.28 CMAPI_Callback_UICC_ToolKitProactiveCommand()
The device SHALL support the class s, “Support of CAT over the modem interface”, as specified in [ETSI TS 102 223].

The CMAPI_Callback_UICC_ToolKitProactiveCommand() function is used to receive the ToolKit Proactive Commands sent by the SIM/R-UIM/UICC and routed to the Connection Manager Application by the device (see [ETSI TS 102 223] for the routing aspects).
The device SHALL send this callback only when the Connection Manager Application support the corresponding ToolKit Proactive Commands as previously indicated into the CMAPI_UICC_SetTerminalProfile() and when no overlap was detected into the CMAPI_UICC_SetTerminalProfile().
The device SHALL send this callback as soon as it receives the ToolKit Proactive Commands from the SIM/R-UIM/UICC.
	Prototype

	dword CMAPI_Callback_UICC_ToolKitProactiveCommand (dword deviceID, byte toolKitProactiveCommand[256])

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	toolKitProactiveCommand
	Input
	ToolKit Proactive Command in hexadecimal format as specified in [ETSI TS 102 223] for the core part, in [3GPP TS 31.111] for the 3GPP specific part, in [C.S0035] for the 3GPP2 specific part.

7.3.29 CMAPI_Callback_UICC_DeviceTerminalProfile()

The device SHALL support the class s, “Support of CAT over the modem interface”, as specified in [ETSI TS 102 223].

The CMAPI_Callback_UICC_DeviceTerminalProfile() function is used for the Connection Manager Application to receive the TERMINAL PROFILE sent by the device to the SIM/R-UIM/UICC each time the device sent it.
The device SHALL send this callback at the same time it sends the TERMINAL PROFILE to the SIM/R-UIM/UICC.
	Prototype

	dword CMAPI_Callback_UICC_DeviceTerminalProfile (dword deviceID, byte terminalProfile[256])

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	terminalProfile
	Input
	The hexadecimal value of the TERMINAL PROFILE as specified in the chapter “Structure and coding of the TERMINAL PROFILE” of [ETSI TS 102 223] for the core part, in the chapter “Structure and coding of the TERMINAL PROFILE” of [3GPP TS 31.111] for the 3GPP specific part, in the chapter “Structure and coding of the TERMINAL PROFILE” of [3GPP2 C.S0035] for the 3GPP2 specific part.

8. Error Logger

The Error Logger is used to capture the warnings, error codes and info when the Open CMAPI is running. The warnings and output info can be defined depends on the implementation. For the error codes, below table gives the detailed description:
	Error Code
	Description

	0X0000~0x00FF Common Errors

	0X0000
	Invalid parameter

	0X0001
	Buffer size is not enough

	0X0002
	Invalid operation

	0x0003
	No service

	0x0004
	Radio off

	
	

	0X1000~0X1FFF Net Connect Errors

	
	

	
	

	
	

	
	

	
	

	0X2000~0X2FFF SMS Errors

	0x2000
	Failure of communication with device

	0x2001
	Timer expired without receiving response from device

	0x2002
	Response with error indication from device

	0x2003
	Operation NOT supported

	0x2004
	SMS message NOT found

	
	

	 0X3000~0X3FFF Call Errors

	
	

	 0X4000~0X4FFF Call Log Errors

	
	

	0X5000~0X5FFF Data Service Errors

	
	

	 0X6000~0X6FFF Device Errors

	0x6000
	Device NOT found

	0x6001
	Device NOT opened

	
	

	 0X7000~0X7FFF Net (Setting) Errors

	
	

	0X8000~0X8FFF Statistics Errors

	
	

	0X9000~0X9FFF UICC Errors
	

	
	

	
	

	 0XA000~0XAFFF USSD Errors

	
	

	 0XB000~0XBFFF GNSS Errors

	
	

	0XC000~0X CFFF TRACE Errors

	
	

	
	

	0XD000~0XDFFF User Number Errors

	
	

	0XE000~0XEFFF WLAN Errors

	0XE000
	WLAN Radio state NOT supported

	0XE001
	Index number NOT valid

	0XE002
	Index number already existing and a higher number needed

	0XE003
	No network existing with the specified index.

