Doc# OMA-CD-OpenCMAPI-2013-0142-CR_New_Edit_fixes_v1_0[image: image1.jpg]
Change Request

Doc# OMA-CD-OpenCMAPI-2013-0142-CR_New_Edit_fixes_v1_0
Change Request

Change Request

	Title:
	CR to provide new Editorial fixes in 1.0
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD OpenCMAPI

	Doc to Change:
	OMA-TS-OpenCMAPI-V1_0-20131111-D

	Submission Date:
	11th Nov 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Chris Heistad, Smith Micro, cheistad@smithmicro.com
Thierry Berisot, Deutsche Telekom, thierry.berisot@telekom.de

	Replaces:
	n/a

1 Reason for Change

This CR proposes to address additional Editorial Fixes in the TS for OpenCMAPI 1.0.
The changes proposed are the following:

#1 CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async 7.5.13 description misspells this function 'CMAPI_SecondaryPDPContext_ NetConnectSrv_CancelConnect_Async()' and 'CMAPI_SecondaryPDPContext_NetNetConnectSrv_Connect_Async' and 'CMAPI_Callback_SecondaryPDPContext_NetConnectSrv_CancelConnect_Async_Complete'. NetNetConnectSrv should precede SecondaryPDPContext in all the names. See also #2
#2 CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete 8.3.34 Title has the names of the callback and the trigger function misspelled.
CMAPI_Callback_SecondaryPDPContext_NetConnectSrv_CancelConnect_Async_Complete 8.3.35 Why is SecondaryPDPContext BEFORE NetConnectSrv in this function name? doc also misspells name of trigger function

CMAPI_Callback_SecondaryPDPContext_NetConnectSrv_CancelConnect_Async_Complete 8.3.35 There's a space instead of _ in the prototype in the document.
#3 QoSStructure.validFeatures 6.2.7 signallingIndication, preemptionCapability and preemptionVulnerablity all use an enumeration of 0 = Yes and 1 = No (i.e the usual sense of off/on no/yes false/true is reversed?).

#4 CMAPI_Callback_DeviceChanged 8.3.2 specifies different numerical values for EmulatedEthernet, and Wi-Fi than 7.3.2 CMAPI_Discovery_GetDevice (Values are reversed). This is probably a typo (at one or the other).
#5 CMAPI_Discovery_OpenDevice Description at 7.3.3 indicates that the 'UniqueIdentifier' is obtained from CMAPI_Discovery_DetectDevices, rather than from the associated callback, CMAPI_Callback_DetectDevicesComplete.
#6 CMAPI_NetCon_SetAutoConnectMode 7.6.2 does not indicate which callback is used to get the pin. Should it be 8.3.31 CMAPI_Callback_VerifyPIN ?
#7 CMAPI_OMADM_GetSessionInfo 7.7.13 Enumerated value for SessionType, 0x00000003 Device-initiated hands-free activation conflicts with, 7.7.11 CMAPI_OMADM_StartSession(): 0x00000003: (optional) Client-initiated Firmware Update. See also 7.7.14 CMAPI_OMADM_GetPendingNIA().

#8 CMAPI_SMS_GetRecordCount 7.14.12 and CMAPI_SMS_GetUnreadRecordCount: should the description be 'Retrieve the number of SMS records' ?
#9 CMAPI_Callback_CDMA2000ActivationState)(CMAPI_CallbackStatus status, dword deviceID, CMAPI_ActivationState state) - 8.3.10 Should 0x00000010: OT ASP settings committed. be 0x0000000A (next value after 0x00000009) ?
#10 CMAPI_Callback_WLANConnectionStatus 8.3.26 'status' used for two formal parameter names.

#11 CMAPI_Callback_VerifyPin 8.3.31 description does not correctly name the function to call to supply the PIN.

