Doc# OMA-CD-OpenCMAPI-2013-0170-CR_Add_Error_codes[image: image1.jpg]
Change Request

Doc# OMA-CD-OpenCMAPI-2013-0170-CR_Add_Error_codes
Change Request

Change Request

	Title:
	CR to provide error codes for P2P & router management
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD OpenCMAPI

	Doc to Change:
	OMA-TS-OpenCMAPI-V1_1-20131212-D

	Submission Date:
	17th Dec 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Thierry Berisot, Deutsche Telekom, thierry.berisot@telekom.de

	Replaces:
	n/a

1 Reason for Change

This CR proposes to add error codes for P2P & router management section and to apply them to the relevant functions.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The CD OpenCMAPI SWG should review and agree this CR.
6 Detailed Change Proposal

Change 1: Add Error Codes in P2P section
7.20.1 CMAPI_P2P_GetP2PInfo()

The CMAPI_P2P_GetP2PInfo() function is used to detect which P2P direct connection technology(ies) is/are supported if any.

	Prototype

	dword CMAPI_P2P_GetP2PInfo(dword deviceID, dword* pP2PInfo)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pP2PInfo
	Output
	Pointer to get the P2P direct connection technology type in bitmap.

In the case of a device with multiple P2P direct connection technologies supported, there MAY be multiple settings returned. The bitmap definition follows the definition of P2PInfoType:
· 0x00000000: None

· 0x00000001: Wi-Fi Direct (could there be several versions)

· 0x00000002: reserved for future use

· 0x00000004: reserved for future use

· 0x00000008: reserved for future use

· 0x00000010: reserved for future use

· 0x00010000: LTE Direct

· 0x00020000: reserved for future use

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.2 CMAPI_P2P_EnableDirectDiscovery()

The CMAPI_P2P_EnableDirectDiscovery() function is used to activate the P2P Direct Discovery Feature in a P2P Direct enabled device.
	Prototype

	dword CMAPI_P2P_EnableDirectDiscovery (dword deviceID, P2PinfoType P2PTechno)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	P2PTechno
	Input
	The P2P direct connection technology to enable

Please see P2PInfoType definition (bitwise combination of one or several types)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008001
	The P2PTechnology is not supported

	0X00008002
	The P2P Technology is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.3 CMAPI_P2P_DisableDirectDiscovery()

The CMAPI_P2P_DisableDirectDiscovery() function is used to deactivate the P2P Direct Discovery feature in a P2P Direct enabled device.

	Prototype

	dword CMAPI_P2P_DisableDirectDiscovery (dword deviceID, P2PinfoType P2PTechno)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	P2PTechno
	Input
	The P2P direct connection technology to disable

Please see P2PInfoType definition (bitwise combination of one or several types)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00008001
	The P2PTechnology is not supported

	0X00008002
	The P2P Technology is invalid

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.4 CMAPI_P2P_EnableDirectConnection()

The CMAPI_P2P_EnableDirectConnection() function is used to activate the P2P Direct Connection feature in a P2P Direct enabled device.
	Prototype

	dword CMAPI_P2P_EnableDirectConnection (dword deviceID, P2PinfoType P2PTechno)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	P2PTechno
	Input
	The P2P direct connection technology to enable

Please see P2PInfoType definition (bitwise combination of one or several types)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008001
	The P2PTechnology is not supported

	0X00008002
	The P2P Technology is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.5 CMAPI_P2P_DisableDirectConnection()

The CMAPI_P2P_DisableDirectConnection() function is used to deactivate the P2P Direct Connection feature in a P2P Direct enabled device.

	Prototype

	dword CMAPI_P2P_DisableDirectConnection (dword deviceID, P2PinfoType P2PTechno)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	P2PTechno
	Input
	The P2P direct connection technology to enable

Please see P2PInfoType definition (bitwise combination of one or several types)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008001
	The P2PTechnology is not supported

	0X00008002
	The P2P Technology is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.6 CMAPI_P2P_ResolveDiscovery()

The CMAPI_P2P_ResolveDiscovery() function is used to resolve a ServiceRecord (LTE-D expression container) for metadata and/or connection info.
	Prototype

	dword CMAPI_P2P_ResolveDiscovery(dword deviceID, ServiceRecord* pService, dword* pP2PInfo)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pService
	Input
	The ServiceRecord to be resolved.

	pP2PInfo
	Output
	Pointer to get the P2P direct connection technology type in bitmap.

In the case of a device with multiple P2P direct connection technologies supported, there MAY be multiple settings returned. The bitmap definition follows the definition of P2PInfoType:
· 0x00000000: None

· 0x00000001: Wi-Fi Direct (could there be several versions)

· 0x00000002: reserved for future use

· 0x00000004: reserved for future use

· 0x00000008: reserved for future use

· 0x00000010: reserved for future use

· 0x00010000: LTE Direct

· 0x00020000: reserved for future use

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008003
	The Service Record is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.7 CMAPI_P2P_Monitor()

The CMAPI_P2P_Monitor() function is used to request discovery of Remote Device(s) and the services offered.