	0XE004
	Predefined networks NOT able to be modified.

	0XE005
	Key length NOT valid

	0XE006
	Invalid character in the Key.

	0XE007
	Invalid combination of AUTH and CIPHER

	0XE008
	Index NOT referring to a valid known network

	0XE009
	NO existing WLAN connection

	0XE00A
	Unknown networks NOT allowed in Security mode

	0XE00B
	IP address NOT valid

	0XE00C
	Subnet mask NOT valid

	0XE00D
	Operation prohibited by security policy

	0XE00E
	WPS PIN NOT correct

Editor Note: Should we have a matching table between the error codes that are available from each function/callback & the error codes in the logger?
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-OpenCMAPI-V1_0
	9 Sep 2011
	5.1.1,5.1.2,5.1.3,5.1.4,5.1.5,5.1.6
	Incorporates input to committee:

 OMA-CD-OpenCMAPI-2011-0008R04-CR_TS_Device_Service_APIs

	
	23 Sep 2011
	5.1.7,5.1.8,5.1.9,5.1.10,5.1.11,5.1.12,5.1.13
	Incorporates input to committee:

 OMA-CD-OpenCMAPI-2011-0013R03-CR_TS_More_Device_Service_APIs

	
	16 Oct 2011
	All
	Incorporated:

OMA-CD-OpenCMAPI-2011-0016R03-CR_TS_Some_PIN_Mgmt_APIs

OMA-CD-OpenCMAPI-2011-0030R03-CR_TS_Callback

OMA-CD-OpenCMAPI-2011-0031R01-CR_TS_Mobile_IP_APIs

OMA-CD-OpenCMAPI-2011-0032R01-CR_TS_Get_RF_Status_APIs

OMA-CD-OpenCMAPI-2011-0035R01-CR_TS_Information_APIs

	
	19 Oct 2011
	5
	Incorporated:

OMA-CD-OpenCMAPI-2011-0031R01-CR_TS_Mobile_IP_APIs (remaining)

OMA-CD-OpenCMAPI-2011-0041R02-CR_TS_Network_Management_APIs

OMA-CD-OpenCMAPI-2011-0045R01-CR_TS_Statistic_APIs

	
	27 Oct 2011
	3, 5, 6, Appendix C
	Incorporated:

OMA-CD-OpenCMAPI-2011-0047R02-CR_TS_DeviceDiscovery_APIs

OMA-CD-OpenCMAPI-2011-0056R01-CR_Device_Identification

	
	2 Nov 2011
	5, 6
	Incorporated:

OMA-CD-OpenCMAPI-2011-0057R02-CR_API_Management

OMA-CD-OpenCMAPI-2011-0058R01-CR_TS_WLAN_APIs

OMA-CD-OpenCMAPI-2011-0065-CR_TS_Alignment_of_GetPinStatus_with_PIN_PUK_Management

	
	16 Nov 2011
	3,5,6,7
	Incorporates input to committee:

OMA-CD-OpenCMAPI-2011-0014R05-CR_TS_Some_Connection_Mgmt_APIs
OMA-CD-OpenCMAPI-2011-0044R01-CR_TS_Network_Connectivity_APIs
OMA-CD-OpenCMAPI-2011-0059R01-CR_TS_Tethering_APIs
OMA-CD-OpenCMAPI-2011-0060R01-CR_TS_Security_and_Concurrency_APIs
OMA-CD-OpenCMAPI-2011-0066R01-CR_Data_Push_Management_APIs
OMA-CD-OpenCMAPI-2011-0068R01-CR_TS_SMS_Mgm_API
OMA-CD-OpenCMAPI-2011-0072-CR_TS_Async_Connection_Mgt
OMA-CD-OpenCMAPI-2011-0074R01-CR_TS_WLAN_Callback_Fix
OMA-CD-OpenCMAPI-2011-0075R01-CR_TS_WLAN_Situation_of_Multiple_Devices
OMA-CD-OpenCMAPI-2011-0077R01-CR_Error_Logger_Template
OMA-CD-OpenCMAPI-2011-0079-CR_TS_Power_Control_APIs
OMA-CD-OpenCMAPI-2011-0080R01-CR_TS_WLAN_Additions_APIs
OMA-CD-OpenCMAPI-2011-0081-CR_TS_Get_APN_Clarification

