Doc# OMA-CD-OpenCMAPI-2012-0129R02-CR_TS_Final_bug_fixes
Change Request


Doc# OMA-CD-OpenCMAPI-2012-0129R02-CR_TS_Final_bug_fixes
Change Request



Change Request

	Title:
	CR to provide final changes in the TS 
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	To:
	CD OpenCMAPI

	Doc to Change:
	OMA-TS-OpenCMAPI-V1_0-20120604-D

	Submission Date:
	06th June 2012

	Classification:
	 FORMCHECKBOX 
 0: New Functionality
 FORMCHECKBOX 
 1: Major Change
 FORMCHECKBOX 
 2: Bug Fix
 FORMCHECKBOX 
 3: Editorial

	Source:
	Thierry Berisot,  Deutsche Telekom, thierry.berisot@telekom.de

	Replaces:
	OMA-CD-OpenCMAPI-2012-0129R01-CR_TS_Final_bug_fixes


1 Reason for Change

R02 reflects the changes made on this CR during the conf call the 6th of June 2012. ( main discussion was on Change 12 and addition of Changes 14 to 18)
R01 is adding changes 10 to 13.
This CR proposes to provide final changes in the TS. It is as well closing the Action A035.
The changes made are the following:

· To modify RadioType from byte to dword to have more options in the future - Change 1

· To modify the text in QoS structure for SDUformat information as options were left empty – Change 2


· To add the definition of PPP in CellularProfileType structure – Change 3

· To remove optional from Callbacks for CellularProfilename as optional do not make sens for a callback – Changes 4, 5, 6, 7
· To modify the return values for the buffer in functions 7.5.2 & 7.5.3 as the values were not consistent - Change 8

· To modify the error codes for buffer in section 9 to take into account previous change – Change 9

· To update Functions related to Scan and Search for WLAN Networks as it is confusing – Change 10
· To apply the same for call-backs for Scan and Search for WLAN Networks – Change 11

· To add msgID for 7.14.2 CMAPI_SMS_Get and the related callback – Change 12

The following list (List Editorial changes) is listing some editorial changes that will be done through change 13:

· 6.2.6 NetworkInfoType:  NetworkStatus/Preferred – The values should be expanded with leading zeros since it is a dword

· 6.2.8 QoSStructure:  Multiple Fields - The values should be expanded with leading zeros since it is a dword

· 6.2.9 TrafficFlowTemplateType:  First Row – This is a comment and should not be in the table

· 6.2.11 CellularProfileType:  Multiple Fields - The values should be expanded with leading zeros since it is a dword

· 6.2.18 SMSRecord:  Multiple Fields - The values should be expanded with leading zeros since it is a word/dword

· 6.2.23 CallbackID:  Enumerated values – The numbers jump from 0x1F to 0x100, 0x20 comes after 0x1F

· 7.5.1 CMAPI_NetConnectSrv_MgrCellularProfile:  Operation - The values should be expanded with leading zeros since it is a dword

· 7.5.7 CMAPI_NetConnectSrv_GetCurrentConnType:  pcurrentConnType – Should be pCurrentConnType

· 7.5.7 CMAPI_NetConnectSrv_GetCurrentConnType:  pcurrentConnType - The values should be expanded with leading zeros since it is a dword

· 7.5.8 CMAPI_NetConnectSrv_Connect_Async:  ConnType - The values should be expanded with leading zeros since it is a dword

· 7.5.9 CMAPI_NetConnectSrv_Disconnect_Async:  to remove ConnType from the parameter list as it was removed from the parameter table

· 7.6.5 CMAPI_NetCon_SetPermittedBearers:  Bearers - The values should be expanded with leading zeros since it is a dword

· 7.6.6 CMAPI_NetCon_GetPermittedBearers:  Bearers - The values should be expanded with leading zeros since it is a dword

· 7.6.7 CMAPI_NetCon_SetNoDataProfile:  State - The values should be expanded with leading zeros since it is a dword

· 7.6.8 CMAPI_NetCon_GetNoDataProfile:  pState - The values should be expanded with leading zeros since it is a dword

· 7.7.13 CMAPI_OMA_GetSessionInfo:  Multiple Fields - The values should be expanded with leading zeros since it is a dword

· 7.7.14 CMAPI_OMA_GetPendingNIA:  pSessionType - The values should be expanded with leading zeros since it is a dword

