Doc# OMA-CD-OpenCMAPI-2013-0158-CR_encore_bug_fixes_v1_0[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-CD-OpenCMAPI-2013-0158-CR_encore_bug_fixes_v1_0
Change Request

Change Request

	Title:
	CR to provide more new bug fixes in 1.0
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD OpenCMAPI

	Doc to Change:
	OMA-TS-OpenCMAPI-V1_0-20131111-D

	Submission Date:
	30th Nov 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Thierry Berisot, Deutsche Telekom, thierry.berisot@telekom.de

	Replaces:
	n/a

1 Reason for Change

This CR proposes to address additional new bug Fixes in the TS for OpenCMAPI 1.0.
The changes proposed are the following:

1. clarify optional value for parameters depending on their size in section 5.1
2. clarify what is a function pointer – resolution of Action A21

3. modify PLMNICon as optional

4. add optional for some parameters in secondarycontexttype – resolution of Action A19

5. add optional for some parameters in Cellularprofiletype – action A19

6. Clarify segments versus package in SMS records

7. Modifications in GetRecordCount/ GetUnreadRecordCount to take into account segments
8. Modify callbackSMS & callbackSMS_message to take into account segments

9. Modify CallbackUSSD as data is not a binary but UTF8*

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The CD OpenCMAPI SWG should review and agree this CR.
6 Detailed Change Proposal

Change 1: Modify text of Optional function – section 5.1
Optional Function(s)
If an API function is mentioned as Optional and not supported by the implementation of the OpenCMAPI, it shall at least support the call of the function and the dedicated generic return value.

If a parameter is mentioned as optional into a function or optional within a structure, this parameter SHALL be implemented and supported by the OpenCMAPI. It will be up to the application to provide this parameter when calling the function.

The application indicates to the OpenCMAPI that a parameter is not to be used (because optional),

· By passing a null value for the pointer parameters or structure.
· By passing a 0xFF value for the non pointer byte parameters

· By passing a 0xFFFF value for the non pointer word parameters

· By passing a 0xFFFFFFFF value for the non pointer dword parameters
· By passing a 0xFFFFFFFFFFFFFFFF value for the non pointer qword parameters

· By passing a 0x FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF value for the non pointer dqword parameters
·
Change 2: Add text in design Convention – section 6.1
Design convention

Throughout the document, the following design convention and terms will be used to denote absolute sizes of memory:

· All memory is caller allocated. The API will never allocate memory and return it through a function call which needs to be cleaned up

· Data returned through callbacks is valid only for the duration of the call and never needs to be cleaned up by the API user.

· boolean type is 4 bytes. Zero means false, Any non-zero value means true.

· byte will be used to denote 8 bit data values,
· word will be used to denote 2 byte values,
· dword will be used to denote 2 word values,
· qword will be used to denote 2 dword values,

· byte parameter [256] will indicate a 256 bytes long parameters,
· UTF8 will be used to represent a buffer with UTF8 data and null terminating symbol. When the buffer is referenced in a structure or function it shall be referenced by a pointer and will appear as UTF8*.
· The API is responsible to convert all data strings received from the device into UTF8.
· For every parameter designated as “input” only, const should be applied.
· a function pointer (or function*) is as a variable containing the address of a function.
· All structure definitions within this specification will be finite in size.This will serve to allow the caller to allocate a single block of memory for each passed in parameter. Any variable length data (like UTF8 strings) will reside after the finite structure(s) in memory and a pointer will be used to indicate where UTF8 strings and other finite structures reside. Either the caller or callee will layout the structures in this memory, depending on if the values are input or output. The caller will layout the memory where there is some data input and the callee will be responsible to layout (or re-layout) the memory when the data is output (or input/output). In either output case, the callee will signal insufficient size with a return code and indicate the necessary minimum size with the corresponding size parameter.

· Structure fields should be aligned on a byte boundary (i.e. # pragma pack (push 1)).

· Little endian shall be used by the application.
Change 3: Modify PLMMNIcon
PLMNIconType

	Definition PLMNIconType

	This prototype defines a structure which describes the information related to the PLMN icon

	Field Name
	Type
	Description

	PLMNIconQualifier
	byte
	See [3GPP TS 31.102] for details.