	Prototype

	dword CMAPI_P2P_Monitor (dword deviceID, DeviceRecords* pRemoteDevices, ServiceRecords* pServices)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pRemoteDevices
	Input
	Optional; List of Remote Devices to be discovered

	pServices
	Input
	List of Service Identifiers to be discovered

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008004
	The list of Remote Devices is invalid.

	0X00008005
	The list of Service Identifiers is invalid.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.8 CMAPI_P2P_Announce()

The CMAPI_P2P_Announce() function is used by applications in order to register and get authorization to announce its P2P Direct services supported or by the Local Device to announce its presence to Remote Device(s).

Editors Note: The opportunity to set a filter of a list of services identifiers for the Applications to register specific service(s) and the structure of the identifiers will be detailed in another section of the Technical Specification at later stage.
	Prototype

	dword CMAPI_P2P_Announce (dword deviceID, DeviceRecords* pRemoteDevices, ServiceRecords* pServices)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pRemoteDevices
	Input
	Optional; List of Remote Devices addressed by this announcement

	pServices
	Input
	List of Service Identifiers announced by Local Device

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008004
	The list of Remote Devices is invalid.

	0X00008005
	The list of Service Identifiers is invalid.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.9 CMAPI_P2P_EstablishConnection()

The CMAPI_P2P_EstablishConnection() function is used to request the Local Device to establish a connection (P2P Direct connection or connection via network, subject to Service Provider policy) to a Remote Device or a group.

Editor’s note: This function requires future study.
	Prototype

	dword CMAPI_P2P_EstablishConnection (dword deviceID, DeviceRecords* pRemoteDevices, ServiceRecords* pServices, dword* pConnectionID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pRemoteDevices
	Input
	Optional; List of Remote Devices

	pServices
	Input
	List of Service Identifiers

	pConnectionID
	Output
	The ID of the connection concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00008004
	The list of Remote Devices is invalid.

	0X00008005
	The list of Service Identifiers is invalid.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.10 CMAPI_P2P_RejectConnection()

The CMAPI_P2P_RejectConnection() function is used to reject an incoming connection request (P2P Direct connection or connection via network, subject to Service Provider policy)

	Prototype

	dword CMAPI_P2P_RejectConnection (dword deviceID, dword connectionID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	connectionID
	Input
	The ID of the connection concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008006
	The ID of the Connection is invalid.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.11 CMAPI_P2P_AcceptConnection()

The CMAPI_P2P_AcceptConnection() function is used to request an incoming connection request (P2P Direct connection or connection via network, subject to Service Provider policy) to a Remote Device or a group.

Editor’s note: FFS the way to alert an application of an incoming connection request and the discovery event the connect request is related to.

	Prototype

	dword CMAPI_P2P_AcceptConnection (dword deviceID, dword connectionID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	connectionID
	Input
	The ID of the connection concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008006
	The ID of the Connection is invalid.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.12 CMAPI_P2P_CloseConnection()

The CMAPI_P2P_CloseConnection() function is used to request the Local Device to close an exiting connection (P2P Direct connection or connection via network, subject to Service Provider policy) to a Remote Device or a group.

	Prototype

	dword CMAPI_P2P_CloseConnection (dword deviceID, dword connectionID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	connectionID
	Input
	The ID of the connection concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00008006
	The ID of the Connection is invalid.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.13 CMAPI_P2P_GetConnectionStatus()

The CMAPI_P2P_GetConnectionStatus() function is used to retrieve the status of the P2P Direct connection.

	Prototype

	dword CMAPI_P2P_GetConnectionStatus (dword deviceID, dword connectionID, dword* pConnectionStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	connectionID
	Input
	The ID of the connection concerned

	pConnectionStatus
	Output
	Status of the connection

· Connected

· Connecting

· Disconnected

· Disconnecting

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008006
	The ID of the Connection is invalid.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.14 CMAPI_P2P_EnableRelay()

The CMAPI_P2P_EnableRelay() function is used to request the Local Device to act as a relay to share its data connection with Remote Device members of the group (i.e. enable concurrent operations).

	Prototype

	dword CMAPI_P2P_EnableRelay (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.15 CMAPI_P2P_DisableRelay()

The CMAPI_P2P_DisableRelay() function is used able to request the Local Device to stop acting as a relay to share its data connection with Remote Device members of the group (i.e. disable concurrent operations).

	Prototype

	dword CMAPI_P2P_DisableRelay (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.16 CMAPI_P2P_CreateGroup()

The CMAPI_P2P_CreateGroup() function is used to create a new P2P Direct group with one or several Remote Device (s) (The group could be a simple instance group – one time or a persistent one).

	Prototype

	dword CMAPI_P2P_CreateGroup (dword deviceID, DeviceRecords* pDevices, dword* pGroupID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	pDevices
	Input
	The list of device IDs belonging to this group

	pGroupID
	Input/Output
	The ID of the group created

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008007
	The list of Device ID is invalid

	0X00008008
	The ID of the group is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.17 CMAPI_P2P_RemoveGroup()

The CMAPI_P2P_RemoveGroup() function is used to remove a P2P group, previously created by the Local Device.