· 7.7.16 CMAPI_OMA_GetFeatureSettings:  Multiple Fields - The values should be expanded with leading zeros since it is a dword

· 7.7.17 CMAPI_OMA_SetProvisioningFeature:  provFeatureState - The values should be expanded with leading zeros since it is a dword

· 7.7.18 CMAPI_OMA_SetPRLUpdateFeature:  PRLUpdateFeatureState - The values should be expanded with leading zeros since it is a dword

· 7.7.19 CMAPI_OMA_SetFirmwareUpdateFeature:  firmwareUpdateFeatureState - The values should be expanded with leading zeros since it is a dword

· 7.7.20 CMAPI_OMA_ResetToFactoryDefaults:  Reason - The values should be expanded with leading zeros since it is a dword

· 7.12.1 CMAPI_NetStatistic_GetConnectionStatistics:  pOverflow - The values should be expanded with leading zeros since it is a dword

· 7.14 SMS Management APIs:  iFrom - The values should be expanded with leading zeros since it is a dword

· 7.14.10 CMAPI_SMS_GetDeliveryReport:  pDeliveryReportSwitch - The values should be expanded with leading zeros since it is a dword

· 7.14.11 CMAPI_SMS_SetDeliveryReport:  DeliveryReportSwitch - The values should be expanded with leading zeros since it is a dword

· 7.16.2 CMAPI_GNSS_GetState:  Multiple Fields - The values should be expanded with leading zeros since it is a dword

· 7.16.3 CMAPI_GNSS_SetTrackingParameters:  operation - The values should be expanded with leading zeros since it is a dword

· 7.16.4 CMAPI_GNSS_GetTrackingParameters:  pOperation - The values should be expanded with leading zeros since it is a dword

· 7.16.7 CMAPI_GNSS_SetAutomaticTracking:  tracking - The values should be expanded with leading zeros since it is a dword

· 7.16.5. CMAPI_GNSS_SetAGPSConfig:  serverAddress – use IPAddress*

· 7.16.8 CMAPI_GNSS_GetAutomaticTracking:  pTracking - The values should be expanded with leading zeros since it is a dword

· 8.3.14 CMAPI_Callback_Roaming:  state – 0x01 should be Home (remove PLMN as it implies 3GPP compliance)

· 8.3.28 CMAPI_Callback_OMADMStatus:  userActionRequired - The values should be condensed by removing leading zeros since it is a Boolean

· 8.3.32 CMAPI_Callback_PermittedBearersChange:  bearers - The values should be expanded with leading zeros since it is a dword

The final TS document reflecting these changes is as well enclosed with the CR (OMA-TS-OpenCMAPI-V1_0-20120606-D-cb-CR129R02.doc)
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The CD OpenCMAPI SWG should review and agree this CR.
6 Detailed Change Proposal

Change 1:  Modify RadioType from byte to dword
	Definition RadioType

	This prototype defines an enumeration of radio types. The following enumeration will be used throughout this document to define which radio a function operates on.



	RadioType
	dword
	                       The following radio types are supported:
· 0x00000001: GSM

· 0x00000002: WCDMA/UMTS

· 0x00000004: CDMA
· 0x00000008: EVDO
· 0x00000010: TD_SCDMA

· 0x00000020: LTE

· 0x00000040: WLAN


Change 2:  Modify the text in QoS structure for SDUformat information
	Definition QoSStructure

	This defines the structure used to communicate QoS event information.



	validFeatures
	dword
	Based on the different traffic classes various features in this method are valid/invalid. This parameter describes which values are valid. If the defined bit is not set it means the corresponding parameter is not used and should not be used for any purpose by the application.

· 0x00000001: Traffic Class

· 0x00000002: Maximum Bitrate

· 0x00000004: Guaranteed Bitrate

· 0x00000008: Delivery Order

· 0x00000010: Maximum SDU Size

· 0x00000020: SDU Format Information

· 0x00000040: SDU Error Ratio

· 0x00000080: Residual Bit Error Ratio

· 0x00000100: Delivery of Erroneous SDUs

· 0x00000200: Transfer Delay

· 0x00000400: Traffic Handling Priority

· 0x00000800: Allocation Retention Priority

· 0x00001000: Source Statistics Descriptor

· 0x00002000: Signaling Indication

· 0x00004000: Priority Level

· 0x00008000: Pre-emption Capability

· 0x00010000: Pre-emption Vulnerability

	trafficClass
	dword
	The traffic class defines the type of application for which the bearer service is optimized.

