Doc# OMA-CD-OpenCMAPI-2013-0148-CR_Add_bug_fixes_v1_0[image: image1.jpg]"sOMaQa

Open Mobile Alliance




Change Request


Doc# OMA-CD-OpenCMAPI-2013-0148-CR_Add_bug_fixes_v1_0
Change Request



Change Request

	Title:
	CR to provide more new bug fixes in 1.0
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	To:
	CD OpenCMAPI

	Doc to Change:
	OMA-TS-OpenCMAPI-V1_0-20131111-D

	Submission Date:
	15th Nov 2013

	Classification:
	 FORMCHECKBOX 
 0: New Functionality
 FORMCHECKBOX 
 1: Major Change
 FORMCHECKBOX 
 2: Bug Fix
 FORMCHECKBOX 
 3: Editorial

	Source:
	Chris Heistad, Smith Micro, cheistad@smithmicro.com
Thierry Berisot,  Deutsche Telekom, thierry.berisot@telekom.de

	Replaces:
	n/a


1 Reason for Change

This CR proposes to address additional new bug Fixes in the TS for OpenCMAPI 1.0.
The changes proposed are the following:

#1: CMAPI_Callback_RfInformationChange  8.3.22 Why are the sizes of 3 strings passed in to this? They are null terminated const strings. Not done anywhere else this way. The size parameters are only necessary if you will write into the parameters which should not be allowed here. To remove unused parameters.
#2: CMAPI_Discovery_DetectDevices The description, from 7.3.1, is confusing. Should this say that a list of unique device identifiers will be provided via the CMAPI_Callback_DetectDevicesComplete callback, and that the addition and removal of devices will be signaled via CMAPI_Callback_DeviceChanged if the application registers for these events via CMAPI_Callback_Register? However, it is not clear how CMAPI_Callback_DeviceChanged is related to this call. Does CMAPI_Callback_DetectDevicesComplete indicate that the operation is complete, OR, does the operation continue to provide updates via CMAPI_Callback_DeviceChanged ? – to change the description
#3:  CMAPI_OMADM_GetFeatureSettings  7.7.16 What value would be returned in (optional) pFirmwareUpdate if the implementation opt's not to provide this? Not sure why indicating whether the feature is enabled or disabled should be 'optional' in the first place. Feature may be optional, but the parameter probably shouldn't be. – to change
#4:  CMAPI_Callback_WLANNotification() – to change the value of the parameter connection complete to connected
#5: 8.2.1 and all of 8.3:  CMAPI_Callback_Register should accept an input void* ClientContext, and this should be passed back to each 8.3 callback.  As is, the only way for the client's callback implementations to access its own state is using a global reference which is accessible from the callback implementation.  The provision for a client context ptr is a standard practice in designing API callbacks.  In c++ programs, it typically maps to the implementation object.
An internal table would need to be maintained by the opencmapi so that each registration is able to have a different client context.
#6: The proposal is to preface all of the type definitions in section 6.2 with CMAPI_ in the same way that the methods within the enabler are current specified. This would require that section 6.2 is updated and also the other sections where the type definitions are used.
#7: WLANNetwork structure – the pKey parameter is now redundant with Networkkey & pointer shoud be changed

#8: CMAPI_NetCon_GetConnectionStatus()  has a pDataRate output parameter but the spec does not specify whether this in the download or the upload data rate. In fact, the API should have both an RX data rate and a TX data rate since throughput is always expressed for both transmit and receive...

#9: CMAPI_USSDStatus has a possible value of CMAPI_USSDStatus_ActionRequired. The problem is that there is no OpenCM USSD API to continue a USSD session after the "action" has taken place. 
 A CMAPI_USSD_Request() may actually return a text response from the operator but there is no way to report this response back to the caller. This API should actually be something like: CMAPI_USSD_Request( dword deviceID, const UTF8* USSDData, CMAPI_USSDStatus* pUSSDStatus, UTF8* responseBufr, dword *responseBufrSize );

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The CD OpenCMAPI SWG should review and agree this CR.
6 Detailed Change Proposal

Change 1:  Remove unused parameters in 8.3.22

8.3.22 CMAPI_Callback_RFInformationChange()

The CMAPI_Callback_RFInformationChange() function is used to communicate a change related to RF.