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The CD OpenCMAPI SWG should review and agree this CR.
6 Detailed Change Proposal

Change 1: Editorial fix in 7.5.11, 7.5.12& 7.5.13
CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async()

The CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async() function is used to connect to a network. CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async is asynchronous; it initiates a connection and then returns immediately. When the connection has finished the Callback CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect_Async_Complete is invoked.
	Prototype

	dword CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async (dword deviceID, UTF8* CellularProfileName, byte SecondaryContextnumber)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile to be used for this function

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

The API shall check first if a Primary context is activated for this cellular profile

The API will check if in the cellular profile the pointer to the Secondary context is set to NULL or not. If not NULL, the function will try to activate the secondary context.

The API will also check if this Secondary context is already activated or in progress of activation

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000006
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile name does not exist

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00003001
	The requested bearer is not possible

	0X00003009
	The requested connection type is not valid

	0X00003201
	No Primary context activated

	0X00003202
	The secondary context doesn’t exist

	0X00003203
	The secondary context is already activated/created

	0X00003204
	The secondary context activation is in progress

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000002
	The authentication is failed

CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async()

The CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async() function is used to disconnect from the network. CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async is asynchronous; it initiates the disconnect operation and then returns immediately. When the disconnect operation has finished the Callback CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete is invoked.
	Prototype

	dword CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async (dword deviceID, UTF8* CellularProfileName, byte SecondaryContextnumber)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile to be used for this function

	SecondaryContext number
	Input
	Secondary context number from 1 to 16. The API will check if in the cellular profile the pointer to the Secondary context is set to NULL or not. If not NULL, the function will try to deactivate the secondary context.

The API will also check if this Secondary context is already deactivated or in progress of deactivation

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000006
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile name does not exist

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00003002
	There is no connection to disconnect from

	0X00003009
	The requested connection type is not valid

	0X00003202
	The secondary context doesn’t exist

	0X00003205
	The secondary context is already deactivated

	0X00003206
	The secondary context deactivation is in progress

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async()

The CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async () function is used to cancel of connect operation (as a result of a call to CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async). CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async is asynchronous; it initiates the cancelation of an ongoing connect operation and then returns immediately. When the cancellation of the connect operation has finished, the Callback CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async_Complete is invoked.

	Prototype

	dword CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async (dword deviceID, UTF8* CellularProfileName, byte SecondaryContextnumber)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile to be used for this function

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

The API will check if in the cellular profile the pointer to the Secondary context is set to NULL or not. If not NULL, the function will try to activate the secondary context.

The API will also check if this Secondary context is already deactivated or in progress of deactivation

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile name does not exist

	0X00002002
	The cellular profile name is not valid

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00003004
	There is no connecting session for cancellation

	0X00003005
	The Connection is releasing

	0X00003202
	The secondary context doesn’t exist

	0X00003207
	The secondary context is already deactivating

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 2: Editorial fix in 8.3.33, 8.3.34 & 8.3.35
CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect_Async_Complete()

The CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async.
	Prototype

	dword CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect_Async_Complete (CallbackStatus status, dword deviceID, UTF8* CellularProfileName, byte SecondaryContextnumber, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile it applies to

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

	result
	Input
	· 0x00000000: The connection succeeded

· 0x00000001: The connect attempt failed, reason: The network connection was refused by network

· 0x00000002: The connect attempt failed, reason: TBD

CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete ()

The CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async.

	Prototype

	dword CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete (CallbackStatus status, dword deviceID, UTF8* CellularProfileName, byte SecondaryContextnumber, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile it applies to

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

	result
	Input
	· 0x00000000: The disconnect operation succeeded

· 0x00000001: The disconnect attempt failed, reason: TBD

CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async_Complete ()

The CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async_Complete () function is invoked as a result of a previous call to CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async.

	Prototype

	dword CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async_Complete (CallbackStatus status, dword deviceID, UTF8* CellularProfileName, byte SecondaryContextnumber, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	The name of the Cellular Profile it applies to

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

	result
	Input
	· 0x00000000: The connect operation was cancelled.