	Prototype

	dword CMAPI_P2P_RemoveGroup (dword deviceID, dword groupID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	groupID
	Input
	The ID of the group to be removed

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008008
	The ID of the group is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.18 CMAPI_P2P_EnableMembershipInSeveralGroups()

The CMAPI_P2P_EnableMembershipInSeveralGroups() function is used to enable a Local Device to be a member of several groups simultaneously.

	Prototype

	dword CMAPI_P2P_EnableMembershipInSeveralGroups (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.19 CMAPI_P2P_DisableMembershipInSeveralGroups()

The CMAPI_P2P_DisableMembershipInSeveralGroups() function is used to disable a Local Device to be a member of several groups simultaneously, providing that the Local Device is not in charge of any of these groups.

	Prototype

	dword CMAPI_P2P_DisableMembershipInSeveralGroups (dword deviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.20 CMAPI_P2P_RemoveDeviceFromGroup()

The CMAPI_P2P_RemoveDeviceFromGroup() function is used by the Local Device to remove a Remote Device from an existing group the Local Device owns.

	Prototype

	dword CMAPI_P2P_RemoveDeviceFromGroup (dword deviceID, dword groupID, dword remoteDeviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	groupID
	Input
	The ID of the group the device should be removed from

	remoteDeviceID
	Input
	The ID of the remote device to be removed from the group.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008008
	The ID of the group is invalid

	0X00008009
	The ID of the Remote Device is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.21 CMAPI_P2P_AcceptInvitationToGroup()

The CMAPI_P2P_AcceptInvitationToGroup() function is used to positively accept an group join invitation on the receiver side.

	Prototype

	dword CMAPI_P2P_AcceptInvitationToGroup(dword deviceID, dword groupID, dword remoteDeviceID, dword invitationID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	groupID
	Input
	The ID of the group the Remote Device accepts to join.

	remoteDeviceID
	Input
	The ID of the remote device accepting the invitation to this group.

	invitationID
	Input
	The ID of this invitation

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008008
	The ID of the group is invalid

	0X00008009
	The ID of the Remote Device is invalid

	0X0000800A
	The Invitation ID is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.22 CMAPI_P2P_JoinGroup()

The CMAPI_P2P_JoinGroup() function is used to invite a Remote Device to join an existing group.

	Prototype

	dword CMAPI_P2P_JoinGroup (dword deviceID, dword groupID, dword remoteDeviceID, dword invitationID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	groupID
	Input
	The ID of the group the Remote Device is invited to join

	remoteDeviceID
	Input
	The ID of the remote device being invited to this group.

	invitationID
	Input
	The ID of this invitation

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008008
	The ID of the group is invalid

	0X00008009
	The ID of the Remote Device is invalid

	0X0000800A
	The Invitation ID is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.23 CMAPI_P2P_RejectInvitationToGroup()

The CMAPI_P2P_RejectInvitationToGroup() function is used to reject an invitation to join an existing group

	Prototype

	dword CMAPI_P2P_RejectInvitationToGroup (dword deviceID, dword groupID, dword remoteDeviceID, dword invitationID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	groupID
	Input
	The ID of the group the Local Device is rejecting to join

	remoteDeviceID
	Input
	The ID of the device rejecting the invitation to join this group.

	invitationID
	Input
	The ID of the invitation concerned.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008008
	The ID of the group is invalid

	0X00008009
	The ID of the Remote Device is invalid

	0X0000800A
	The Invitation ID is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.24 CMAPI_P2P_RejectJoiningGroup()

The CMAPI_P2P_RejectJoiningGroup() function is used to reject a Remote Device from joining to an existing group.

	Prototype

	dword CMAPI_P2P_RejectJoiningGroup (dword deviceID, dword groupID, dword remoteDeviceID, dword requestID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	groupID
	Input
	The ID of the group concerned

	remoteDeviceID
	Input
	The ID of the remote device being rejected to join this group.

	requestID
	Input
	The ID of the request for joining the group.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008008
	The ID of the group is invalid

	0X00008009
	The ID of the Remote Device is invalid

	0X0000800A
	The Invitation ID is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.25 CMAPI_P2P_RequestToJoinGroup()

The CMAPI_P2P_RequestToJoinGroup() function is used to send a request for joining an existing group to the group owner.

	Prototype

	dword CMAPI_P2P_RequestToJoinGroup (dword deviceID, dword groupID, dword remoteDeviceID, dword requestID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	groupID
	Input
	The ID of the group the device wants to join

	remoteDeviceID
	Input
	The ID of the device being group owner.

	requestID
	Output
	The ID of this request.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008008
	The ID of the group is invalid

	0X00008009
	The ID of the Remote Device is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.26 CMAPI_P2P_RestrictFromGroup()

The CMAPI_P2P_RestrictFromGroup() function is used to instruct the Local Device to be restricted from an existing group owned by a Remote Device.