	Prototype

	dword CMAPI_Callback_RFInformationChange (dword deviceID, UTF8* radioTechnology, UTF8* bandClass, UTF8* channel)




	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	radioTechnology
	Input
	Name of the technology in use

	
	
	

	bandClass
	Input
	Name of the band class in use

	
	
	

	channel
	Input
	Name of the channel in use

	
	
	


Change 2:  Modify the description for clarity on 7.3.1

7.3.1CMAPI_Discovery_DetectDevices()


The CMAPI_Discovery_DetectDevices() function causes the OpenCMAPI to actively search for devices. This is a manually triggered operation which requires that the application has registered for CMAPI_Callback_DetectDevicesComplete. This operation gives a complete list of devices in the system which are usable from the OpenCMAPI.

Registering for the CMAPI_Callback_DeviceChanged is not related to this call. The device changed callback differs as it only gives information when a new device is added or an existing device is removed from the system. Detect devices is used to obtain a list of devices which are currently present in the system.
	Prototype

	dword CMAPI_Discovery_DetectDevices ()




	Parameters

	Field Name
	Mode
	Description


	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. 

	0XF0000001


	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.


Change 3:  Provide for optional support for firmware update in 7.7.16
7.7.16 CMAPI_OMADM_GetFeatureSettings()

The CMAPI_OMADM_GetFeatureSettings() function returns information about the settings of OMA DM features, indicating for each one whether OMA DM can be currently used for the specified configuration operation.

	Prototype

	
 dword CMAPI_OMADM_GetFeatureSettings (dword deviceID, dword* pProvisioning, dword* pPRLUpdate, dword* pFirmwareUpdate)




	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pProvisioning
	Output
	Setting of device provisioning service update feature:

· 0x00000000: Disabled

· 0x00000001: Enabled

	pPRLUpdate
	Output
	Setting of PRL service update feature:

· 0x00000000: Disabled

· 0x00000001: Enabled

	pFirmwareUpdate
	Output
	Setting of Firmware update feature:

· 0x00000000: Disabled
· 0x00000001: Enabled
NOTE: Firmware update is an optional feature. When the device does not support this feature, “Disabled” will be set. The user of the API is able to determine firmware update is not supported by calling CMAPI_OMADM_SetFirmwareUpdateFeature.


	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. 

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.


Change 4:  Small wording change in 8.3.26
8.3.26 CMAPI_Callback_WLANConnectionStatus()

The CMAPI_Callback_WLANNotification() function is used to receive WLAN connection Status.

	Prototype

	dword CMAPI_Callback_WLANConnectionStatus (CallbackStatus status, dword deviceID, dword status)




	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	status
	Input
	WLAN event:

· 0x00000000: Connection attempt starting

· 0x00000001: Attempting association

· 0x00000002: Association failed

· 0x00000003: Attempting authentication

· 0x00000004: Authentication failed

· 0x00000005: Requesting IP address

· 0x00000006: IP grant failed

· 0x00000010: Connected
· 0x00000020: Disconnecting

· 0x00000021: Disconnected


Change 5:  Modify CMAPI_Callback_Register() & all callbacks as the example of CMAPI_Callback_DetectDevicesComplete()
CMAPI_Callback_Register()

The CMAPI_Callback_Register() function is used for the application to register for the callbacks which are expected to be received.

	Prototype

	dword CMAPI_Callback_Register (CallbackID ID, callback method, void* clientcontext)




	Parameters

	Field Name
	Mode
	Description

	ID
	Input
	See CallbackID definition

	method
	Input
	The callback method to use when event is triggered.

	clientcontext
	Input
	An optional pointer which is supplied when the callback is triggered. If unused this value should be set to NULL or 0.


	Return Values

	Value
	Description

	0X00000000
	The function succeeded. 

	0X00000001
	A fatal error has occurred. 

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.