· 0x00000001: The cancel operation failed, reason : TBD

Change 3: Editorial Fixes in 6.2.7
QoSStructure

	Definition QoSStructure

	This defines the structure used to communicate QoS event information.

	validFeatures
	dword
	Based on the different traffic classes various features in this method are valid/invalid. This parameter describes which values are valid. If the defined bit is not set it means the corresponding parameter is not used and should not be used for any purpose by the application.

· 0x00000001: Traffic Class

· 0x00000002: Maximum Bitrate

· 0x00000004: Guaranteed Bitrate

· 0x00000008: Delivery Order

· 0x00000010: Maximum SDU Size

· 0x00000020: SDU Format Information

· 0x00000040: SDU Error Ratio

· 0x00000080: Residual Bit Error Ratio

· 0x00000100: Delivery of Erroneous SDUs

· 0x00000200: Transfer Delay

· 0x00000400: Traffic Handling Priority

· 0x00000800: Allocation Retention Priority

· 0x00001000: Source Statistics Descriptor

· 0x00002000: Signaling Indication

· 0x00004000: Priority Level

· 0x00008000: Pre-emption Capability

· 0x00010000: Pre-emption Vulnerability

	trafficClass
	dword
	The traffic class defines the type of application for which the bearer service is optimized.

· 0x00000000: Conversational

· 0x00000001: Streaming

· 0x00000002 Interactive

· 0x00000003 Background

	maximumBitRate
	dword
	Maximum bitrate in kbps.

	guaranteedBitRate
	dword
	Guaranteed bitrate in kbps.

	deliveryOrder
	dword
	Indicates if in-sequence delivery is provided

· 0x00000000: Not provided

· 0x00000001: Provided

	maximumSDUSize
	dword
	The maximum SDU size for which the network will satisfy the negotiated QoS. In Octets.

	SDUFormatInformation
	dword
	The list of possible exact sized of SDUs

	SDUErrorRatio
	dword
	Indicates the fraction of SDUs lost or detected as erroneous.

	residualBitErrorRatio
	dword
	Indicates the undetected bit error ratio in the delivered SDUs

	deliveryOfErroneousSDUs
	dword
	Indicates whether SDUs detected as erroneous shall be delivered or discarded.

· 0x00000000: To be Discarded
· 0x00000001: To be Delivered
· 0x00000002: Detection is not used

	transferDelay
	dword
	Indicates maximum delay for 95th percentile of the distribution of delay for all delivered SDUs during the lifetime of a bearer service (reported in milliseconds).

	trafficHandlingPriority
	dword
	Defines the relative importance for handling of all SDUs belonging to the bearer compared to the SDUs of other bearers

	allocationRetentionPriority
	dword
	Defines the relative importance compared to other bearers for allocation and retention of the bearer.

	sourceStatisticsDescriptor
	dword
	Defines the characteristics of the source of submitted SDUs

· 0x00000000: Speech

· 0x00000001: Unknown

	signallingIndication
	dword
	Defines the signaling nature of the submitted SDUs.

· 0x00000000: No
· 0x00000001: Yes

	priorityLevel
	dword
	The Evolved Allocation/Retention Priority Level

	preemptionCapability
	dword
	The Evolved Allocation/Retention Pre-emption Capability

· 0x00000000: No
· 0x00000001: Yes

	preemptionVulnerability
	dword
	The Evolved Allocation/Retention Pre-emption Vulnerability

· 0x00000000: No
· 0x00000001: Yes

Change 4: Editorial fix in 7.3.2

CMAPI_Discovery_GetDevice()

The CMAPI_Discovery_GetDevice() function is used to discover information about the devices within the system.

The opaque handle or deviceID is used to eliminate any possible confusion resulting from one device appearing and another disappearing in a short timespan. The deviceID is supplied to the technology specific API calls in order to obtain more detailed information related to the device.