	Prototype

	dword CMAPI_P2P_RestrictFromGroup(dword deviceID, dword groupID, dword remoteDeviceID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned (Local Device).

	groupID
	Input
	The ID of the group the Local Device to be restricted from.

	remoteDeviceID
	Input
	The ID of the remote device owning this group.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008008
	The ID of the group is invalid

	0X00008009
	The ID of the Remote Device is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

7.20.27 CMAPI_P2P_GetGroupInfo()

The CMAPI_P2P_GetGroupInfo() function is used to retrieve from the Local Device which P2P Direct enabled device(s) are in an existing group to which the Local Device is a member of.

	Prototype

	dword CMAPI_P2P_GetGroupInfo (dword deviceID, dword groupID, DeviceRecords* pDeviceList)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned.

	groupID
	Input
	The ID of the group concerned.

	pDeviceList
	Input
	The list of member devices of the group concerned.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00008007
	The list of Device ID is invalid

	0X00008008
	The ID of the group is invalid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 2: Add error codes in router management section
7.20.28 CMAPI_Router_GetConfigurations()

The CMAPI_Router_GetConfigurations() function is used to read the configuration values of a router (ssid, users, security, etc) of all defined routers of a physical router device. See RouterConfigType for a description of configuration parameters.

	Prototype

	dword CMAPI_Router_GetConfigurations (dword deviceID, RouterConfigType* pRouterConfigList, dword* pRouterConfigListSize, word* pRouterConfigListElements)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pRouterConfigList
	Output
	The list of router configurations. See RouterConfigType for details of the returned data.

	pRouterConfigListSize
	Input/Output
	The number of bytes in the pRouterConfigList buffer on input or if insufficient contains the necessary size.

	pRouterConfigListElements
	Output
	The number of elements in the router list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X30009001
	The pRouterConfigList buffer is not large enough

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.29 CMAPI_Router_SetConfiguration()

The CMAPI_Router_SetConfiguration() function is used to write the configuration values of a router (ssid, users, security, etc). If a router ID does not currently exist, the router configuration is created. See RouterConfigType for a description of configuration parameters.

	Prototype

	dword CMAPI_Router_SetConfiguration (dword deviceID, dword routerID, RouterConfigType* pRouterConfig)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	pRouterConfig
	Input
	Configuration values of the router. See RouterConfigType definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router.

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00009001
	The routerConfig value(s) are incorrect

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.30 CMAPI_Router_DeleteConfiguration()

The CMAPI_Router_DeleteConfiguration() function is used to delete a router and its configuration. See RouterConfigType for a description of configuration parameters.

	Prototype

	dword CMAPI_Router_DeleteConfiguration (dword deviceID, dword routerID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.31 CMAPI_Router_GetConnectedDevices()
The CMAPI_Router_GetDevices() function is used to retrieve a list of Connected Devices connected to a router. The list contains records with Connected Device information.

	Prototype

	
dword CMAPI_Router_GetDevices (dword deviceID, dword routerID, ConnectedDevType* pConDevList, dword* pConDevListSize, word* pConDevListElements)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	pConDevList
	Output
	The list of connected devices. See ConnectedDevType for details of the returned data.

	pConDevListSize
	Input/Output
	The number of bytes in the pConDevList buffer on input or if insufficient contains the necessary size.

	pConDevListElements
	Output
	The number of elements in the Connected Device list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X30009002
	The pConDevList buffer is not large enough

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.32 CMAPI_Router_GetPolicies()
The CMAPI_Router_GetPolicies() function is used to retrieve a list of policies within a router. The list contains records with policy information.

	Prototype

	
dword CMAPI_Router_GetPolicies (dword deviceID, dword routerID, PolicyType* pPolicyList, dword* pPolicyListSize, word* pPolicyListElements)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	pPolicyList
	Output
	The list of policies. The list contains the default policy and optional user policies. See PolicyType for details of the returned data.

	pPolicyListSize
	Input/Output
	The number of bytes in the pPolicyList buffer on input or if insufficient contains the necessary size.

	pPolicyListElements
	Output
	The number of elements in the policy list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X30009003
	The pPolicyList buffer is not large enough

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.33 CMAPI_Router_SetPolicy()

The CMAPI_Router_SetPolicy() function is used to add or update a policy to a router’s policies. See PolicyType for a description of policy parameters.

	Prototype

	dword CMAPI_Router_SetPolicy (dword deviceID, dword routerID, PolicyType* pPolicy)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	pPolicy
	Input
	A router policy. See PolicyType definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00009002
	The policy value(s) are incorrect

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.34 CMAPI_Router_DeletePolicy()

The CMAPI_Router_DeletePolicy() function is used to delete a Connected Device policy from a router’s policies. See PolicyType for a description of policy parameters.

	Prototype

	dword CMAPI_Router_DeletePolicy (dword deviceID, dword routerID, UTF8* MACAddress)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	MACAddress
	Input
	The MAC address of the Connected Device

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00000140
	The MACAddress references a non-existing Connected Device

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.35 CMAPI_Router_GetRestrictions()
The CMAPI_Router_GetRestrictions() function is used to retrieve a list of Connected Device restrictions within a router. The list contains records with blacklisted and blocked information.

