Doc# OMA-CD-OpenCMAPI-2013-0155-CR_CMAPI_WebSocket-JSONRPC.doc[image: image1.jpg]
Change Request

Doc# OMA-CD-OpenCMAPI-2013-0155-CR_CMAPI_WebSocket-JSONRPC.doc
Change Request

Change Request

	Title:
	WebSocket and JSON-RPC for Web Binding
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD OpenCMAPI SWG

	Doc to Change:
	OMA-TS-OpenCMAPI_Web-V1_1-20130904-D

	Submission Date:
	15 Nov 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Bin Hu and Bryan Sullivan, AT&T

	Replaces:
	n/a

1 Reason for Change

Group decided in Bangkok to use WebSocket and JSON-RPC technologies for Web Binding of CMAPI. Contribution 0130R01 was proposed and discussed during conference calls on Nov 6th and Nov 13th. Group decided to move forward in TS based on 0130R01 proposal.
This CR proposes the changes in TS based on contribution 0130R01.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that the group review, discuss and accept this change.
6 Detailed Change Proposal

Change 1: Add normative reference to WebSocket and JSON-RPC 2.0 in Section 2.1
2.1 Normative References
	[Guidelines_RESTful_NetAPIs]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs-20130702-A, URL:http://www.openmobilealliance.org/

	[JSON]
	Java Script Object Notation, URL:http://www.json.org/

	[JSON-RPC]
	“JSON RPC (Remote Procedure Call) Specification 2.0”, URL: http://www.jsonrpc.org/specification

	[OpenCMAPI_TS]
	“Open Connection Manager API”, Open Mobile Alliance™, OMA-TS-OpenCMAPI-V1_1, URL: http://www.openmobilealliance.org/

	[OpenCMAPI-AD]
	“Open Connection Manager API Architecture”, Open Mobile Alliance™, OMA-AD-OpenCMAPI-V1_1, URL:http://www.openmobilealliance.org/

	[OpenCMAPI-RD]

	“Open CM API Requirements”, Open Mobile Alliance™, OMA-RD-OpenCMAPI-V1_1,
URL:http://www.openmobilealliance.org/

	[REST_DeviceAPI_Common]
	“Common definitions for RESTful Device APIs”, Open Mobile Alliance™, OMA-TS-REST_DeviceAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL:http://www.openmobilealliance.org/

	[REST_SUP_OPENCMAPI]
	“XML schema for the RESTful Device API for Connection Manager APIs”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_opencmapi-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC6455]
	“The Web Socket Protocol”, I. Fette and A. Melnikov, December 2011, URL: http://tools.ietf.org/html/rfc6455

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[WEBSOCKET]
	“The Web Socket API”, World Wide Web Consortium, URL: http://dev.w3.org/html5/websockets/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

	
	

	
	

	
	

Change 2: Change to Chapter 4 Introduction
4. Introduction
The Technical Specification of the Web API for Open Connection Management defines WebSocket API and JSON-RPC bindings for the [OpenCMAPI_TS] specification. It explains how to translate CMAPI functions into the WebIDL, how the JavaScript Library implements the WebSocket API Binding using the methods and event handlers of the Web Socket API, and the details of the JSON-RPC data structure of request and return messages as the Application Data within the underlying Web Socket Protocol
Change 3: Change to Chapter 5
5. WebSocket API and JSON-RPC Bindings for CMAPI-3
5.1 Introduction

CMAPI-3 is a Web API implementation of the OpenCMAPI enabler used to give Web-based applications access to CMAPI using the W3C Web Socket API [WEBSOCKET]. WebSocket provides web-based applications with a full-duplex communication channel over a persistent connection. It enables a stream of messages, which is a perfect fit for the message exchange of OpenCMAPI. It implements CMAPI functionality using extended JSON-RPC [JSON-RPC] data object as the Application Data within the underlying Web Socket Protocol [RFC6455]. JSON-RPC is a stateless, light-weight remote procedure call based on JSON data format [RFC4627].