- '01' = icon is self-explanatory, i.e. if displayed, it replaces the corresponding name in text format.

- '02' = icon is not self-explanatory, i.e. if displayed, it shall be displayed together with the corresponding name in text format.

	PLMNIconName
	UTF8*
	· Name of the file containing the Icon information when the Icon Link is provided by the SmartCard under an URI (see [3GPP TS 31.102]) (e.g. PLMNIconName = “spng.jpg”)

or

· “IMG: ” concatenated with the “Image Instance Descriptor value” when the Icon information are described through an Image Instance Descriptor of the EFIMG file and the corresponding image storage data file inside the Smart Card (see [3GPP TS 31.102]).

	PLMNIconFileContent
	byte*
	Content of the file containing the Icon information.

Null pointer if no Icon is available

	PLMNIconFileContentsize
	dword
	Buffer size of PLMNIconFileContent

7.14.1 NetworkInfoType

	Definition NetworkInfoType

	This prototype defines a structure which describes the information related to the network / PLMN

	Field Name
	Type
	Description

	systemID
	dword
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	PLMNName
	UTF8*
	The name of the PLMN according to 3GPP and/or 3GPP2 name resolution [3GPP TS 22.101].

	PLMNID
	UTF8*
	The PLMNID corresponding to the PLMN Name. The PLMNID is coded as a decimal value on the form "MCCMNC".

	PLMNIcon
	PLMNIconType*
	Optional - The PLMN Icon.

	NetworkStatus
	dword
	Specifies the status of the network:
· 0x00000000:Registered

· 0x00000001: Available

· 0x00000002: Forbidden

	PreferredStatus
	dword
	Specifies if the Network is in the preferred PLMN list or not:

· 0x00000001: Network is in the preferred PLMN list

· 0x00000002: Network is NOT in the preferred PLMN list

	radio
	RadioType*
	See RadioType definition

Change 4: Modify some parameters to optional in SecondaryContextType – 6.2.9
7.14.2 SecondaryContextType

	Definition SecondaryContextType

	This prototype defines a structure which describes the QoS, the Data and Header compression and the TFT Packet Filter parameters for each Secondary Context.

	Field Name
	Type
	Description

	ContextStatus
	byte
	The status of the Secondary Context

· 0x00 : not activated

· 0x01 : activation/creation in progress

· 0x02 : activated/created

	RequestedQoS
	QoSStructure*
	Optional - Requested QoS for this Secondary Context.

	MinimumQos
	QoSStructure*
	Optional - Minimum acceptable QoS for this Secondary Context

	TFT
	TrafficFlowTemplateType*
	Traffic Flow Template indicating the parameters values to be used for Packet Filtering in this Secondary Context.

	DataCompression
	byte
	A numeric parameter that controls PDP data compression for Primary Context (applicable for SNDCP only) (refer to [3GPP TS 44.065]). Possible values defined in [3GPP TS 27.007].

	HeaderCompression
	byte
	A numeric parameter that controls PDP header compression (refer to [3GPP TS 44.065] and [3GPP TS 25.323]). Possible values defined in [3GPP TS 27.007].

Change 5: Modify optional parameters of CellularProfileType – 6.2.10
CellularProfileType
	Definition CellularProfileType

	This prototype defines a structure which describes a Cellular Profile Type

	Field Name
	Type
	Description

	CellularProfileName
	UTF8*
	The name of the Cellular Profile

	UserName
	UTF8*
	The user name associated to the APN

	Password
	UTF8*
	The password associated with the APN

	PDP Type
	dword
	The type of PDP (Packet Data Protocol)::

· 0x00000001: IP

· 0x00000002: PPP - PS data over GPRS or UMTS (PS connection with PDP type PPP)

	APN
	UTF8*
	The APN used for this connection

	Address
	IPAddress
	The IP address

	PrimaryDNS
	IPAddress
	The primary DNS

	SecondaryDNS
	IPAddress
	The secondary DNS

	AuthType
	dword
	The Authentication Protocol type:

· 0x00000000: CHAP only
· 0x00000001: PAP only
· 0x00000002: Automatic

	UseDhcpForIP
	boolean
	Use DHCP for IP address. If this is true, then the IP field is unused.