	Prototype

	
dword CMAPI_Router_GetRestrictions (dword deviceID, dword routerID, RestrictType* pRestrictList, dword* pRestrictListSize, word* pRestrictListElements)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	pRestrictList
	Output
	The list of restrictions. See RestrictType for details of the returned data.

	pRestrictListSize
	Input/Output
	The number of bytes in the pRestrictList buffer on input or if insufficient contains the necessary size.

	pRestrictListElements
	Output
	The number of elements in the restriction list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X30009004
	The pRestrictList buffer is not large enough

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.36 CMAPI_Router_SetRestriction()

The CMAPI_Router_SetRestriction() function is used to add or update a Connected Device restriction to a router. See RestrictType for a description of restriction parameters.

	Prototype

	dword CMAPI_Router_SetRestriction (dword deviceID, dword routerID, RestrictType* pRestrict)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	pRestrict
	Input
	A router restriction. See RestrictType definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00009003
	The restrict value(s) are incorrect

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.37 CMAPI_Router_DeleteRestriction()

The CMAPI_Router_DeleteRestriction() function is used to remove a Connected Device restriction. See RestrictType for a description of restriction parameters.

	Prototype

	dword CMAPI_Router_DeleteRestriction (dword deviceID, dword routerID, UTF8* MACAddress)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	MACAddress
	Input
	The MAC address of the Connected Device

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00000140
	The MACAddress references a non-existing Connected Device

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.38 CMAPI_Router_SetAdminPassword()

The CMAPI_Router_SetAdminPassword() function is used to update a router administrator password.

	Prototype

	dword CMAPI_Router_SetAdminPassword (dword deviceID, dword routerID, UTF8* pAdminPass)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	pAdminPass
	Input
	The administrator password

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.39 CMAPI_Router_VerifyAdminPassword()

The CMAPI_Router_VerifyAdminPassword() function is used to verify a router administrator password and to report the number of failed access attempts.

	Prototype

	dword CMAPI_Router_VerifyAdminPassword (dword deviceID, dword routerID, UTF8* pAdminPass, dword* pFailedAttempts)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	pAdminPass
	Input
	The administrator password

	pFailedAttempts
	Output
	The number of failed password verification attempts

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	
	

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00009004
	The administrator password is incorrect

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

7.20.40 CMAPI_Router_ResetToDefaults()

The CMAPI_Router_ResetToDefaults() function returns a router to factory default settings.

	Prototype

	dword CMAPI_Router_ResetToDefaults (dword deviceID, dword routerID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	routerID
	Input
	The ID of the router concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device.

	0X00000112
	The routerID references a non-existing router

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

Change 3: Add error codes in error code section – 9.1

The Return values and Error Codes table is used to capture the warnings, error codes and information when the Open CMAPI is running. Some additional warnings and output information can be defined depending on the implementation.
	Return Values & Error Codes

	Value
	Description

	General Return Values & Error Codes

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000002
	Invalid Parameter

	0X00000003
	Buffer size not large enough

	0X00000004
	Invalid Operation

	0X00000005
	No service

	0X00000006
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	0X00000007
	This optional function is not supported by this implementation

	0X00000010
	The OpenCMAPI implementation cannot perform this operation since there is currently a connection which prevents the request. NOTE: The OpenCMAPI implementation may be able to apply the change in some conditions and may return success instead of this return code in some connected conditions.

	0X00000011
	The type of data requested is not present

	0X00000013
	QoS unsupported

	0X00000014
	Not connected

	Device Error Codes

	0X00000100
	The UniqueIdentifier is referencing a non-existing device

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000102
	The device is already opened.

	0X00000103
	Maximum number of device that the API can handle per client is reached (can be 1), close another open device handle.

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000105
	The radio references a radio which the device does not support

	0X00000106
	The radio references a radio which the device does not support (exception, this error is not reported if the radio is set to 0xFF (all)).

	0X00000107
	System not supported by the device

	0X00000108
	The requested data is not meaningful for a 3GPP device.

	0X00000109
	The requested data is not meaningful for a 3GPP2 device.

	0X00000110
	The device cannot be activated while connected.

	0X00000111
	The device is not connected

	0X00000112
	The routerID references a non-existing router

	0X00000120
	Configuration not supported by the device

	0X00000121
	The device does not offer this capability

	0X00000130
	The device is not in a power state which allows this operation.

	0X00000131
	Requested power state is not supported by the device (ex power saving)

	0X00000132
	Radio off

	0X00000133
	The power state is invalid

	0X00000134
	The system ID is invalid

	0X00000135
	No IMSI available

	0X00000140
	The MACAddress references a non-existing Connected Device

	0X00000210
	Control Key not supported by this system (when an ID of a 3GPP2 only Control Key is sent to a 3GPP system device or when an ID of a 3GPP only Control Key is sent to a 3GPP2 system device).

	0X00000211
	The control key value is invalid

	UICC Error Codes

	0X00000501
	There is no smart card support for this device

	0X00000502
	Smart card not accessible

	0X00000551
	ENVELOPE command was not sent to SIM/R-UIM/UICC as overlapping was detected.