· 0x00: Conversational

· 0x01: Streaming

· 0x02 Interactive

· 0x03 Background

	maximumBitRate
	dword
	Maximum bitrate in kbps.

	guaranteedBitRate
	dword
	Guaranteed bitrate in kbps.

	deliveryOrder
	dword
	Indicates if in-sequence delivery is provided

· 0x00: Not provided

· 0x01: Provided

	maximumSDUSize
	dword
	The maximum SDU size for which the network will satisfy the negotiated QoS. In Octets.

	SDUFormatInformation
	dword
	The list of possible exact sized of SDUs 
· 
· 

	SDUErrorRatio
	dword
	Indicates the fraction of SDUs lost or detected as erroneous.

	residualBitErrorRatio
	dword
	Indicates the undetected bit error ratio in the delivered SDUs

	deliveryOfErroneousSDUs
	dword
	Indicates whether SDUs detected as erroneous shall be delivered or discarded.

· 0x00: Yes

· 0x01: No

· 0x02: Detection is not used

	transferDelay
	dword
	Indicates maximum delay for 95th percentile of the distribution of delay for all delivered SDUs during the lifetime of a bearer service (reported in milliseconds).

	trafficHandlingPriority
	dword
	Defines the relative importance for handling of all SDUs belonging to the bearer compared to the SDUs of other bearers

	allocationRetentionPriority
	dword
	Defines the relative importance compared to other bearers for allocation and retention of the bearer.

	sourceStatisticsDescriptor
	dword
	Defines the characteristics of the source of submitted SDUs

· 0x00: Speech

· 0x01: Unknown

	signallingIndication
	dword
	Defines the signaling nature of the submitted SDUs.

· 0x00: Yes

· 0x01: No

	priorityLevel
	dword
	The Evolved Allocation/Retention Priority Level

	preemptionCapability
	dword
	The Evolved Allocation/Retention Pre-emption Capability

· 0x00: Yes

· 0x01: No

	preemptionVulnerability
	dword
	The Evolved Allocation/Retention Pre-emption Vulnerability

· 0x00: Yes

· 0x01: No


Change 3:  Add definition of PPP in CellularProfileType
	Definition CellularProfileType

	This prototype defines a structure which describes a Cellular Profile Type



	Field Name
	Type
	Description

	CellularProfileName
	UTF8*
	The name of the Cellular Profile

	UserName
	UTF8*
	The user name associated to the APN

	Password
	UTF8*
	The password associated with the APN

	PDP Type
	dword
	The type of PDP (Packet Data Protocol):

· 0x01: IP

· 0x02: PPP -  PS data over GPRS or UMTS (PS connection with PDP type PPP)

	APN
	UTF8*
	The APN used for this connection

	Address
	IPAddress*
	The IP address

	PrimaryDNS
	IPAddress*
	The primary DNS

	SecondaryDNS
	IPAddress*
	The secondary DNS

	AuthType
	dword
	The Authentication Protocol type:

· 0x00: CHAP only
· 0x01: PAP only
· 0x02: Automatic

	UseDhcpForIP
	Boolean
	Use DHCP for IP address. If this is true, then the IP field is unused.

	UseDhcpForDNS
	Boolean
	Use DHCP for DNS address. If this is true, then the PrimaryDNS and SecondaryDNS fields are unused.

	TimeoutSeconds
	dword
	The time out in seconds

	WINSPreferred
	IPAddress*
	Optional - The preferred WINS (Windows Internet Naming Service)

	WINSAlternated
	IPAddress*
	Optional - The alternated WINS (Windows Internet Naming Service)

	ServingPLMNs
	UTF8*
	Optional - List of possible serving PLMNs (MCCMNC numerical values separated by a coma and a space ”, ”) on which the profile can be used (i.e; MCCMNCvalue1, MCCMNCvalue2, ...., MCCMNCvaluen). 

If the list is empty then the CellularProfile is valid for any PLMN.

The check is done at the API level.

	PCRequestedQoS
	QoSStructure*
	Optional - Requested QoS for Primary Context.

	PCMinimumQos
	QoSStructure*
	Optional - Minimum acceptable QoS for Primary Context

	PCTFT
	TrafficFlowTemplateType*
	Optional - Traffic Flow Template indicating the parameters values to be used for Packet Filtering in the Primary Context.

