Doc# OMA-CD-OpenCMAPI-2013-0167-CR_CMAPI_WebBinding-WebSocket[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-CD-OpenCMAPI-2013-0167-CR_CMAPI_WebBinding-WebSocket
Change Request

Change Request

	Title:
	WebSocket API Binding
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD OpenCMAPI SWG

	Doc to Change:
	OMA-TS-OpenCMAPI_Web-V1_1-20130904-D

	Submission Date:
	17 Dec 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Bin Hu and Bryan Sullivan, AT&T

	Replaces:
	OMA-CD-OpenCMAPI-2013-0155-CR_CMAPI_WebSocket-JSONRPC

1 Reason for Change

This CR proposes the changes in Web Binding TS based on contribution 0155 and 0130R01, and the discussion in Las Vegas meeting. More specifically, this CR proposes WebSocket API Binding.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that the group review, discuss and accept this change.
6 Detailed Change Proposal

Change 1: New content to Chapter 5
5. WebSocket API Binding
5.1 Introduction

This chapter introduces a Web API binding of the OpenCMAPI enabler using the W3C WebSocket API [WEBSOCKET] in order to give Web-based applications access to CMAPI.
WebSocket provides web-based applications with a full-duplex communication channel over a persistent connection. It enables a stream of messages, which is a perfect fit for the message exchange of OpenCMAPI. It implements CMAPI functionality using extended JSON-RPC [JSON-RPC] data object as the Application Data within the underlying Web Socket Protocol [RFC6455]. JSON-RPC is a stateless, light-weight remote procedure call based on JSON data format [RFC4627].
5.2 Design Principle
The nature of modern web-based applications is asynchrony. The “WebSocket” interface designed in W3C Web Socket API enables the asynchrony of a web-based application over a full-duplex communication channel. Once a “WebSocket” connection object is established with the application server:
· sending a message in a web-based application: message from a web-based application can be sent to the application server using the “send(data)” method, which is non-blocking and immediately returns to the web-based application
· receiving a message in a web-based application: a web-based application can use a “EventHandler onmessage” event handler to receive and handle messages from the application server

5.3 Device Discovery

All devices implementing Web Binding of OpenCMAPI v1.1 SHALL register the name “cmapi.device” on its local network. Thus those devices SHALL be discovered by innate DNS resolution of http://cmapi.device.
5.4 CMAPI-1 Binding

CMAPI-1 defines normal function calls, which is normally synchronous in native API. The native application makes a function call and waits until the function finishes the communication with the application server and returns the result.
However, in WebSocket API Binding, because of the asynchrony nature of WebSocket interface and the asynchronous way for a web-based application to handle sending a message and receiving a message, CMAPI-1 functions are all modelled as asynchronous function calls. It means that all function calls are effectively the same as “_Async()” calls in semantics. The binding details are as follows:
· All CMAPI-1 function signatures are defined in WebIDL in Chapter 8;
· Editor Note: add cross reference of WebIDL once it is finished
· An extra parameter “ResultCallback cb” is added to every function signature so that the web-based application can specify a callback function “cb” to receive and handle the return message of the function call from the application server
· “ResultCallback” interface is defined in WebIDL for the callback function “cb” of an asynchronous function call to receive and handle the return message formatted as a JSON-RPC data object “CmapiResponse” defined in Section 6.2 and WebIDL as well.
· When a CMAPI-1 function call is invoked by a web-based application, the JavaScript Library that implements the WebSocket API Binding follows the steps in Table 1:
	Step 1
	Assign a globally unique transaction “id” for this CMAPI-1 function call (see Section 6.1)

	Step 2
	Construct the JSON-RPC request object, whose format is defined in Section 6.1, based on the transaction “id”, the method and parameters of this CMAPI-1 function call.

	Step 3
	Set up the transaction “id” and callback function “cb” with the event handler of “onmessage” of the “WebSocket” object so that the corresponding “CmapiResponse” data object can be routed to this callback function “cb” according to matching the transaction “id” appropriately (see Section 6.1 and 6.2)

	Step 4
	Send the request message of this CMAPI-1 function call to the application server using “send(data)” method of the “WebSocket” object

	Step 5
	Immediately return to the web-based application without blocking on waiting for the return message from the application server, which will be received and handled asynchronously.