	0X00000552
	The envelope command is invalid

	0X00000553
	The terminal profile is invalid

	0X00000554
	The function succeeded except for the overlapping ToolKit functions with the device or another or other Connection Manager Application(s)

	0X00000555
	The terminal response is invalid

	Profile Error Codes

	0X00002001
	The Cellular profile name does not exist

	0X00002002
	The Cellular profile name is not valid

	0X00002003
	The Cellular profile name is already existing, only happen when creating a profile with a existing name

	0X00002004
	The Cellular profile can not be updated while currently in use (connected)

	0X00002005
	A default profile has not been set for this device.

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00002202
	The type of IP address is not available.

	Network Connection Error Codes

	0X00003001
	The requested bearer is not possible

	0X00003002
	There is no connection to disconnect from

	0X00003004
	There is no connecting session for cancellation

	0X00003005
	The Connection is releasing

	0X00003006
	Remote system not present

	0X00003007
	The supplied index identifies a record which does not exist.

	0X00003008
	Current APN cannot be retrieved because there is no connection.

	0X00003009
	The requested connection type is not valid

	0X0000300A
	There is currently a connection which prevents this operation. It is necessary to disconnect before the requested operation can be completed.

	0X00003101
	The requested mode is not valid

	0X00003102
	The requested PLMNID is not valid

	0X00003103
	The requested bearer or combination of bearers is not valid.

	0X00003201
	No Primary context activated

	0X00003202
	The secondary context doesn’t exist

	0X00003203
	The secondary context is already activated/created

	0X00003204
	The secondary context activation is in progress

	0X00003205
	The secondary context is already deactivated

	0X00003206
	The secondary context deactivation is in progress

	0X00003207
	The secondary context is already deactivating

	CDMA 2000 Error Codes

	0X00004001
	Unrecognized session identifier.

	0X00004002
	The SPC is valid.

	0X00004003
	The SPC is invalid.

	0X00004004
	The requested activation code is invalid.

	0X00004005
	Activation failed (other than invalid activation code).

	0X00004006
	The index is invalid

	0X00004007
	File does not exist at the given path.

	0X00004008
	An invalid PRL file is entered.

	0X0000400B
	No record exists at the specified index.

	0X0000400C
	The ACCOLC is invalid.

	0X0000400D
	The requested ForceRev0 is invalid

	0X0000400E
	The CustomSCP is invalid

	0X0000400F
	The protocol is invalid

	0X00004010
	The broadcast is invalid

	0X00004011
	The application is invalid

	0X00004012
	The roaming is invalid

	0X00004013
	The SID is invalid

	0X00004014
	The MDN is invalid

	0X00004015
	The MIN is invalid

	0X00004016
	The PRL is invalid

	0X00004017
	The MNHA is invalid

	0X00004018
	The MNAAA is invalid

	0X00004019
	The session type is invalid

	0X0000401A
	The session state is invalid

	0X0000401B
	The failure reason is invalid

	0X0000401C
	The retry count is invalid

	0X0000401D
	The session pause is invalid

	0X0000401E
	The selection is invalid

	0X0000401F
	The session id is invalid

	0X00004020
	The defer is invalid

	0X00004021
	The feature state is invalid

	0X00004022
	The update feature state is invalid.

	0X00004023
	The firmware update feature state is invalid

	0X00004024
	The reason is invalid

	0X00004025
	The mode is invalid

	0X00004026
	The enabled value is invalid

	0X00004027
	The RevTunn value is invalid

	0X00004028
	The NAI is invalid

	0X00004029
	The HASPI is invalid

	0X0000402A
	The AAASPI is invalid

	0X0000402B
	The Address parameter was not formatted properly.

	0X0000402C
	The Primary Home Agent parameter was not formatted properly.

	0X0000402D
	The Secondary Home Agent parameter was not formatted properly.

	0X0000402E
	The retry limit is invalid

	0X0000402F
	The retry interval is invalid

	0X00004030
	The Reregperiod is invalid

	0X00004031
	The Reregtraffic is invalid

	0X00004032
	The HAAuthenticator is invalid

	0X00004033
	The HA2002bis is invalid

	SMS Error Codes

	0X00005001
	Failure of communication with device

	0X00005002
	Timer expired without receiving response from device

	0X00005003
	Response with error indication from device

	0X00005004
	Operation NOT supported

	0X00005005
	SMS message NOT found

	0X00005006
	The SMS record is invalid

	0X00005007
	The ifrom value is invalid

	0X00005008
	The SMSC value is invalid

	0X00005009
	The PSI value is invalid

	0X0000500A
	The delivery report switch is invalid

	0X0000500B
	The SMS Class is invalid

	0X0000500C
	The msgID is invalid

	0X00005901
	The USSD Data is invalid

	Contact Management Error Codes

	0X00005501
	The contact record is invalid

	0X00005502
	Memory capacity exceeded.