	PCDataCompression
	byte
	Optional - A numeric parameter that controls PDP data compression for Primary Context (applicable for SNDCP only) (refer to [3GPP TS 44.065]). Possible values defined in [3GPP TS 27.007].

	PCHeaderCompression
	byte
	Optional - A numeric parameter that controls PDP header compression (refer to [3GPP TS 44.065] and [3GPP TS 25.323]). Possible values defined in [3GPP TS 27.007].

	SecondaryContext1
	SecondaryContextType*
	Optional - 1st Secondary Context (if a null pointer value then no 1st SecondaryContext)

	SecondaryContext2
	SecondaryContextType*
	Optional - 2nd Secondary Context (if a null pointer value then no 2nd SecondaryContext)

	SecondaryContext3
	SecondaryContextType*
	Optional - 3rd Secondary Context (if a null pointer value then no 3rd SecondaryContext)

	SecondaryContext4
	SecondaryContextType*
	Optional - 4th Secondary Context (if a null pointer value then no 4th SecondaryContext)

	SecondaryContext5
	SecondaryContextType*
	Optional - 5th Secondary Context (if a null pointer value then no 5th SecondaryContext)

	SecondaryContext6
	SecondaryContextType*
	Optional - 6th Secondary Context (if a null pointer value then no 6th SecondaryContext)

	SecondaryContext7
	SecondaryContextType*
	Optional - 7th Secondary Context (if a null pointer value then no 7th SecondaryContext)

	SecondaryContext8
	SecondaryContextType*
	Optional - 8th Secondary Context (if a null pointer value then no 8th SecondaryContext)

	SecondaryContext9
	SecondaryContextType*
	Optional - 9th Secondary Context (if a null pointer value then no 9th SecondaryContext)

	SecondaryContext10
	SecondaryContextType*
	Optional - 10th Secondary Context (if a null pointer value then no 10th SecondaryContext)

	SecondaryContext11
	SecondaryContextType*
	Optional - 11th Secondary Context (if a null pointer value then no 11th SecondaryContext)

	SecondaryContext12
	SecondaryContextType*
	Optional - 12th Secondary Context (if a null pointer value then no 12ve SecondaryContext)

	SecondaryContext13
	SecondaryContextType*
	Optional - 13th Secondary Context (if a null pointer value then no 13th SecondaryContext)

	SecondaryContext14
	SecondaryContextType*
	Optional - 14th Secondary Context (if a null pointer value then no 14th SecondaryContext)

	SecondaryContext15
	SecondaryContextType*
	Optional - 15th Secondary Context (if a null pointer value then no 15th SecondaryContext)

	SecondaryContext16
	SecondaryContextType*
	Optional - 16th Secondary Context (if a null pointer value then no 16th SecondaryContext)


Change 4:  Remove Optional from callback CMAPI_Callback_Connect_Async_Complete()
8.3.4 CMAPI_Callback_Connect_Async_Complete()

The CMAPI_Callback_Connect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_Connect_Async .

	Prototype

	dword CMAPI_Callback_Connect_Async_Complete (CallbackStatus status, dword deviceID, UTF8* CellularProfileName, dword result)




	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile it applies to

	result
	Input
	· 0x00000000: The connection succeeded

· 0x00000001: The connect attempt failed, reason : The network connection was refused by network

· 0x00000002: The connect attempt failed, reason : TBD


Change 5:  Remove Optional from callback CMAPI_Callback_Disconnect_Async_Complete()
8.3.5  CMAPI_Callback_Disconnect_Async_Complete()

The CMAPI_Callback_Disconnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_Disconnect .

	Prototype

	dword CMAPI_Callback_Disconnect_Async_Complete (CallbackStatus status, dword deviceID, UTF8* CellularProfileName, dword result)



	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile it applies to

	result
	Input
	· 0x00000000: The disconnect operation succeeded

· 0x00000001: The disconnect attempt failed, reason : TBD


Change 6:  Remove Optional from callback CMAPI_Callback_CancelConnect_Async_Complete()
8.3.6  CMAPI_Callback_CancelConnect_Async_Complete()

The CMAPI_Callback_CancelConnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_CancelConnect_Async.

	Prototype

	dword CMAPI_Callback_CancelConnect_Async_Complete (CallbackStatus status, dword deviceID, UTF8* CellularProfileName, dword result)




	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile it applies to

	result
	Input
	· 0x00000000: The connect operation was cancelled.