Table 1: Steps of Handling a CMAPI-1 Function Call
· When a return message from the application server is received by the “WebSocket” object of the JavaScript Library that implements the WebSocket API Binding, the event handler of “onmessage” of the “WebSocket” object is invoked to:
	Step 1
	Construct the “CmapiResponse” JSON-RPC object according to the return message (see Section 6.2).

	Step 2
	Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior request messages.

	Step 3
	If there is a match of transaction “id”, invoke the corresponding callback function “cb” and pass “CmapiResponse” as its parameter.

	Step 4
	If there is no match, handle it in the way defined in Section 5.5.

Table 2: Steps of Handling a Return Message
· It should be noted that there may be more than one return messages of a CMAPI-1 function call sequentially sent from the application server. Those return messages are in sequence, and may indicate different stages of serving the CMAPI-1 function call in the application server. For example, the stages of a function call request may include “received”, “processing”, “completed” etc in the application server, Those multiple return messages SHALL have the same transaction “id” as that of the original CMAPI-1 function call.

5.5 CMAPI-2 Binding

CMAPI-2 defines Server-initiated Callback Functions, which is sent to the client device in the same way as delivering return messages of CMAPI-1 function calls through the “WebSocket” object. In addition, there are two application-initiated function calls to register and unregister Server-initiated Callback Functions:

· When a web-based application registers a Server-initiated Callback Function, the JavaScript Library that implements the WebSocket API Binding handles this function call in the same way as that of CMAPI-1 function calls. In addition, there is one more step to follow:

	Step 1
	The JavaScript Library sets up the “callbackId” and the callback function “cb” with the event handler of “onmessage” of the “WebSocket” object so that the corresponding “CmapiResponse” data object can be routed to this callback function “cb” according to matching the “callbackId” appropriately (see Section 6.2).

Table 3: Extra Step of Handling a Callback Registration
· When a web-based application unregisters a Server-initiated Callback Function, the JavaScript Library that implements the WebSocket API Binding SHALL handle this function call in the same way as that of CMAPI-1 function calls. . In addition, there is one more step to follow:

	Step 1
	JavaScript library SHALL remove the prior setup of the “callbackId” and the callback function “cb” with the event handler of “onmessage” of the “WebSocket” object.

Table 4: Extra Step of Handling a Callback Unregistration
When a “WebSocket” object of the JavaScript Library that implements the WebSocket API Binding receives a message from the application server, the event handler of “onmessage” of the “WebSocket” object is invoked to:
	Step 1
	Construct the “CmapiResponse” JSON-RPC object according to the message (see Section 6.2).

	Step 2
	Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior CMAPI-1 request messages.

	Step 3
	If there is a match of transaction “id”, handle it in the way defined in Section 5.4.

	Step 4
	If there is no match:
· If there is a “callbackId” member in “CmapiResponse” with a valid value, match it with the list of registered Server-Initiated “callbackIds”.

· If the “callbackId’ is in the list of registered Server-Initiated “callbackIds”, invoke the corresponding callback function “cb” and pass “CmapiResponse” as its parameter.

· If the “callbackId’ is not in the list of registered Server-Initiated “callbackIds”, call general error handling functions defined in Section 5.6.

· If there is not a “callbackId” member in “CmapiResponse”, or if the “callbackId” member is empty or invalid value, call general error handling functions defined in Section 5.6.

	Step 5
	It should be noted that the same type of Server-initiated Callback Function may be initiated and sent from the server more than once for the changed situation of the same characteristics. Those multiple messages of the same “callbackId” SHALL NOT have the same transaction “id” in order to distinguish those changes.

Table 5: Steps of Handling a Server-Initiated Callback
5.6 Error Handling

The error handling mechanism SHALL be able to handle those generic errors defined in [JSON-RPC] and CMAPI-specific errors defined in [OpenCMAPI_TS].
In addition, the following general error conditions will be handled according to operators’ policy.
· In the message from application server, the transaction “id” doesn’t match any transaction “id” of prior CMAPI-1 request messages, and the “callbackId” is either absent or empty or invalid value

· In the message from application server, the “callbackId” is not in the list of registered CMAPI-2 Server-Initiated “callbackIds”
Editor note: are there any other general error conditions subject to operators’ policy?
Change 2: Remove the original content of Section 5 and Section 6 from OMA-TS-OpenCMAPI_Web-V1_1-20130904-D

·
·
·
·
·

	
	

	
	

	
	

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·

Change 3: etc

None.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 12 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