	
	23 Nov 2011
	All
	Incorporated:
OMA-CD-OpenCMAPI-2011-0063R02-CR_TS_GPS_APIs
OMA-CD-OpenCMAPI-2011-0069R02-CR_TS_USSD_Mgmt_API
OMA-CD-OpenCMAPI-2011-0071R01-CR_TS_Scope_and_Introduction
OMA-CD-OpenCMAPI-2011-0083R01-CR_TS_CDMA_Specific_APIs

	
	01 Dec 2011
	All
	Incorporated:
OMA-CD-OpenCMAPI-2011-0078R01-CR_TS_Device_Handle_changes
OMA-CD-OpenCMAPI-2011-0087R01-CR_TS_More_Async_APIs

	
	04 Dec 2011
	5, 6
	Incorporated:
OMA-CD-OpenCMAPI-2011-0085R01-CR_UICC_APIs

	
	07 Dec 2011
	5, 6, 7
	Incorporated:
OMA-CD-OpenCMAPI-2011-0090R01-CR_SMS_APIs_Fix

OMA-CD-OpenCMAPI-2011-0092R01-CR_Part_of_Log_Codes

OMA-CD-OpenCMAPI-2011-0094-CR_Callbacks_fixes

	
	11 Jan 2012
	5.3
	Updated according to CONRR comments closed:
D035, D037, D038, D040

	
	25 Jan 2012
	All
	Updated according to CONRR comments closed:
D002, D010, D013, D015, D017, D018, D023, D024, D031, D034, D039, D041, D042, D043, D044, D045, D055, D058, D060, D066, D068, D070, D077, D091, D108, D118, D123, D145, D151, D153, D162, D177, D180, D185, D188, D193, D200, D202, D204, D207, D208, D209, D210, D231, D232, D245, D266, D267, D268, D276, D277, D280, D284, D285, D288, D289, D290, D291

Incorporated:

OMA-CD-OpenCMAPI-2012-0006-CR_CONRR_AI_A034
OMA-CD-OpenCMAPI-2012-0007-CR_CONRR_Comment_D162
OMA-CD-OpenCMAPI-2012-0008R01-INP_CONRR_Resolution_for_editorial_comments

	
	05 Feb 2012
	ALL
	Updated according to CONRR comments closed:
D007, D008, D011, D012, D016, D057, D072, D073, D076, D078, D079, D083, D086, D114, D140, D166, D205

Incorporated:

OMA-CD-OpenCMAPI-2012-0012-INP_CONRR_Resolution_more_editorial_comments

	
	13 Feb 2012
	ALL
	Updated according to CONRR comments closed:
D005, D046, D047, D048, D050, D094, D109, D115, D163, D164, D165, D167, D168

Incorporated:

OMA-CD-OpenCMAPI-2012-0013R01-CR_CONRR_Comments_D163_D164_D165_D167_D168

OMA-CD-OpenCMAPI-2012-0017-CR_CR_CONRR_Comments_D005

OMA-CD-OpenCMAPI-2012-0018R01-CR_CONRR_Comments_EAPAuthenticationMethods

	
	20 Feb 2012
	ALL
	Updated according to CONRR comments closed:
D003, D004, D131, D133, D136, D137, D143, D144, D154, D155, D156, D157, D158, D159, D160, D161, D169, D170, D172, D173, D174, D175, D176, D183, D186

Incorporated:

OMA-CD-OpenCMAPI-2012-0022-CR_CONRR_Comments_D003_D004

OMA-CD-OpenCMAPI-2012-0034R01-CR_CONRR_Comments_D173_D174_D175_D176

	
	12 Mar 2012
	ALL
	Updated according to CONRR comments closed:
D025, D026, D027, D028, D029, D030, D032, D051, D052, D053, D054, D056, D059, D061, D062, D063, D071, D074, D075, D082, D084, D085, D087, D095, D098, D099, D100, D102, D112, D113, D121, D122, D124, D125, D126, D127, D128, D139, D141, D152, D178, D179, D181, D182, D187, D192, D206, D214, D215, D216, D217, D218, D219, D220, D221, D223, D224, D229, D230, D236, D239, D243, D248, D249, D250, D251, D252, D254, D255, D256, D258, D259, D260, D264, D265, D275, D279, D281, D282, D283, D286, D287, D292, D293, D294

Incorporated:

OMA-CD-OpenCMAPI-2012-0016R02-CR_UICC_DePersonalization_API
OMA-CD-OpenCMAPI-2012-0019-CR_Resolution_of__AI_A037
OMA-CD-OpenCMAPI-2012-0020R01-CR_CONRR_A051_A052_A053_A054

OMA-CD-OpenCMAPI-2012-0023R01-CR_CONRR_Comments_D074_D075
OMA-CD-OpenCMAPI-2012-0024R01-CR_CONRR_Comments_D121_to_D126
OMA-CD-OpenCMAPI-2012-0025-CR_CONRR_Comments_D224_D229_D230
OMA-CD-OpenCMAPI-2012-0026-CR_CONRR_Comments_D265
OMA-CD-OpenCMAPI-2012-0027R01-CR_CONRR_Comments_D286_D293_D294
OMA-CD-OpenCMAPI-2012-0028-CR_CONRR_Comments_D287
A-CD-OpenCMAPI-2012-0029-CR_CONRR_Comments_D299
OMA-CD-OpenCMAPI-2012-0033R01-CR_CONRR_Comments_D192_D255_D259_D260
OMA-CD-OpenCMAPI-2012-0036R01-CR_CONRR_Comments_D178_D179_D181_D182
OMA-CD-OpenCMAPI-2012-0039R01-CR_CONRR_Comments_D214_D218
OMA-CD-OpenCMAPI-2012-0040R01-CR_CONRR_Comments_Channel_Number

OMA-CD-OpenCMAPI-2012-0042R01-CR_CONRR_Comments_on_Security

OMA-CD-OpenCMAPI-2012-0043R01-CR_CONRR_Comments_D071
OMA-CD-OpenCMAPI-2012-0046R01-CR_CONRR_Comments_D099_D100_D113
OMA-CD-OpenCMAPI-2012-0047-CR_CONRR_Comments_D206
OMA-CD-OpenCMAPI-2012-0048R01-CR_CONRR_Comments_D292
OMA-CD-OpenCMAPI-2012-0049R01-CR_GPS_GNSS
OMA-CD-OpenCMAPI-2012-0051R01-CR_CONRR_D141_D221

	
	19 Mar 2012
	All
	Updated according to CONRR comments closed:
D033, D101, D111, D150, D191, D212, D212., D270, D271

Incorporated:
OMA-CD-OpenCMAPI-2012-0062R01-CR_CONRR_Comments_D111

OMA-CD-OpenCMAPI-2012-0063-CR_CONRR_Comments_D150

OMA-CD-OpenCMAPI-2012-0064-CR_CONRR_Editorial_fixes
OMA-CD-OpenCMAPI-2012-0066-CR_CONRR_Comments_D211_D212

	
	13 April 2012
	All
	Updated according to CONRR comments closed:
D080, D081, D184

Incorporated:
OMA-CD-OpenCMAPI-2012-0065-CR_CONRR_UTF8
OMA-CD-OpenCMAPI-2012-0070-CR_GNSS_operation_mode_parameter_in_session_operation