	Prototype

	dword CMAPI_Discovery_GetDevice (dword deviceID, RadioType* pRadio, dword* pDeviceCapability, dword* pConnectionType, dword* pDeviceType, UTF8* pDescription, dword* pDescriptionLength)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The device ID of the device concerned

	pRadio
	Output
	See RadioType definition

	pDeviceCapability
	Output
	The additional capabilities not related to radio type supported by the device:

· 0x00000000: No additional capability
· 0x00000001: GPS
· 0x00000002: AGPS in the Control Plane

· 0x00000004: AGPS in the User Plane
· 0x00000008: Reserved for future use
· 0x00000010: Reserved for future use
· 0x00000020: Reserved for future use

· Any combination of the above

	pConnectionType
	Output
	The type of the device connection:
· 0x00000001: USB

· 0x00000002: IRDA

· 0x00000004: Bluetooth
· 0x00000008: Internal Bus
· 0x00000010: Serial
· 0x00000020: Wi-Fi
· 0x00000040: EmulatedEthernet
· Any combination of the above

	pDeviceType
	Output
	The type of device this message refers to.

· 0x00000001: Embedded modem

· 0x00000002: USB modem

· 0x00000003: Mobile phone acting as modem
· 0x00000004: USB modem with Emulated Ethernet
· 0x00000005: Wireless Router

	pDescription
	Output
	The description of the device. Intended to be descriptive and displayed by an application.

	pDescriptionLength
	Input/Output
	On input contains the length of the buffer in bytes of description or if insufficient contains the necessary size.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X3000000E
	The description buffer needs to be larger; the description length is set to the minimum number of bytes required.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 5: Editorial Fixes in 7.3.3
CMAPI_Discovery_OpenDevice()

The CMAPI_Discovery_OpenDevice() function is used to “open” a device within the system. The device is identified by the UniqueIdentifier obtained as the result of CMAPI_Callback_DetectDevicesComplete() through earlier call to CMAPI_Discovery_DetectDevices(). The function returns an opaque handle or device ID which is used to eliminate any possible confusion resulting from one device appearing and another disappearing in a short timespan. The deviceID is supplied to the technology specific API calls in order to obtain more detailed information related to the device.

	Prototype

	dword CMAPI_Discovery_OpenDevice (UTF8* UniqueIdentifier, dword* pDeviceID)

	Parameters

	Field Name
	Mode
	Description

	UniqueIdentifier
	Input
	The unique identification of this specific device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID.

	pDeviceID
	Output
	An opaque handle which is used to identify and reference this device in other OpenCMAPI calls. The deviceID is valid from the moment the application receives it from CMAPI_Discovery_OpenDevice until it calls CMAPI_Discovery_CloseDevice. During this period it is a reference to this device. After CloseDevice has been called the deviceID has no meaning and should not be used again.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000100
	The UniqueIdentifier is referencing a non-existing device

	0X00000102
	The device is already opened.

	0X00000103
	Maximum number of device that the API can handle per client is reached (can be 1), close another open device handle.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 6: Editorial fixes in 7.6.2

CMAPI_NetCon_SetAutoConnectMode()
The CMAPI_NetCon_SetAutoConnectMode() function is used to set/disable “autoconnect” mode. When the autoconnect functionality is triggered, the default profile for the device will be used to make the connection. The default profile must be set in the CMAPI_NetCon_SetDefaultProfile method. If there is need to request the PIN, this will be signalled asynchronously as needed through the callback CMAPI_Callback_VerifyPIN. The application should register for the callback before turning on one of the autoconnect modes. If the application does not register and the autoconnect is triggered when a PIN is required, the autoconnect function will not be successful and the application cannot be notified.
	Prototype

	
dword CMAPI_NetCon_SetAutoConnectMode (dword deviceID, UTF8* CellularProfileName, dword Mode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional - The name of the Cellular Profile to be used for this function

	Mode
	Input
	· 0x00000000: Disable autoconnect
· 0x00000001: Enable for home network

· 0x00000002: Enable for home and roaming network

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile name does not exist

	0X00002002
	The Cellular profile name is not valid

	0X00002005
	A default profile has not been set for this device.