	UseDhcpForDNS
	boolean
	Use DHCP for DNS address. If this is true, then the PrimaryDNS and SecondaryDNS fields are unused.

	TimeoutSeconds
	dword
	The time out in seconds

	WINSPreferred
	IPAddress*
	Optional - The preferred WINS (Windows Internet Naming Service)

	WINSAlternated
	IPAddress*
	Optional - The alternated WINS (Windows Internet Naming Service)

	ServingPLMNs
	UTF8*
	Optional - List of possible serving PLMNs (MCCMNC numerical values separated by a coma and a space ”, ”) on which the profile can be used (i.e; MCCMNCvalue1, MCCMNCvalue2,, MCCMNCvaluen).

If the list is empty then the CellularProfile is valid for any PLMN.

The check is done at the API level.

	PCRequestedQoS
	QoSStructure*
	Optional - Requested QoS for Primary Context

	PCMinimumQos
	QoSStructure*
	Optional - Minimum acceptable QoS for Primary Context

	PCTFT
	TrafficFlowTemplateType*
	Optional - Traffic Flow Template indicating the parameters values to be used for Packet Filtering in the Primary Context.

	PCDataCompression
	byte
	Optional - A numeric parameter that controls PDP data compression for Primary Context (applicable for SNDCP only) (refer to [3GPP TS 44.065]). Possible values defined in [3GPP TS 27.007].

	PCHeaderCompression
	byte
	Optional - A numeric parameter that controls PDP header compression (refer to [3GPP TS 44.065] and [3GPP TS 25.323]). Possible values defined in [3GPP TS 27.007].

	SecondaryContext1
	SecondaryContextType*
	Optional - 1st Secondary Context (if a null pointer value then no 1st SecondaryContext)

	SecondaryContext2
	SecondaryContextType*
	Optional - 2nd Secondary Context (if a null pointer value then no 2nd SecondaryContext)

	SecondaryContext3
	SecondaryContextType*
	Optional - 3rd Secondary Context (if a null pointer value then no 3rd SecondaryContext)

	SecondaryContext4
	SecondaryContextType*
	Optional - 4th Secondary Context (if a null pointer value then no 4th SecondaryContext)

	SecondaryContext5
	SecondaryContextType*
	Optional - 5th Secondary Context (if a null pointer value then no 5th SecondaryContext)

	SecondaryContext6
	SecondaryContextType*
	Optional - 6th Secondary Context (if a null pointer value then no 6th SecondaryContext)

	SecondaryContext7
	SecondaryContextType*
	Optional - 7th Secondary Context (if a null pointer value then no 7th SecondaryContext)

	SecondaryContext8
	SecondaryContextType*
	Optional - 8th Secondary Context (if a null pointer value then no 8th SecondaryContext)

	SecondaryContext9
	SecondaryContextType*
	Optional - 9th Secondary Context (if a null pointer value then no 9th SecondaryContext)

	SecondaryContext10
	SecondaryContextType*
	Optional - 10th Secondary Context (if a null pointer value then no 10th SecondaryContext)

	SecondaryContext11
	SecondaryContextType*
	Optional - 11th Secondary Context (if a null pointer value then no 11th SecondaryContext)

	SecondaryContext12
	SecondaryContextType*
	Optional - 12th Secondary Context (if a null pointer value then no 12ve SecondaryContext)

	SecondaryContext13
	SecondaryContextType*
	Optional - 13th Secondary Context (if a null pointer value then no 13th SecondaryContext)

	SecondaryContext14
	SecondaryContextType*
	Optional - 14th Secondary Context (if a null pointer value then no 14th SecondaryContext)

	SecondaryContext15
	SecondaryContextType*
	Optional - 15th Secondary Context (if a null pointer value then no 15th SecondaryContext)

	SecondaryContext16
	SecondaryContextType*
	Optional - 16th Secondary Context (if a null pointer value then no 16th SecondaryContext)

Change 6: Modify SMSRecord to clarify segments – 6.2.17
SMSRecord
	Definition SMSRecord

	This prototype defines a structure which describes a SMS record.
Note: One SMS Record equals one or more SMS Segments or packages The following words have the same meaning: 'message segment', 'segment', 'SMS segment', 'package' and 'SMS package'