This section explains how to translate CMAPI functions into the WebIDL, how the JavaScript Library implements the WebSocket API Binding using the methods and event handlers of the Web Socket API, and details of the JSON-RPC data structure of request and return messages as the Application Data within the underlying Web Socket Protocol.

5.2 WebSocket API Binding

The nature of modern web-based applications is asynchrony. The “WebSocket” interface designed in W3C Web Socket API enables the asynchrony of a web-based application over a full-duplex communication channel. Once a “WebSocket” connection object is established with the application server:
· sending a message in a web-based application: message from a web-based application can be sent to the application server using the “send(data)” method, which is non-blocking and immediately returns to the web-based application
· receiving a message in a web-based application: a web-based application can use a “EventHandler onmessage” event handler to receive and handle messages from the application server
5.2.1 CMAPI-1 Binding
CMAPI-1 defines normal function calls, which is normally synchronous in native API. The native application makes a function call and waits until the function finishes the communication with the application server and returns the result.
However, in WebSocket API Binding, because of the asynchrony nature of WebSocket interface and the asynchronous way for a web-based application to handle sending a message and receiving a message, CMAPI-1 functions are all modelled as asynchronous function calls. It means that all function calls are effectively the same as “_Async()” calls in semantics. The binding details are as follows:
· All CMAPI-1 function signatures are defined in WebIDL in Section 5.5;
· Editor Note: add cross reference of WebIDL once it is finished
· An extra parameter “ResultCallback cb” is added to every function signature so that the web-based application can specify a callback function “cb” to receive and handle the return message of the function call from the application server
· “ResultCallback” interface is defined in WebIDL for the callback function “cb” of an asynchronous function call to receive and handle the return message formatted as a JSON-RPC data object “CmapiResponse” defined in Section 5.3.2 and WebIDL as well.
· When a CMAPI-1 function call is invoked by a web-based application, the JavaScript Library that implements the WebSocket API Binding SHALL:

· Assign a globally unique transaction “id” for this CMAPI-1 function call (see Section 5.3.1)
· Construct the JSON-RPC request object, whose format is defined in Section 5.3.1, based on the transaction “id”, the method and parameters of this CMAPI-1 function call.
· Set up the transaction “id” and callback function “cb” with the event handler of “onmessage” of the “WebSocket” object so that the corresponding “CmapiResponse” data object can be routed to this callback function “cb” according to matching the transaction “id” appropriately (see Section 5.3.1 and 5.3.2).
· Send the request message of this CMAPI-1 function call to the application server using “send(data)” method of the “WebSocket” object
· Immediately return to the web-based application without blocking on waiting for the return message from the application server, which will be received and handled asynchronously.
· When a return message from the application server is received by the “WebSocket” object of the JavaScript Library that implements the WebSocket API Binding, the event handler of “onmessage” of the “WebSocket” object SHALL be invoked to:
· Construct the “CmapiResponse” JSON-RPC object according to the return message (see Section 5.3.2)
· Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior request messages
· If there is a match of transaction “id”, invoke the corresponding callback function “cb” and pass “CmapiResponse” as its parameter
· If there is no match, handle it in the way defined in Section 5.2.2.
· It should be noted that there may be more than one return messages of a CMAPI-1 function call sequentially sent from the application server. Those return messages are in sequence, and may indicate different stages of serving the CMAPI-1 function call in the application server. For example, the stages of a function call request may include “received”, “processing”, “completed” etc in the application server, Those multiple return messages SHALL have the same transaction “id” as that of the original CMAPI-1 function call.
5.2.2 CMAPI-2 Binding

CMAPI-2 defines Server-initiated Callback Functions, which is sent to the client device in the same way as delivering return messages of CMAPI-1 function calls through the “WebSocket” object. In addition, there are two application-initiated function calls to register and unregister Server-initiated Callback Functions:

· When a web-based application registers a Server-initiated Callback Function, the JavaScript Library that implements the WebSocket API Binding SHALL handle this function call in the same way as that of CMAPI-1 function calls.
· In addition, the JavaScript Library SHALL set up the “callbackId” and the callback function “cb” with the event handler of “onmessage” of the “WebSocket” object so that the corresponding “CmapiResponse” data object can be routed to this callback function “cb” according to matching the “callbackId” appropriately (see Section 5.3.2)
· When a web-based application unregisters a Server-initiated Callback Function, the JavaScript Library that implements the WebSocket API Binding SHALL handle this function call in the same way as that of CMAPI-1 function calls.