	0X00005503
	The index is invalid

	0X00005504
	The contact location value is invalid

	Information Status Error Codes

	0X00006001
	The type of data requested is not present

	0X00006002
	The type is not valid

	0X00006003
	Remote system not present

	0X00006004
	The supplied index identifies a record which does not exist.

	0X00006005
	Current APN cannot be retrieved because there is no connection.

	0X00006006
	The type of IP address is not available.

	0X00006007
	IP Address is not currently assigned (advisable to retry call)

	0X00006008
	Authentication failure

	GNSS Error Codes

	0X00007001
	The GNSS state is invalid

	0X00007002
	The operation is invalid

	0X00007003
	The accuracy threshold is not supported

	0X00007004
	The server address is invalid.

	0X00007005
	The server port is invalid.

	0X00007006
	The server FQDN is invalid.

	0X00007007
	The tracking value is invalid

	P2P Direct Management Error Codes

	0X00008001
	The P2PTechnology is not supported

	0X00008002
	The P2P Technology is invalid

	0X00008003
	The Service Record is invalid

	0X00008004
	The list of Remote Devices is invalid.

	0X00008005
	The list of Service Identifiers is invalid.

	0X00008006
	The ID of the Connection is invalid.

	0X00008007
	The list of Device ID is invalid

	0X00008008
	The ID of the group is invalid

	0X00008009
	The ID of the Remote Device is invalid

	0X0000800A
	The Invitation ID is invalid

	Router Management Error Codes

	0X00009001
	The routerConfig value(s) are incorrect

	0X00009002
	The policy value(s) are incorrect

	0X00009003
	The restrict value(s) are incorrect

	0X00009004
	The administrator password is incorrect

	WLAN Error Codes

	0X00010001
	No network exists at the specified index.

	0X00010002
	Predefined networks are not able to be modified.

	0X00010004
	The SSID is invalid

	0X00010005
	The BSSID is invalid

	0X00010006
	The Friendly Name is invalid

	0X00010007
	The security parameter is invalid

	0X00010008
	The mode parameter is invalid

	0X00010009
	The hidden parameter is invalid

	0X0001000A
	The key is invalid

	0X0001000B
	The EAP authentication method is invalid

	0X0001000C
	The EAP configuration is invalid

	0X0001000D
	The WLAN Encryption Type is invalid

	0X00011001
	There is no existing WLAN connection

	0X00011002
	Security mode does not allow connectivity to unknown networks.

	0X00011005
	Operation is prohibited by security policy.

	0X00011006
	No pending operation.

	0X00011007
	The pin for WPS was malformed or incorrect size

	0X00011008
	The device is not connected

	0X00011009
	 Device (i.e.: WLAN only device that does not support NAA on UICC for authentication) does not support the requested function.

	0X00012001
	The SSID does not reference a valid known network.

	0X00012002
	The BSSID does not reference a valid known network

	0X00012003
	IP Address is not currently assigned (advisable to retry call)

	0X00012004
	Authentication failure

	0X00013001
	Invalid combination of AUTH and CIPHER

	0X00013002
	Index NOT referring to a valid known network

	0X00013003
	NO existing WLAN connection

	0X00013004
	IP address NOT valid

	0X00013005
	Subnet mask NOT valid

	0X00013006
	Operation prohibited by security policy

	0X00013007
	The specified index is to large and would leave a gap in the known networks list

	0X00013008
	Index is not valid for user defined networks. Please try a higher index.

	0X00013009
	The mode is invalid

	0X0001300A
	The address is invalid

	0X0001300B
	The subnet mask is invalid

	0X0001300C
	The http proxy is invalid

	0X0001300D
	The mac address is invalid

	0X0001300E
	The default gateway is invalid

	PIN/PUK management Error Codes

	
	SW1 and SW2 are the Status Words provided by the SIM/R-UIM/UICC (see next chapter). If no Status Word is provided, SW1SW2 will be replaced by “0000”.

	0X1001SW1SW2
	Wrong PIN.

	0X1002SW1SW2
	PIN is blocked. PUK (UNBLOCK PIN) needed.

	0X1003SW1SW2
	Wrong Old PIN.

	0X1004SW1SW2
	Old PIN is blocked. PUK (UNBLOCK PIN) needed.

	0X1005SW1SW2
	Wrong PUK.

	0X1006SW1SW2
	PUK (UNBLOCK PIN) blocked.

	0X1007SW1SW2
	Invalid parameter(s)

	0X11000001
	The NAA Name is invalid

	0X11000002
	The PIN Type is invalid

	0X11000003
	The PUK Type is invalid

	Buffer Error Codes

	
	Listing all buffer error codes

	0X30000000
	The OpenCMAPIVersion buffer is not large enough

	0X30000001
	The buffer is not sufficient to hold the data, pCellularProfileSize will contain the minimum number of bytes required.

	0X30000002
	The buffer is not sufficient to hold the data, the pCellularProfileNameListSize will contain the minimum number of bytes required.

	0X30000003
	The size of the network info buffer is insufficient. pNetworkInfoSize contains the minimum number of bytes required.