	Field Name
	Type
	Description

	msgID
	dword
	The message ID

Note: This ID shall be able to uniquely identify each SMS, including concatenated one. The enabler SHALL combine the concatenated message segments or packages into one SMSRecord associated with only one unique msgID. This parameter has a range 0 to 0xFFFFFFFF, modulus 0x100000000. Value 0 is reserved for special usage here, i.e. sending SMS. Value 0 SHALL NOT be used to identify an SMS record unless it is for sending purpose. See details in CMAPI_SMS_Send().

	msgStatus
	dword
	A flag to indicate the status of the message

· 0x00000000: read

· 0x00000001: unread

· 0x00000002: sent

· 0x00000003: unsent

· 0x00000004: draft

· 0xFFFFFFFF: unknown

Other values, other than the above six types, could be used for SMS stored in terminal device like PC. They are reserved and implementation dependent by the connection manager.

	result
	dword
	The status of message report.

· 0x00000000: message delivery successful

· 0x00000001: message delivery failed

· 0x00000002: message delivery pending, SC is making more transfer attempts

· 0xFFFFFFFF: unknown

	msgType
	dword
	The type of message:

· 0x00000000: normal message

· 0x00000001: message report

· 0x00000002: MMS alert

· 0x00000003: voice mail

· 0xFFFFFFFF: unknown

	SMSClass
	dword
	See [3GPP TS 23.040] for SMS classes definition

The class of the SMS message:

· 0x00000000: Class 0 Message – not stored

· 0x00000001: Class 1 Message - Indicates that this message is to be stored in the local device memory or the SIM/R-UIM/NAA on UICC (depending on memory availability).

· 0x00000002: Class 2 Message – used for SIM/R-UIM/NAA on UICC only. This class SHALL only be used if the SMS content was not directly transferred to the "SIM/R-UIM/NAA on UICC” (see ENVELOPE (SMS-PP DOWNLOAD) in [3GPP TS 31.111] or [3GPP2 C.S0305])
· 0x00000003: Class 3 Message – Indicates that this message will be forwarded from the receiving entity to an external device.

· 0x00000004: no message class

· 0xFFFFFFFF: unknown

	totalPack
	dword
	The total number of packages or segments

	currentPack
	dword
	The number of received packages or segments.

	msgLocation
	dword
	To indicate where the SMS is stored:

· 0x00000000: in the SIM/R-UIM/NAA on UICC;

· 0x00000001: in the local device;

· 0x00000002: in the terminal device, like PC

· 0x00000003: not stored. e.g. discarded voice mail messages or display direct messages

	time
	UTF8*
	The time (local time) when the message was received in the inbox or sent in the sentbox/outbox, or saved in the draftbox.

The time format should follow : YYYY-MM-DD HH:MM:SS

This adheres to ISO 8601

	pPhoneNumber
	UTF8*
	The targeted address(es). Each address shall include its TON (Type Of Number) and NPI (Numbering Plan Identification) parameters (see [3GPP TS 24.008]) coded in binary format (3 binary digits for TON, 4 binary digits for NPI) and separated by a space (i.e.: “<TON> <NPI> <address>”), more than one address could be included, each of them is separated by ',', and "\0\0" indicates end of the addresses, dynamic memory allocation.

Informative examples:

1. Numeric representation: “001 0001 8610010\0\0” to represent “+8610010”

2. Alphanumeric representation: “101 0000 Telekom\0\0” to represent “Telekom”

3. Group addresses: “001 0001 8610010, 101 0000 Telekom\0\0” to represent two addresses, i.e. +8610010 and Telekom

	pMsgContent
	UTF8*
	[Optional] The plain text content of the message. The enabler SHALL convert any text message, regardless of the data coding scheme, into UTF8.

Note: This field SHALL be available only when msgType is either normal message or message report. The field value SHALL be set to NULL if not available

Change 7: Modify text for functions 7.14.12 & 7.14.13.
CMAPI_SMS_GetRecordCount()

The CMAPI_SMS_GetRecordCount() function is used to retrieve the number of SMS segments. (Note: one SMS Record equals one or more segments – To obtain the number of SMSRecords, use the function CMAPI_SMS_GetList()).
	Prototype

	dword CMAPI_SMS_GetRecordCount (dword deviceID, dword systemID, dword iFrom, dword* plResult)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	iFrom
	Input
	To indicate where the SMS record is

· 0x00000000: from SIM/R-UIM/NAA on UICC
· 0x00000001: from local device

· 0x00000002: from the terminal device, like PC
· Any combination of the above

	plResult
	Output
	The number of SMS segments.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000107
	System not supported by the device

	0X00000130
	The device is not in a power state which allows this operation.

