Doc# OMA-CD-OpenCMAPI-2012-0121-CR_Modifications_on_Multiple_Connections[image: image1.jpg]
Change Request


Doc# OMA-CD-OpenCMAPI-2012-0121-CR_Modifications_on_Multiple_Connections
Change Request



Change Request

	Title:
	Modifications on multiple connections
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	To:
	CD OpenCMAPI

	Doc to Change:
	OMA-TS-OpenCMAPI-V1_0-20120523-D

	Submission Date:
	May 28 2012

	Classification:
	 FORMCHECKBOX 
 0: New Functionality
 FORMCHECKBOX 
 1: Major Change
 FORMCHECKBOX 
 2: Bug Fix
 FORMCHECKBOX 
 3: Editorial

	Source:
	Xinmiao Chang,  Huawei,changxinmiao@huawei.com


	Replaces:
	


1 Reason for Change

In OMA-CD-OpenCMAPI-2012-0090R03-CR_CONRR_Mulitple_Connections, the structure CellularProfileType was changed and the input parameter UTF8* CellularProfileName was added into some APIs to fulfil the multiple connections requirements. While in the scenarios not related to multiple connections, some parameters are useless, so this CR proposes to change them as optional.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The CD OpenCMAPI SWG should review and agree this CR 
6 Detailed Change Proposal

Change 1:  Change in CellularProfileType
6.2.11CellularProfileType
	Definition CellularProfileType

	This prototype defines a structure which describes a Cellular Profile Type



	Field Name
	Type
	Description

	CellularProfileName
	UTF8*
	The name of the Cellular Profile

	UserName
	UTF8*
	The user name associated to the APN

	Password
	UTF8*
	The password associated with the APN

	PDP Type
	dword
	Optional --- The type of PDP:

· 0x01: IP

· 0x02: PPP

	APN
	UTF8*
	The APN used for this connection

	PhoneNum
	UTF8*
	Optional --- The phone number

	Address
	IPAddress*
	The IP address

	PrimaryDNS
	IPAddress*
	The primary DNS

	SecondaryDNS
	IPAddress*
	The secondary DNS

	AuthType
	dword
	The Authentication Protocol type:

· 0x00: CHAP only
· 0x01: PAP only
· 0x02: Automatic

	PhoneNum
	UTF8*
	The phone number

	UseDhcpForIP
	Boolean
	Use DHCP for IP address. If this is true, then the IP field is unused.

	UseDhcpForDNS
	Boolean
	Use DHCP for DNS address. If this is true, then the PrimaryDNS and SecondaryDNS fields are unused.

	TimeoutSeconds
	dword
	The time out in seconds

	WINSPreferred
	IPAddress*
	Optional - The preferred WINS (Windows Internet Naming Service)

	WINSAlternated
	IPAddress*
	Optional -The alternated WINS (Windows Internet Naming Service)

	ServingPLMNs
	UTF8*
	Optional---List of possible serving PLMNs (MCCMNC numerical values separated by a coma and a space ”, ”) on which the profile can be used (i.e; MCCMNCvalue1, MCCMNCvalue2, ...., MCCMNCvaluen). 

If the list is empty then the CellularProfile is valid for any PLMN.

The check is done at the API level.

	PCRequestedQoS
	QoSStructure*
	Optional---Requested QoS for Primary Context.

	PCMinimumQos
	QoSStructure*
	Optional ---Minimum acceptable QoS for Primary Context

	PCTFT
	TrafficFlowTemplateType*
	Optional --- Traffic Flow Template indicating the parameters values to be used for Packet Filtering in the Primary Context.

	PCDataCompression
	byte
	Optional ---A numeric parameter that controls PDP data compression for Primary Context (applicable for SNDCP only) (refer to [3GPP TS 44.065]). Possible values defined in [3GPP TS 27.007].

	PCHeaderCompression
	byte
	Optional ---A numeric parameter that controls PDP header compression (refer to [3GPP TS 44.065] and [3GPP TS 25.323]). Possible values defined in [3GPP TS 27.007].