CMAPI_Callback_DetectDevicesComplete()

The CMAPI_Callback_DetectDevicesComplete() function is used to communicate that a search and validation of the devices in the system is complete. This is a callback method which the OpenCMAPI invokes.

	Prototype

	dword CMAPI_Callback_DetectDevicesComplete (CallbackStatus status, void* clientcontext, dword devicesPresent, byte* uniqueIdentifierArray)




	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	clientcontext
	Input
	The client context value which was supplied during the registration

	devicesPresent
	Input
	The number of the devices currently present

	uniqueIdentifierArray
	Input
	An array of ‘devicesPresent’ strings, each of which uniquely identifies a detected device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID. 

Although this member is declared as a single null-terminated string, it is actually a buffer that can hold multiple null-delimited unique identifiers. Each unique identifier is terminated by a single NULL character. The last unique identifier is terminated with a double NULL character ("\0\0") to indicate the end of the buffer.


Change 6:  Update all data structure by adding CMAPI_ in whole section 6.2 as the example with RadioState and also the other sections were the type definitions are used.
6.2.2 CMAPI_RadioState

	Definition CMAPI_RadioState

	This prototype defines an enumeration of radio power states.




	CMAPI_RadioState
	dword
	The following radio states are supported:

· 0x00000001: Radio On (Full Power)

· 0x00000002: Radio On (Power Saving)- Optional

· 0x00000003: Radio Off (Device still powered on)

· 0x00000004: Radio Off (Device Off including hardware switch)


Change 7:  Modify the WlanNetwork structure to remove undesired pointer and pKey.
WLANNetwork

	Definition WLANNetwork

	This prototype defines a structure which describes a WLAN network




	Field Name
	Type
	Description

	pSSID
	UTF8*
	The service set identifier

	pBSSID
	UTF8*
	The basic service set identifier

	pFriendlyName
	UTF8*
	Optional - A name used to identify this network. If not filled, then the name used will be the SSID.

	mode
	dword
	Specifies if the network can be automatically connected if located.

· 0x00000000: Manual

· 0x00000001: Automatic

	hidden
	dword
	Specifies if the SSID is being actively broadcast

· 0x00000000: SSID is broadcast

· 0x00000001: SSID is hidden

	securityType
	WLANSecurityType
	The type of security used for this network. See WLANSecurityType

	pKey
	UTF8*
	Optional – This is only needed for items requiring a static key like WEP and PSK.

	EAPAuthenticationMethod
	dword
	Optional - The EAP Authentication Method used by the network.

	pEap
	byte*
	Optional - The EAP definition. This could be a proprietary format implementation of the Buffer (to be checked)

	EAPapSize
	dword
	Contains the length in bytes of the EAP configuration. If not used should be set to “0”.

	encryptionType
	WLANEncryptionType
	The Encryption Type for WLAN – See WLANEncryptionType definition

	keyIndex
	dword
	Key index - Position of the matching key stored in the Access point/Wireless Router:

· 0x00000001: 1
· 0x00000002: 2

· 0x00000003: 3
· 0x00000004: 4

	pNetworkKey
	UTF8*
	Network Key to connect to WLAN Access Point or Wireless router (If not used should be set to “0”)


Located_WLANNetwork

	Definition Located_WLANNetwork

	This prototype defines a structure which describes a WLAN network.



	Field Name
	Type
	Description

	Network
	WLANNetwork
	Please see WLANNetwork

	rssi
	dword
	The signal strength in dBm

	known
	dword
	Identifies if this is a known network

· 0x00000000: Unknown

· 0x00000001: Known (Known networks are networks SSID or networks identifiers prelisted by the operator or that have already been used/predefined by the user)


Change 8:  Modify the parameter pData in 2 in the function  CMAPI_NetCon_GetConnectionStatus()
CMAPI_NetCon_GetConnectionStatus()
The CMAPI_NetCon_GetConnectionStatus() is used to obtain information about the connection status.
	Prototype

	
dword CMAPI_NetCon_GetConnectionStatus (dword deviceID, UTF8* CellularProfileName, dword* pConnectionStatus, dword* pTypes, IPAddress* pAddress, dword* pAddressSize, qword* pUpDataRate, qword* pDownDataRate, qword* pTxPackets, qword* pRxPackets, qword* pTxBytes, qword* pRxBytes, dword* pDuration)