· 0x00000001: The cancel operation failed, reason : TBD


Change 7:  Remove Optional from callback CMAPI_Callback_ByteCount
8.3.18 CMAPI_Callback_ByteCount
The CMAPI_Callback_ByteCount() function is used to indicate the current byte count. This is a periodic notification. This callback SHALL be made immediately when the application registers for this message. The callback SHALL also occur at a maximum of every 15 seconds when the connection is not Dormant. The OpenCMAPI implementation is free to make this callback sooner if deemed useful, in any event the callback MAY NOT occur with greater frequency than once a second. The byte count accumulates between the last connection and either a manual disconnect or some other event that causes the radio to be in disconnected state. This callback must not occur while in the disconnected state.
	Prototype

	dword CMAPI_Callback_ByteCount (dword deviceID, UTF8* CellularProfileName, qword Tx, qword Rx, dword wrapped)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile it applies to

	Tx
	Input
	The current count of Tx bytes.

	Rx
	Input
	The current count of Rx bytes

	wrapped
	Input
	This is used to denote when Tx and/or Rx counters have overflowed. Counting will continue like normal and the indication will be set once for each overflow. The following definition is a bitwise combination and allows for Tx and/or Rx to be set at the same time.

· 0x00000000: No Overflow

· 0x00000001: Tx overflow

· 0x00000002: Rx overflow


Change 8:  Modify Return values in 7.5.2 & 7.5.3

7.5.2 CMAPI_NetConnectSrv_GetCellularProfile()

The CMAPI_NetConnectSrv_GetCellularProfile() function is used to get the details of a specific Cellular Profile.
	Prototype

	dword CMAPI_NetConnectSrv_GetCellularProfile (dword deviceID, UTF8* CellularProfileName, CellularProfileType* pCellularProfile, dword* pCellularProfileSize)


	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The profile name for the Get operation

	pCellularProfile
	Output
	The details for the profile information

	pCellularProfileSize
	Input/Output
	The size of the cellular profile buffer on input or if insufficient contains the necessary size


	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. 

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile name does not exist

	0X30000001
	The buffer is not sufficient to hold the data, the pCellularProfileSize will contain the minimum number of bytes required.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.


7.5.3 CMAPI_NetConnectSrv_GetCellularProfileList()

The CMAPI_NetConnectSrv_GetCellularProfileList() function is used to get a list of all Cellular Profile names.
	Prototype

	dword CMAPI_NetConnectSrv_GetCellularProfileList (dword deviceID, ProfileNameType* pCellularProfileNameList, dword* pCellularProfileNameListSize, dword* pCellularProfileNameListCount)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pCellularProfileNameList
	Output
	The buffer to contain the list of profile names. The Cellular Profile Name pointers will be laid out at the front of the buffer.

	pCellularProfileNameListSize
	Input/Output
	The size of the buffer on input or if insufficient contains the necessary size.

	pCellularProfileNameListCount
	Output
	Number of entries in the list. 


	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. 

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X30000002
	The buffer is not sufficient to hold the data, the pCellularProfileNameListSize will contain the minimum number of bytes required.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.


Change 9:  Modify Error Code in section 9 & modify return value in section 7.2.3
	Buffer Error Codes

	
	Listing all buffer error codes

	0X30000000
	The OpenCMAPIVersion buffer is not large enough

	0X30000001
	The buffer is not sufficient to hold the data, pCellularProfileSize will contain the minimum number of bytes required.

	0X30000002
	The buffer is not sufficient to hold the data, the pCellularProfileNameListSize will contain the minimum number of bytes required.

	0X30000003
	The size of the network info buffer is insufficient. pNetworkInfoSize contains the minimum number of bytes required.

	0X30000004
	The network identifier buffer is not large enough, pNetworkIdentifierSize holds the minimum necessary size in bytes


Change 10:  Modify Functions related to Scan and Search for WLAN Networks

7.11.7 CMAPI_WLAN_Scan_Async()

The CMAPI_WLAN_Scan_Async() function is used to initiate a scan for WLAN networks. This initiates an asynchronous process to discover WLAN networks available. The calling thread returns immediately. The result is reported in callback CMAPI_Callback_ScanWLANComplete().
	Prototype

	dword CMAPI_WLAN_Scan_Async (dword deviceID, dword Timeout)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Timeout
	Input
	The maximum time for the WLAN network scan (in seconds).