	SecondaryContext1
	SecondaryContextType*
	Optional --- 1st Secondary Context (if a null pointer value then no 1st SecondaryContext)

	SecondaryContext2
	SecondaryContextType*
	Optional ---2nd Secondary Context (if a null pointer value then no 2nd SecondaryContext)

	SecondaryContext3
	SecondaryContextType*
	Optional ---3rd Secondary Context (if a null pointer value then no 3rd SecondaryContext)

	SecondaryContext4
	SecondaryContextType*
	Optional ---4th Secondary Context (if a null pointer value then no 4th SecondaryContext)

	SecondaryContext5
	SecondaryContextType*
	Optional ---5th Secondary Context (if a null pointer value then no 5th SecondaryContext)

	SecondaryContext6
	SecondaryContextType*
	Optional ---6th Secondary Context (if a null pointer value then no 6th SecondaryContext)

	SecondaryContext7
	SecondaryContextType*
	Optional ---7th Secondary Context (if a null pointer value then no 7th SecondaryContext)

	SecondaryContext8
	SecondaryContextType*
	Optional ---8th Secondary Context (if a null pointer value then no 8th SecondaryContext)

	SecondaryContext9
	SecondaryContextType*
	Optional ---9th Secondary Context (if a null pointer value then no 9th SecondaryContext)

	SecondaryContext10
	SecondaryContextType*
	Optional ---10th Secondary Context (if a null pointer value then no 10th SecondaryContext)

	SecondaryContext11
	SecondaryContextType*
	Optional ---11th Secondary Context (if a null pointer value then no 11th SecondaryContext)

	SecondaryContext12
	SecondaryContextType*
	Optional ---12ve Secondary Context (if a null pointer value then no 12ve SecondaryContext)

	SecondaryContext13
	SecondaryContextType*
	Optional --- 13th Secondary Context (if a null pointer value then no 13th SecondaryContext)

	SecondaryContext14
	SecondaryContextType*
	Optional --- 14th Secondary Context (if a null pointer value then no 14th SecondaryContext)

	SecondaryContext15
	SecondaryContextType*
	Optional ---15h Secondary Context (if a null pointer value then no 15th SecondaryContext)

	SecondaryContext16
	SecondaryContextType*
	Optional --- 16th Secondary Context (if a null pointer value then no 16th SecondaryContext)


Change 2:  Change in CMAPI_NetConnectSrv_GetCurrentConnType()
7.5.7CMAPI_NetConnectSrv_GetCurrentConnType()

The CMAPI_NetConnectSrv_GetCurrentConnType() function is used to get the current connection type.
	Prototype

	
dword  NetConnectSrv_GetCurrentConnType (dword deviceID, UTF8* CellularProfileName, dword* currentConnType) 



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional---The name of  the Cellular Profile to be used for this function

	currentConnType
	Output
	The connection type: 

· 0x00: DIAL_UP(RAS)

· 0x01: NDIS
· 0x02: None


Change 3:  Change in CMAPI_NetCon_GetConnectionStatus()
7.6.1CMAPI_NetCon_GetConnectionStatus()
The CMAPI_NetCon_GetConnectionStatus() is used to obtain information about the connection status.
	Prototype

	
  dword CMAPI_NetCon_GetConnectionStatus (dword deviceID, UTF8* CellularProfileName, dword* connectionStatus, dword* pTypes, IPAddress* address, dword* addressSize, qword* dataRate, qword* txPackets, qword* rxPackets, qword* txBytes, qword* rxBytes, dword* duration)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional ---The name of the Cellular Profile to be used for this function

	connectionStatus
	Output
	Connection status values: 

· 0x00000000: Connected

· 0x00000001: Disconnected (it may be possible to distinguish between passive and active disconnection)

· 0x00000002: Connecting

· 0x00000003: Disconnecting

· 0x00000004: Scanning 

· 0x00000010: Unknown state

	pTypes
	Output
	Indication of the radio access technology currently used

In the case of a device with multiple radios, there MAY be multiple settings returned.