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileName
	Input
	Optional - The name of the Cellular Profile to be used for this function

	pConnectionStatus
	Output
	Connection status values: 

· 0x00000000: Connected

· 0x00000001: Disconnected (it may be possible to distinguish between passive and active disconnection)

· 0x00000002: Connecting

· 0x00000003: Disconnecting

· 0x00000004: Scanning 

· 0x00000010: Unknown state

	pTypes
	Output
	Indication of the radio access technology currently used

In the case of a device with multiple radios, there MAY be multiple settings returned.

· 0x00000010: GSM service

· 0x00000020: GPRS service

· 0x00000040: EDGE service

· 0x00000100: CDMA service

· 0x00000200: QNC service 

· 0x00000400: 1X-RTT service

· 0x00000800: EV-DO service

· 0x00001000: EV-DV service

· 0x00002000: IOTA service

· 0x00004000: IOTA REVA service

· 0x01000000: UMTS service

· 0x02000000: HSDPA service (Included for legacy purpose, not all operators use HSDPA+)

· 0x04000000: HSUPA service

· 0x08000000: HSPA Plus service

· 0x10000000: PHS service

· 0x20000000: FOMA service

· 0x40000000: LTE service

· 0x80000000: WLAN service

	pAddress
	Output
	IPaddress on interface

	pAddressSize
	Input/Output
	The size of the IPAddress buffer on input. If insufficient, contains the size needed on return.

	pUpDataRate
	Output
	Upload Connection Data Rate in Kbit/s

	pDownDataRate
	Output
	Download Connection Data Rate in Kbit/s

	pTxPackets
	Output
	Number of packets transmitted since connection establishment

	pRxPackets
	Output
	Number of packets received since connection establishment

	pTxBytes
	Output
	Number of bytes transmitted since connection establishment

	pRxBytes
	Output
	Number of bytes received since connection establishment

	pDuration
	Output
	Number of seconds elapsed since connection establishment


Change 9:  Modify the function CMAPI_USSD_Request()
CMAPI_USSD_Request()

The CMAPI_USSD_Request() function is used to build up a USSD request to the network.

	Prototype

	dword CMAPI_USSD_Request (dword deviceID, dword actionstatus, UTF8* USSDData, dword* pUSSDStatus, UTF8* pResponseBufr, dword* responseBufrSize)  



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	actionstatus
	Input
	To indicate if it is a new action or a continuing action:
· 0x00000000: New request
· 0x00000001: Continue Request (following the fact that the Application has received a previous USSD status with Action Required and that this action has been done)

	USSDData
	Input
	The USSD content

	pUSSDStatus
	Output
	The status of the USSD request:
· 0x00000000: Done

· 0x00000001: Action Required

· 0x00000002: Cancelled

· 0x00000003: Other client responded

· 0x00000004: Network Timeout 
· 0x00000005: Operation not supported

	pResponseBufr
	Output
	Return text answer from the Network provider. Set to 0 if no dedicated answer

	pResponseBufrsize
	Output
	Size of the answer


	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. 

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.


CMAPI_USSD_Release()

The CMAPI_USSD_Release() function is used to release the USSD session, if success, the USSD operation will end, without waiting for the release event report from the network.

	Prototype

	dword CMAPI_USSD_Release (dword deviceID, dword actionstatus, dword* pUSSDStatus) 



	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	actionstatus
	Input
	To indicate if it is a new action or a continuing action:

· 0x00000000: New request
· 0x00000001: Continue Request (following the fact that the Application has received a previous USSD status with Action Required and that this action has been done)

	pUSSDStatus
	Output
	The status of the USSD request:
· 0x00000000: Done

· 0x00000001: Action Required

· 0x00000002: Cancelled

· 0x00000003: Other client responded

· 0x00000004: Network Timeout
· 0x00000005: Operation not supported


	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. 

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.
































































































































































































































NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2013 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 7 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