	Return Values

	Value
	Description

	0X00000000
	The function succeeded. 

	0X00000001
	A fatal error has occurred. 

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.


7.11.20 CMAPI_WLAN_SearchNetwork_Async()

The CMAPI_WLAN_SearchNetwork_Async() function is used to check the availability of a specific WLAN network. The calling thread returns immediately. This operation occurs asynchronously. The result is reported in callback CMAPI_Callback_SearchWLANNetworkComplete().
	Prototype

	dword CMAPI_WLAN_SearchNetwork_Async (dword deviceID, dword Timeout, WLANNetwork* pNetwork)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	Timeout
	Input
	The maximum time for the search for the WLAN Network (in seconds).

	pNetwork
	Input
	The network to search for


	Return Values

	Value
	Description

	0X00000000
	The function succeeded. 

	0X00000001
	A fatal error has occurred. 

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.


Change 11:  Modify Callbacks related to Scan and Search for WLAN Networks

8.3.11 CMAPI_Callback_SearchWLANNetworkComplete()
The CMAPI_Callback_SearchWLANNetworkComplete() function is called when a search for a particular WLAN network has been completed. The function is invoked as a result of a previous call to CMAPI_WLAN_SearchNetwork_Async().
	Prototype

	dword CMAPI_Callback_SearchWLANNetworkComplete (CallbackStatus status, dword deviceID, WLANNetwork* pNetwork, dword Present)




	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	pNetwork
	Input
	The network identification.

	Present
	Input
	The presence status of the Wlan network searched
· 0x00000000: Not present

· 0x00000001: Present


8.3.24 CMAPI_Callback_ScanWLANComplete()

The CMAPI_Callback_ScanWLANComplete() function is used to notify that a scan for WLAN networks has been completed. The function is invoked as a result of a previous call to CMAPI_WLAN_Scan_Async().
	Prototype

	dword CMAPI_Callback_ScanWLANComplete (CallbackStatus status, dword deviceID, dword networks)



	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	networks
	Input
	The number of networks in the current scan list.


Change 12:  Modify functions and Callback for SMS get to add msgID

7.14.2 CMAPI_SMS_Get()

The CMAPI_SMS_Get() function is used to retrieve the message.

	Prototype

	dword CMAPI_SMS_Get (dword deviceID, dword systemID, dword msgID, dword iFrom, SMSRecord* pRecord, dword* pRecordSize)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	msgID
	Input
	The message ID

	iFrom
	Input
	To indicate where the SMS record is

· 0x00000000: from SIM/R-UIM/NAA on UICC

· 0x00000001: from local device

· 0x00000002: from the terminal device, like PC

	pRecord
	Output
	The SMS record

	pRecordSize
	Input/Output
	The size of the record buffer or if insufficient contains the necessary size


	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. 

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000107
	System not supported by the device

	0X00000130
	The device is not in a power state which allows this operation.

	0X00005007
	The from value is invalid

	0X0000500B
	The record buffer is not large enough.

	0X0000500C
	The msgID is invalid 

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.


8.3.17 CMAPI_Callback_SMS()

The CMAPI_Callback_SMS() function is used to indicate that a new SMS message (Class 0 & 2 SMS excluded) has been received and the number of messages in the mailbox.
	Prototype

	dword CMAPI_Callback_SMS (dword deviceID, dword systemID, dword msgID, dword mailbox, dword totalMessages, dword newMessages)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	msgID
	Input
	The message ID

	mailbox
	Input
	Indication of the mailbox
· 0x00000000: Stored on SIM/R-UIM/NAA on UICC  

· 0x00000001: Stored in phone memory

	totalMessages
	Input
	The total number of messages in the mailbox

	newMessages
	Input
	The current number of new messages in the mailbox


Change 13:  Editorial Changes accordingly to list (List Editorial changes) above

Change 14:  To replace byte by dword for timeout parameters in the TS (for example 7.16.3)
Change 15:  To remove PLMNNameType structure and to replace it by UTF8 in NetworkInfoType
Change 16:  To add in the Design convention section: 
“Structure fields should be aligned on a byte boundary (i.e. # pragma pack (push 1)).”
Change 17:  To add in the Design convention section: 
“Little endian shall be used by the application.”
Change 18:  To add in the Design convention section: 
“For every parameter designated as “input” only, const should be applied.” and to remove “const” where it is already mentioned




















































































































































NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 1 (of 17)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2012 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 9 (of 17)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