	0X0000300A
	There is currently a connection which prevents this operation. It is necessary to disconnect before the requested operation can be completed.

	0X00003101
	The requested mode is not valid.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 7: Editorial Fixes in 7.7.11 & 7.7.14 in line with 7.7.13
CMAPI_OMADM_StartSession()

The CMAPI_OMADM_StartSession() function starts an OMA DM session to configure the values of various CDMA2000 network information as specified by the session type in its input parameter.
	Prototype

	
dword CMAPI_OMADM_StartSession (dword deviceID, dword SessionType, dword* pSessionIdentifier)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	SessionType
	Input
	Type of session to be started:

· 0x00000000: Client-initiated device configuration

· 0x00000001: Client-initiated PRL update

· 0x00000002: Client-initiated hands-free activation

· 0x00000006: (optional) Client-initiated Firmware Update

	pSessionIdentifier
	Output
	 Identifies the session and which can be referenced when required, such as tracking active sessions, cancelling the session, etc.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00004019
	The session type is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

CMAPI_OMADM_CancelSession()

The CMAPI_OMADM_CancelSession() cancels an ongoing OMA DM session.
	Prototype

	
 dword CMAPI_OMADM_CancelSession (dword deviceID, dword sessionIdentifier)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	sessionIdentifier
	Input
	(Optional) The session identifier which was returned when the session was started.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00004001
	Unrecognized session identifier.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

CMAPI_OMADM_GetSessionInfo()

The CMAPI_OMADM_GetSessionInfo() function returns information about the currently active OMA DM session (or the most recent session if none is active).
	Prototype

	
dword CMAPI_OMADM_GetSessionInfo (dword deviceID, dword* pSessionType, dword* pSessionState, dword* pFailureReason, byte* pRetryCount, word* pSessionPause, word* pTimeRemaining)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pSessionType
	Output
	Type of session:

· 0x00000000: Client-initiated device configuration

· 0x00000001: Client-initiated PRL update

· 0x00000002: Client-initiated hands-free activation

· 0x00000003: Device-initiated hands-free activation

· 0x00000004: Network-initiated PRL update

· 0x00000005: Network-initiated device configuration

· 0x00000006: (optional) Client-initiated firmware update

· 0x00000007: (optional) Network-initiated firmware update

	pSessionState
	Output
	State of the session:

· 0x00000000: Complete, information was updated

· 0x00000001: Complete, update information unavailable

· 0x00000002: Complete, no new update available

· 0x00000003: Failed
· 0x00000004: Retrying

· 0x00000005: Connecting

· 0x00000006: Connected

· 0x00000007: Authenticated

· 0x00000008: Mobile Directory Number (MDN) downloaded

· 0x00000009: Mobile Station Identifier (MSID) downloaded

· 0x0000000A: PRL downloaded

· 0x0000000B: Mobile IP profile downloaded

	pFailureReason
	Output
	Session failure reason:

· 0x00000000: Unknown

· 0x00000001: Network is unavailable

· 0x00000002: Server is unavailable

· 0x00000003: Authentication failed

· 0x00000004: Maximum number of retries exceeded

· 0x00000005: Session is canceled

	pRetryCount
	Output
	Session retry count

	pSessionPause
	Output
	Time (in seconds) to pause between retries

	pTimeRemaining
	Output
	Time (in seconds) remaining until next retry (when session state is Retrying)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

CMAPI_OMADM_GetPendingNIA()

The CMAPI_OMADM_GetPendingNIA() function returns information about a Network-Initiated Alert (NIA) that is commanding the device to establish a DM session with a DM server to perform the requested configuration operation.
	Prototype

	
dword CMAPI_OMADM_GetPendingNIA (dword deviceID, dword* pSessionType, word* pSessionID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pSessionType
	Output
	Type of session to be started:

· 0x00000004: Network-initiated PRL update

· 0x00000005: Network-initiated device configuration

·
· 0x00000007: (optional) Network-initiated firmware update

	pSessionID
	Output
	Session ID for the NIA request

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 8: Editorial fixes in 7.14.12 & 7.14.13
CMAPI_SMS_GetRecordCount()

The CMAPI_SMS_GetRecordCount() function is used to retrieve the number of SMS records.
	Prototype

	dword CMAPI_SMS_GetRecordCount (dword deviceID, dword systemID, dword iFrom, dword* plResult)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	iFrom
	Input
	To indicate where the SMS record is

· 0x00000000: from SIM/R-UIM/NAA on UICC
· 0x00000001: from local device

· 0x00000002: from the terminal device, like PC
· Any combination of the above

	plResult
	Output
	The number of the SMS record in segments.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000107
	System not supported by the device

	0X00000130
	The device is not in a power state which allows this operation.

	0X00005007
	The ifrom value is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

CMAPI_SMS_GetUnreadRecordCount()

The CMAPI_SMS_GetUnreadRecordCount() function is used to retrieve the number of unread SMS records.
	Prototype

	dword CMAPI_SMS_GetUnreadRecordCount (dword deviceID, dword systemID, dword iFrom, dword* pIResult)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	iFrom
	Input
	To indicate where the SMS record is

· 0x00000000: from SIM/R-UIM/NAA on UICC
· 0x00000001: from local device

· 0x00000002: from the terminal device, like PC

· Any combination of the above

	plResult
	Output
	The number of the unread SMS record

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000107
	System not supported by the device

	0X00000130
	The device is not in a power state which allows this operation.

	0X00005007
	The ifrom value is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 9: Replace value in 8.3.10

CMAPI_Callback_CDMA2000ActivationState()

The CMAPI_Callback_CDMA2000ActivationState() function is used to communicate the changes in the CDMA 2000 Activation state
	Prototype

	dword CMAPI_Callback_CDMA2000ActivationState (CallbackStatus status, dword deviceID, dword state)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	state
	Input
	The new activation state

· 0x00000000: Service not activated

· 0x00000001: Service activated

· 0x00000002: Activation connecting

· 0x00000003: Activation connected

· 0x00000004: OTASP security authenticated

· 0x00000005: OTASP NAM downloaded

· 0x00000006: OTASP MDN downloaded

· 0x00000007: OTASP IMSI downloaded

· 0x00000008: OTASP PRL downloaded

· 0x00000009: OTASP SPC downloaded

· 0x0000000A: OTASP settings committed.

Change 10: Editorial Fixes in 8.3.26

CMAPI_Callback_WLANConnectionStatus()

The CMAPI_Callback_WLANNotification() function is used to receive WLAN connection Status.
	Prototype

	dword CMAPI_Callback_WLANConnectionStatus (CallbackStatus status, dword deviceID, dword connectionstatus)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	connectionstatus
	Input
	WLAN event:

· 0x00000000: Connection attempt starting

· 0x00000001: Attempting association

· 0x00000002: Association failed

· 0x00000003: Attempting authentication

· 0x00000004: Authentication failed

· 0x00000005: Requesting IP address

· 0x00000006: IP grant failed

· 0x00000010: Connection complete
· 0x00000020: Disconnecting

· 0x00000021: Disconnected

Change 11: Editorial Fix in 8.3.31

CMAPI_Callback_VerifyPIN()

The CMAPI_Callback_VerifyPIN() function is used to signal that a PIN should be collected from the user and supplied to the API through the CMAPI_DevSrv_VerifyPINmethod.
	Prototype

	dword CMAPI_Callback_VerifyPin (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The device for which the PIN is needed.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 19)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 22 (of 22)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