· 0x00000010: GSM service

· 0x00000020: GPRS service

· 0x00000040: EDGE service

· 0x00000100: CDMA service

· 0x00000200: QNC service 

· 0x00000400: 1X-RTT service

· 0x00000800: EV-DO service

· 0x00001000: EV-DV service

· 0x00002000: IOTA service

· 0x00004000: IOTA REVA service

· 0x01000000: UMTS service

· 0x02000000: HSDPA service (Included for legacy purpose, not all operators use HSDPA+)

· 0x04000000: HSUPA service

· 0x08000000: HSPA Plus service

· 0x10000000: PHS service

· 0x20000000: FOMA service

· 0x40000000: LTE service

· 0x80000000: WLAN service

	Address
	Output
	IPaddress on interface

	addressSize
	Input/Output
	The size of the IPAddress buffer on input. If insufficient, contains the size needed on return.

	dataRate
	Output
	Connection Data Rate in Kbit/s

	txPackets
	Output
	Number of packets transmitted since connection establishment

	rxPackets
	Output
	Number of packets transmitted since connection establishment

	txBytes
	Output
	Number of bytes transmitted since connection establishment

	rxBytes
	Output
	Number of bytes received since connection establishment

	duration
	Output
	Number of seconds elapsed since connection establishment


Change 4:  Change in CMAPI_NetCon_SetAutoConnectMode()
7.6.2CMAPI_NetCon_SetAutoConnectMode()
The CMAPI_NetCon_SetAutoConnectMode() function is used to set/disable “autoconnect” mode. When the autoconnect functionality is triggered, the default profile for the device will be used to make the connection. The default profile must be set in the CMAPI_NetCon_SetDefaultProfile method. If there is need to request the PIN, this will be signalled asynchronously as needed through a callback. The application should register for the callback before turning on one of the autoconnect modes. If the application does not register and the autoconnect is triggered when a PIN is required, the autoconnect function will not be successful and the application cannot be notified.
	Prototype

	
dword CMAPI_NetCon_SetAutoConnectMode (dword deviceID, UTF8* CellularProfileName, dword mode)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional --- The  name of the Cellular Profile to be used for this function

	mode
	Input
	· 0x00000000: Disable autoconnect 
· 0x00000001: Enable for home network

· 0x00000002: Enable for home and roaming network




Change 5:  Change in CMAPI_NetCon_GetAutoConnectMode()
7.6.3CMAPI_NetCon_GetAutoConnectMode()
The CMAPI_NetCon_GetAutoConnectMode() function is used to return the current “autoconnect” mode. 

	Prototype

	
dword CMAPI_NetCon_GetAutoConnectMode (dword deviceID, UTF8* CellularProfileName, dword* mode)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional---The name of the Cellular Profile to be used for this function

	mode
	Output
	· 0x00000000: Disable autoconnect 
· 0x00000001: Enable for home network

· 0x00000002: Enable for home and roaming network


Change 6:  Change in CMAPI_NetStatistic_GetConnectionStatistics()
7.12.1  CMAPI_NetStatistic_GetConnectionStatistics()
The CMAPI_NetStatistic_GetConnectionStatistics() function is used to obtain network traffic statistics info

	Prototype

	
 dword CMAPI_NetStatistic_GetConnectionStatistics (dword deviceID, UTF8* CellularProfileName, qword* TX, qword* RX, qword* averageTX, qword* averageRX, qword* maxTX, qword* maxRX, qword* duration, dword* overflow)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional---The name of the Cellular Profile to be used for this function

	TX
	Output
	Bytes sent for a given connection

	RX
	Output
	Bytes received for a given connection

	averageTX
	Output
	Average upload speed in Bit/s for the given connection

	averageRX
	Output
	Average download speed in Bit/s for the given connection

	maxTX
	Output
	Maximum upload speed in Bit/s for the given connection

	maxRX
	Output
	Maximum download speed in Bit/s for the given connection

	duration
	Output
	The connection duration

	overflow
	Output
	Bitmap parameter to signal overflow argument

· 0X01: TX overflow

· 0X02: RX overflow
· 0x04: duration overflow


Change 7:  Change in CMAPI_Information_GetAPN
7.13.6CMAPI_Information_GetAPN()

The CMAPI_Information_GetAPN() function is to obtain the APN identifier.