OMA-CD-OpenCMAPI-2012-0071-CR_AGPS_mode_in_DiscoveryGetDevice
OMA-CD-OpenCMAPI-2012-0072R01-CR_timestamp_in_position_report
OMA-CD-OpenCMAPI-2012-0073R01-CR_Accuracy_in_position_report
OMA-CD-OpenCMAPI-2012-0074R01-CR_Accuracy_in_position_report_callback
OMA-CD-OpenCMAPI-2012-0075-CR_Interval_and_timeout_in_tracking_report_mode
OMA-CD-OpenCMAPI-2012-0077-CR_CSnetworkRegistration
OMA-CD-OpenCMAPI-2012-0079R01-CR_CONRR_Comments_D184

OMA-CD-OpenCMAPI-2012-0080-CR_CONRR_Comments_SetPermittedBearer

OMA-CD-OpenCMAPI-2012-0084-CR_ARA_M_and_ARF_Abbreviations

	
	
	
	

	
	
	
	

	
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix C. Typical scenario for use of OpenCMAPI in Mobile Broadband - Laptop context
(Informative)
C.1 Typical Scenario in laptop environment – Installation user experience

1. The user plug in the USB modem into the laptop

2. The installation process starts

3. When the installation is finished, the CM Application is launched

4. The user starts using the CM Application

C.2 Typical Scenario in laptop environment – CM Application device management

A typical scenario for the use of OpenCMAPI in a laptop environment with the possibility of having multiple devices would be:

1. On start-up, the CM Application calls CMAPI_API_Open()

2. The CM calls CMAPI_Callback_Register() and register for CMAPI_Callback_DeviceChanged
3. The CM Application initiates enumeration of available devices by calling the function CMAPI_Discovery_DetectDevices()

4. The OpenCMAPI calls the callback CMAPI_Callback_DetectDevicesComplete() which provides a list of available devices.
5. The CM Application opens one or several devices of the available devices with the function CMAPI_Discovery_OpenDevice (pUniqueDeviceIdentifier)

6. When the device has been successfully opened, the CMAPI_Discovery_OpenDevice returns a device handle. The CM Application stores this handle for future use. Example: a system has two available devices, one modem and one WLAN device. The CM Application decides to open both devices; it saves the handles in two different variables: “modemHandle” and “wlanHandle”.
7. The device handle is used to reference the device in all “device related” API function call; example CMAPI_Information_GetPINStatus (modemHandle..) and CMAPI_WLAN_Connect (wlanHandle…)
8. The CMAPI_Callback_DeviceChanged callback is called when the availability of OpenCMAPI devices changes. Example: the modem which was opened in previous step is unplugged. Shortly after it has been unplugged the OpenCMAPI invokes CMAPI_Callback_DeviceChanged with the handle parameter set to “modemHandle” and the devicestate parameter set to “Unplugged”.
9. The CM Application calls CMAPI_CloseDevice(modemHandle) to close the device, it is no longer available and of no interest (it is not mandatory to close it).

10. The same modem is plugged in again. Shortly after it has been plugged in, the OpenCMAPI calls CMAPI_Callback_DeviceChanged with the parameters set to pUniqueDeviceIdentifier and “plugged”. The CM Application calls CMAPI_Discovery_OpenDevice(pUniqueDeviceIdentifier) etc, see step 5. (In this example the handle parameter CMAPI_Callback_DeviceChanged equals 0 since the device is not already opened)

11. The CM Application calls CMAPI_CloseDevice (modemHandle) to close devices since it is no longer available and of no interest (it is not mandatory to close it though).

12. The CM Application calls CMAPI_CloseDevice(0) to close all devices.

13. The CM Application unregisters for callbacks via CMAPI_Callback_Unregister
14. The CM Application calls CMAPI_CloseAPI().

15. The CM Application exits.

C.3 Typical Scenario in laptop environment - Deployment and Installation

Concerning the deployment and installation of a CM Application for an USB modem, the following steps will typically be done by the CM Application developer:

1. The CM Application developer customizes/configures the generic OpenCMAPI redistributable installer (generic redistribution) to support the targeted devices and the CM Application equipments. To minimize the overall package size some components can be excluded. Components that may be excluded are: WLAN, GPS and CDMA. The generic redistribution includes support for ‘all’ devices that conforms to the OpenCMAPI. To minimize the overall package size device support for ‘unneeded’ devices can be excluded.