	0X30000004
	The network identifier buffer is not large enough, pNetworkIdentifierSize holds the minimum necessary size in bytes

	0X30000005
	The operator identifier buffer is not large enough, pOperatorIdentifierSize holds the minimum necessary size in bytes.

	0X30000006
	The RFInfoList buffer is not large enough

	0X30000007
	The IPAddress buffer is not sufficient to hold the address. IPAddressSize contains the minimum number of bytes required.

	0X30000008
	The pFile buffer was insufficient; pFileSize contains the minimum number of bytes required.

	0X30000009
	The buffer is insufficient. pScanListSize contains the minimum number of bytes necessary to hold the scan list.

	0X3000000A
	The NAI buffer is insufficient. pNAISize contains the minimum number of bytes required.

	0X3000000B
	The address buffer is insufficient. The size parameter contains the minimum required byte size.

	0X3000000C
	The primary ha address buffer is insufficient. The size parameter contains the minimum required byte size.

	0X3000000D
	The secondary ha address buffer is insufficient. The size parameter contains the minimum required byte size.

	0X3000000E
	The description buffer needs to be larger; the description length is set to the minimum number of bytes required.

	0X3000000F
	The unique identifier buffer needs to be larger; the unique identifier length is set to the minimum number of bytes required.

	0X30000010
	The manufacturer name buffer is not large enough.

	0X30000011
	The Model buffer is not large enough.

	0X30000012
	The device name buffer is not large enough.

	0X30000013
	The IMSI buffer is not large enough

	0X30000014
	The NAA name buffer is not large enough

	0X30000015
	The MDN buffer is not large enough

	0X30000016
	The IMEI buffer is not large enough

	0X30000017
	The ESN buffer is not large enough.

	0X30000018
	The MEID buffer is not large enough

	0X30000019
	The MSISDN buffer is not large enough

	0X3000001A
	The FWVersion buffer is not large enough

	0X3000001B
	Frequency Band buffer not large enough

	0X3000001C
	Channel Number UL buffer not large enough

	0X3000001D
	Channel Number DL buffer not large enough

	0X3000001E
	 The SSID buffer is not large enough. pSSIDSize contains the minimum required buffer size in bytes.

	0X3000001F
	The BSSID buffer is not large enough. pBSSIDSize contains the minimum required buffer size in bytes.

	0X30000020
	The pParameters buffer is not large enough. pParametersSize contains the minimum buffer length required.

	0X30000021
	The pMacAddress buffer is not large enough. pMacAddressSize contains the minimum buffer length required.

	0X30000022
	The pPINPUKStatusList is not large enough.

	0X30000023
	The buffer is not large enough to hold the required data. pDataSize is set to the minimum required size in bytes.

	0X30000024
	The address buffer is not large enough, pAddressSize contains the minimum required size in bytes.

	0X30000025
	Version buffer is not large enough, pDriverVersionSize contains the required size in bytes.

	0X30000026
	The pQoSContextList Buffer is not large enough.

	0X30000027
	The pICCID buffer is not large enough.

	0X30000028
	The structure is not sufficient to hold the data, the CellularProfileNameListCount will contain the minimize number of elements.

	0X30000029
	The pDevAttributes Buffer is not large enough.

	0X30000030
	The buffer is not sufficient to hold the data, the pHomeNetworkNamelength will contain the minimum number of bytes required.

	0X30000031
	The buffer is not sufficient to hold the data, the pServingNetworkInfoListSize will contain the minimum number of bytes required.

	0X30001000
	The size for the pNAAlist buffer is not sufficient, the NAAListsize will contain the number of the elements in the list.

	0X30005001
	The SMS record buffer is not large enough.

	0X30005002
	SMSCValue buffer is not large enough

	0X30005003
	PSIValue buffer is not large enough

	0X30005004
	The size for the plDList buffer is not sufficient, the plDListSize will contain the number of the elements in the list.

	0X30007001
	The ServerAddress buffer needs to be larger, The ServerAddressSize is set to the minimum number of bytes required.

	0X30007002
	The ServerFQDN buffer needs to be larger. The ServerFQDNSize is set to the minimum number of bytes required.

	0X30007003
	The timestamp buffer is not large enough.

	0X30009001
	The pRouterConfigList buffer is not large enough

	0X30009002
	The pConDevList buffer is not large enough

	0X30009003
	The pPolicyList buffer is not large enough

	0X30009004
	The pRestrictList buffer is not large enough

	0X30010001
	The size of the network structure is not large enough pSize contains the minimum size required.

	0X30010002
	The address buffer is not large enough, pAddressSize contains the minimum required size in bytes.

	0X30010003
	Version buffer is not large enough, pSize contains the required size in bytes.

	0X30010004
	The pSEServices Buffer is not large enough, pSEServicesSize contains the required size in bytes

	Security Errors

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000002
	The authentication failed

	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

	0XF0000004
	The security request was malformed. Please consult vendor materials and/or output log.

	0XF0000005
	The requested access level is not supported

	0XF0000006
	The WLAN Encryption Type used is not allowed. Please use proper Encryption type

Table 1: Return Values & Error Codes

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 41)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 21 (of 43)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