To iterate through the supplied APNs, the caller would start at the 0 index and monotonically increment the index until the error code indicates there are no more records available.
The APN is defined in [3GPP TS 23.003] as of consisting of a mandatory Network Identifier and an optional Operator Identifier.
	Prototype

	dword  CMAPI_Information_GetAPN (dword deviceID, RadioType radio, UTF8* CellularProfileName, dword index, UTF8* pNetworkIdentifier, dword* pNetworkIdentifierSize, UTF8* pOperatorIdentifier, dword* pOperatorIdentifierSize)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radio
	Input
	See RadioType definition

	CellularProfileName
	Input
	Optional---The name of the Cellular Profile to be used for this function

	index
	Input
	The index of the entry  to return (-1 returns the current APN in use)

	pNetworkIdentifier
	Output
	The network identifier

	pNetworkIdentifierSize
	Input, Output
	The size of the network identifier buffer

	pOperatorIdentifier
	Output
	The operator identifier

	pOperatorIdentifierSize
	Input, Output
	The size of the operator identifier buffer


Change 8:  Change in CMAPI_Information_GetIPAddress()
7.13.7 CMAPI_Information_GetIPAddress()

The CMAPI_Information_GetIPAddress() function is used to retrieve the current IP address assigned to the device and the type of the address assigned.
	Prototype

	dword  CMAPI_Information_GetIPAddress (dword deviceID, UTF8* CellularProfileName, dword addressType, IPAddress* pAddress, dword* pAddressSize)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional---The name of the Cellular Profile to be used for this function

if Null, will be then considered as WLAN

	addressType
	Input
	The types of IP Address to return

· 0x00000001: IPv4

· 0x00000002: IPv6

	pAddress
	Output
	The address for the current connection

	pAddressSize
	Input, Output
	The address size


Change 9:  Change in CMAPI_Callback_Connect_Async_Complete()
8.3.4  CMAPI_Callback_Connect_Async_Complete()

The CMAPI_Callback_Connect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_Connect_Async .

	Prototype

	dword CMAPI_Callback_Connect_Async_Complete (CallbackStatus status, dword deviceID, UTF8* CellularProfileName, dword result)




	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional---The name of the Cellular Profile it applies to

	result
	Input
	· 0x00000000   The connection succeeded

· 0x00000001   The connect attempt failed, reason : The network connection was refused by network

· 0x00000002   The connect attempt failed, reason : TBD


Change 10:  Change in CMAPI_Callback_Disconnect_Async_Complete()
8.3.5  CMAPI_Callback_Disconnect_Async_Complete()

The CMAPI_Callback_Disconnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_Disconnect .

	Prototype

	dword  CMAPI_Callback_Disconnect_Async_Complete (CallbackStatus status, dword deviceID, UTF8* CellularProfileName, dword result)



	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional---The name of the Cellular Profile it applies to

	result
	Input
	· 0x00000000   The disconnect operation succeeded

· 0x00000001   The disconnect attempt failed, reason : TBD


Change 11:  Change in CMAPI_Callback_CancelConnect_Async_Complete()
8.3.6  CMAPI_Callback_CancelConnect_Async_Complete()

The CMAPI_Callback_CancelConnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_CancelConnect_Async.

	Prototype

	dword  CMAPI_Callback_CancelConnect_Async_Complete (CallbackStatus status, dword deviceID, UTF8* CellularProfileName, dword result)




	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional---The name of the Cellular Profile it applies to

	result
	Input
	· 0x00000000:  The connect operation was cancelled.

· 0x00000001:  The cancel operation failed, reason : TBD


Change 12:  Change in CMAPI_Callback_ByteCount
8.3.18  CMAPI_Callback_ByteCount
The CMAPI_Callback_ByteCount() function is used to indicate the current byte count. This is a periodic notification. This callback SHALL be made immediately when the application registers for this message. The callback SHALL also occur at a maximum of every 15 seconds when the connection is not Dormant. The OpenCMAPI implementation is free to make this callback sooner if deemed useful, in any event the callback MAY NOT occur with greater frequency than once a second. The byte count accumulates between the last connection and either a manual disconnect or some other event that causes the radio to be in disconnected state. This callback must not occur while in the disconnected state.
	Prototype

	dword  CMAPI_Callback_ByteCount (dword deviceID, UTF8* CellularProfileName, qword  tx, qword  rx, dword wrapped)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional---The name of the Cellular Profile it applies to

	tx
	Input
	The current count of tx bytes.

	rx
	Input
	The current count of rx bytes

	wrapped
	Input
	This is used to denote when tx and/or rx counters have overflowed. Counting will continue like normal and the indication will be set once for each overflow. The following definition is a bitwise combination and allows for tx and/or rx to be set at the same time.

· 0x00000000: No Overflow

· 0x00000001: Tx overflow

· 0x00000002: Rx overflow






















































































































































NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 1 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2012 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 2 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