· In addition, the JavaScript library SHALL remove the prior setup of the “callbackId” and the callback function “cb” with the event handler of “onmessage” of the “WebSocket” object.

When a “WebSocket” object of the JavaScript Library that implements the WebSocket API Binding receives a message from the application server, the event handler of “onmessage” of the “WebSocket” object SHALL be invoked to:
· Construct the “CmapiResponse” JSON-RPC object according to the message (see Section 5.3.2)

· Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior CMAPI-1 request messages

· If there is a match of transaction “id”, handle it in the way defined in Section 5.2.1.
· If there is no match:

· If there is a “callbackId” member in “CmapiResponse” with a valid value, match it with the list of registered Server-Initiated “callbackIds”
· If the “callbackId’ is in the list of registered Server-Initiated “callbackIds”, invoke the corresponding callback function “cb” and pass “CmapiResponse” as its parameter
· If the “callbackId’ is not in the list of registered Server-Initiated “callbackIds”, call general error handling functions
· If there is not a “callbackId” member in “CmapiResponse”, or if the “callbackId” member is empty or invalid value, call general error handling functions
· It should be noted that the same type of Server-initiated Callback Function may be initiated and sent from the server more than once for the changed situation of the same characteristics. Those multiple messages of the same “callbackId” SHALL NOT have the same transaction “id” in order to distinguish those changes.
5.2.3 Error Handling
The error handling mechanism SHALL be able to handle those generic errors defined in [JSON-RPC] and CMAPI-specific errors defined in [OpenCMAPI_TS].
In addition, the following general error conditions SHALL be handled according to operators’ policy.
· In the message from application server, the transaction “id” doesn’t match any transaction “id” of prior CMAPI-1 request messages, and the “callbackId” is either absent or empty or invalid value
· In the message from application server, the “callbackId” is not in the list of registered CMAPI-2 Server-Initiated “callbackIds”
Editor note: are there any other general error conditions subject to operators’ policy?
5.2.4 JavaScript Library of Web Socket API Binding

A JavaScript Library implements the Web Socket API Binding and SHALL:
· Establishing one and only one persistent “WebSocket” object for a web-based application
· Keep the Web Socket connection open unless error happens
· Maintain the list of registered CMAPI-2 Server-initiated “callbackIds” and corresponding callback function “cbs”

· Maintain the list of transaction “ids” and corresponding callback functions “cbs” for outstanding CMAPI-1 function calls
· The validity period of an outstanding CMAPI-1 function call SHALL be defined according to operator’s policy in order to handle the possible situation of multiple sequential return messages of the same CMAPI-1 function call. For example, 30 minutes. If it is expired, the transaction “id” and corresponding callback function “cb” SHALL be removed from the list.
· Handle errors according to Section 5.2.3.
5.3 JSON-RPC Data Structure