	0X00005007
	The ifrom value is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

CMAPI_SMS_GetUnreadRecordCount()

The CMAPI_SMS_GetUnreadRecordCount() function is used to retrieve the number of unread SMS records.
	Prototype

	dword CMAPI_SMS_GetUnreadRecordCount (dword deviceID, dword systemID, dword iFrom, dword* pIResult)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	iFrom
	Input
	To indicate where the SMS record is

· 0x00000000: from SIM/R-UIM/NAA on UICC
· 0x00000001: from local device

· 0x00000002: from the terminal device, like PC

· Any combination of the above

	plResult
	Output
	The number of the unread SMS record

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000107
	System not supported by the device

	0X00000130
	The device is not in a power state which allows this operation.

	0X00005007
	The ifrom value is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 8: Modify callbackSMS – 8.3.17 & 8.3.18
CMAPI_Callback_SMS()

The CMAPI_Callback_SMS() function is used to indicate that a new SMS message has been received and the number of segments in the mailbox.
Note: The connection manager MAY select either CMAPI_Callback_SMS() or CMAPI_Callback_SMS_Message() to retrieve the notification of a new SMS message. It is recommended not to use both together to prevent the Connection Manager Application from being alerted twice for one notification.
	Prototype

	dword CMAPI_Callback_SMS (dword deviceID, dword systemID, dword msgID, dword mailbox, dword totalSegments, dword newSegments)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	msgID
	Input
	The message ID

	mailbox
	Input
	Indication of the mailbox
· 0x00000000: in the SIM/R-UIM/NAA on UICC;

· 0x00000001: in the local device;

· 0x00000002: in the terminal device, like PC 0xFFFFFFFF: None, for display directly message only.

	totalSegments
	Input
	The total number of segments in the mailbox. The number corresponds to the value returned by the function CMAPI_SMS_GetRecordCount()

	newSegments
	Input
	The current number of new segments in the mailbox

CMAPI_Callback_SMS_Message()

The CMAPI_Callback_SMS_Message() function is used to provide to application the new received message while not only a notice that a new message is received.
Note: For concatenated SMS, the callback will be invoked every time a segment or package arrives. For example, if there are two segments or packages for one SMS, then the callback will be invoked twice. The Connection Manager Application could determine the completeness of retrieval by checking whether the totalPack and currentPack are the same or not.
	Prototype

	dword CMAPI_Callback_SMS_Message (dword deviceID, dword systemID, SMSRecord* pRecord)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	systemID
	Input
	The radio system either 3GPP or 3GPP2 to which the function apply when the device is a multi-mode device.

· 0x00000000: 3GPP

· 0x00000001: 3GPP2

	pRecord
	Input
	The SMS record

Change 9: Modify callback USSD – 8.3.20
CMAPI_Callback_USSD()

The CMAPI_Callback_USSD() function is used to communicate a USSD message.
	Prototype

	dword CMAPI_Callback_USSD (dword deviceID, dword status, UTF8* data)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	status
	Input
	The status

· 0x00000000: Done

· 0x00000001: Action Required

· 0x00000002: Cancelled

· 0x00000003: Other client responded

· 0x00000004: Network Timeout

	data
	Input
	The contents of the message

CMAPI_Callback_PUSHReceived()

The CMAPI_Callback_PUSHReceived() function is used to notify an application when a new PUSH message has been received.
	Prototype

	dword CMAPI_Callback_PUSHReceived (dword deviceID, UTF8* contentType, UTF8* applicationID, byte* data, dword length)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The device concerned

	contentType
	Input
	The content type carried in the PUSH message

	applicationID
	Input
	The application id carried in the PUSH message (application ID in this context is the ID of the PUSH application)

	data
	Input
	The contents of the PUSH message in binary form.

	length
	Input
	The length of the data in bytes.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 14)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 10 (of 14)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