2. The result of the previous configuration process is a custom OpenCMAPI redistributable installer (custom redistribution) which supports one or several devices. The custom redistribution includes the necessary device drivers and the selected OpenCMAPI components as well as installation logic.

3. The CM Application developer creates an installer which includes the CM Application and the custom redistribution.

4. The CM Application installer is deployed on device memory, the internet or preinstalled on target machines.

5. The custom redistribution installer is typically launched from within the main CM Application installer.

[image: image2]
Figure 1: Configuration of OpenCMAPI redistributable installer

[image: image3]
Figure 2: Example of CM Application installer
Appendix D. Consideration for implementation
(Informative)
D.1 One Server many clients - Single server

In the “One Server many clients” implementation scenario one single OpenCMAPI server serves many CM clients. An example of this scenario is the built-in Wireless LAN Service in Windows, which serves many applications (Note: it does not mean the OpenCMAPI has to be a part of the OS). In this implementation scenario, the OpenCMAPI is implemented and deployed as a process (an executable application). The communication between client and server relies on a known inter-process communication technique, like Signals, Sockets, Pipes or Message Queues.

D.2 One server per client – Multiple servers

In the “One Server per client” implementation scenario one OpenCMAPI server serves only one CM client. An example of this is vendor specific NDIS API. The NDIS API is implemented in a dll, the CM Application (the client in this aspect) loads the NDISApi.dll into its address space and call functions in the dll. One NDIS API can only serve one client at the time.
D.3 Implementation aspects

D.3.1 Client side aspects
Implementing a CM Application that makes use of a dll (one server per client) is straight forward and is used nearly every application.

Implementing a CM Application that communicates via inter-process (the one server many clients scenario) is not common knowledge and requires a higher level of skill than the dll scenario.

D.3.2 Server side aspects:

One advantage of the single server implementation is that it is possible to share the communication resource (the modem) between several clients. Several CM Applications can for example send SMS in parallel, get the signal strength etc.

It is difficult to implement a shared communication based on the dll scenario.

If the CM Application terminates in an abnormal way, the dll is unloaded automatically by the OS. The underlying communication resources (like COM ports) are also handled automatically by the OS. However in the single server scenario the OS doesn’t handle a crashed client, it has to be done by the SMAPI server itself and is likely to cause problems. In this aspect the dll solution is more reliable.
D.3.3 Deployment
In the single server scenario there will be only one instance installed per system. This can cause problems if one client relies on an ‘old’ server version and another different version. It is easy to maintain and upgrade a system that has a single OpenCMAPI server installed.

In the case of dll, there can be one or several versions of the OpenCMAPI installed on the system. The CM client may install the OpenCMAPI to a common directory or to a private directory. In the case of dll, it is not possible to upgrade all OpenCMAPI servers. Each CM Application has to maintain and upgrade its OpenCMAPI server.

[image: image4]
Figure 3: Open CM API as a server process
D.4 Summary
The dll solution is a robust and reliable implementation technique known by ‘every’ developer. However the dll solution does not offer parallel client sever communication and it is more difficult to maintain and upgrade already deployed applications.

If parallel communication and centralized maintenance and upgrade of deployed CM servers is a strong requirement, then the “One Server many clients - Single server” is the best option. In all other cases the dll solution “One server per client – Multiple servers” is probably preferable.

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]

[image: image1.jpg]«“+OMa

Open Mobile Alliance

[image: image5.png]Full featured
Connection
Manager
Application,
CMAPT read-
write access

Mini CM.
Application: Show
new SMS, CMAPI
read-only access

Mini CM.
Application: Show
connect status,
show signal
strength: CMAPT
read-only access

Mini CM.
Application: Show
GPS data: CMAPT
read-only access

CMAPT proxy
di

CMAPT proxy
di

CMAPT proxy

dil

CMAPT proxy
o dl

CMAPI Server process

[image: image6.png]Main CM Application
installer

CMAPT custom
redistributable installer

Device Driver
installer

CMAPT component
installer