The request message and return message of WebSocket API Binding are based on JSON-RPC [JSON-RPC] with one extension of “callbackId” member in the return message structure (see Section 5.3.2).
5.3.1 Request Message Originated from Client Device
The request message conforms to [JSON-RPC] as follows:
· “jsonrpc”
· It SHALL be the exact value of “2.0”.
· “method”
· It SHALL be the name of a function call, e.g. “CMAPI_Network_GetRFInfo”
· “id”
· It SHALL be the globally unique identifier to distinguish each CMAPI-1 function call originated by a web-based application and each CMAPI-2 Server-initiated Callback Function
· The CMAPI-1 function call and corresponding return messages SHALL have the same “id” value
· “params”
· It SHALL be a structure of specific parameters of a CMAPI-1 function call
· The set of parameters is unique for each CMAPI-1 function call
5.3.2 Return Message and Server-Initiated Callback Message
The return message conforms to [JSON-RPC], and Server-initiated Callback Message adds an extended “callbackId” to the structure. The details are as follows:
· “jsonrpc”
· It SHALL be the exact value of “2.0”.
· “id”
· If the message is a return message of a prior CMAPI-1 function call, it SHALL be the same value of “id” member in the prior request message of corresponding function call.
· Multiple sequential return messages are possible for the same prior CMAPI-1 function call. Their “id” SHALL be the same value.
· If the message is a CMAPI-2 Server-initiated Callback Message, it SHALL be a globally unique identifier to distinguish each CMAPI-2 Server-initiated Callback Function as well as each CMAPI-1 function call originated by a web-based application.
· “error”
· It SHALL be a { “code”, “message”, “data” } structure according to [JSON-RPC] indicating:
· Either the execution status of the corresponding CMAPI-1 function call
· Or the execution status of a CMAPI-2 Server-initiated Callback Function
· “result”
· If the message is a return message of a prior CMAPI-1 function call, it SHALL be a structure of the information with regard to execution outcome resulting from the function call
· If the message is a CMAPI-2 Server-initiated Callback Message, it SHALL be the a structure of the information that the application server intends to inform the web-based application
· The structure of result is unique for each CMAPI-1 function call and each CMAPI-2 Server-initiated Callback Function
· “callbackId”
· It SHALL be present if and only if it is a CMAPI-2 Server-initiated Callback Message, and indicate the type of Server-initiated Callback Function
· This is an extended member for OpenCMAPI specific purpose
5.3.3 Binary Data Handling
Occasionally, binary data may be passed as a parameter in a request message, or returned in a return message after the function call is executed, or part of a Server-initiated Callback Message. BASE64 encoding SHALL be applied to binary data before it is constructed into the data structure of a request message, or a return message, or a Server-initiated Callback Message.
5.3.4 Example – CMAPI-1 Request Message
An example of a request message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:

{

 "jsonrpc": "2.0",

 "method": "CMAPI_Network_GetRFInfo",

 "id": "111",

 "params": {

 "deviceId": "1"

 }

}
5.3.5 Example – CMAPI-1 Return Message

An example of a return message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:

{

 "jsonrpc": "2.0",

 "id": "111",

 "result": {

 "RFInfoListElements": 1,

 "RFInfoList": [

 {

 "Radio": "WCDMA_UMTS",

 "maxDataRateUL": 1024,

 "maxDataRateDL": 1024,

 "frequencyBand": "1900 PCS",

 "channelNumberUL": "333,444",

 "channelNumberDL": "333,444"

 }

]

 }

}

5.3.6 Example – CMAPI-2 Server-initiated Callback Message

An example of a CMAPI-2 Server-initiated Callback Message “CMAPI_Callback_DeviceChanged()” is as follows:

{

 "jsonrpc": "2.0",

 "id": "511",

 "callbackId": "CMAPI_Callback_DeviceChanged",

 "result": {

 "deviceId": 1,

 "deviceState": 3,

 "radio": 64,

 "deviceCapability": 1,

 "connectionType": 32,

 "deviceType": 5,

 "description": "This is a wireless router",

 "uniqueIdentifier": "1234567890"

 }

}
5.4 JSON-RPC Schema Definition

Editor Note: This JSON-RPC Schema should be defined based on the final stable version of OpenCMAPI TS v1.1 after Las Vegas meeting.
5.5 Web IDL

Editor Note: This Web IDL (contribution 0137) should be synchronized with the final stable version of OpenCMAPI TS v1.1 after Las Vegas meeting.

·
·
·
·
·

	
	

	
	

	
	

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·

Change 4: etc

None.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 16)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 16)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

