Doc# OMA-CD-OpenCMAPI-2014-0014-CR_[image: image1.jpg]ProfileID_v1_1
Change Request

Doc# OMA-CD-OpenCMAPI-2014-0014-CR_ProfileID_v1_1
Change Request

Change Request

	Title:
	CR to provide the Device ID comments from the CONRR
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD OpenCMAPI

	Doc to Change:
	OMA-TS-OpenCMAPI-V1_1-20140127-D

	Submission Date:
	20th Feb 2014

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Chris Heistad, Smith Micro Software, Inc, cheistad@smithmicro.com

	Replaces:
	n/a

1 Reason for Change

This CR proposes functionality to address Device ID.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The CD OpenCMAPI SWG should review and agree this CR.
6 Detailed Change Proposal

Change 1: Add a profile id field in the definition of CellularProfileType in 6.2.10
CellularProfileType

	Definition CellularProfileType

	This prototype defines a structure which describes a Cellular Profile Type

	Field Name
	Type
	Description

	CellularProfileID
	dword
	The identification number of the Cellular Profile

	CellularProfileName
	UTF8*
	The name of the Cellular Profile

	UserName
	UTF8*
	The user name associated to the APN

	Password
	UTF8*
	The password associated with the APN

	PDP Type
	dword
	The type of PDP (Packet Data Protocol)::

· 0x00000001: IP

· 0x00000002: PPP - PS data over GPRS or UMTS (PS connection with PDP type PPP)

	APN
	UTF8*
	Primary APN used for this connection

	APN2
	UTF8*
	Optional – Secondary APN

	APN3
	UTF8*
	Optional – Tertiary APN

	AccessNumber
	UTF8*
	(Optional) Access number - sequence to dial to establish the connection (*99# or *99***1# are commonly used as default)

Note: this sequence is optional as it may be asked in “old” network using 2G technologies for example

	Address
	IPAddress
	The IP address

	PrimaryDNS
	IPAddress
	The primary DNS

	SecondaryDNS
	IPAddress
	The secondary DNS

	AuthType
	dword
	The Authentication Protocol type:

· 0x00000000: CHAP only

· 0x00000001: PAP only

· 0x00000002: Automatic

	UseDhcpForIP
	boolean
	Use DHCP for IP address. If this is true, then the IP field is unused.

	UseDhcpForDNS
	boolean
	Use DHCP for DNS address. If this is true, then the PrimaryDNS and SecondaryDNS fields are unused.

	TimeoutSeconds
	dword
	The time out in seconds

	WINSPreferred
	IPAddress*
	Optional - The preferred WINS (Windows Internet Naming Service)

	WINSAlternated
	IPAddress*
	Optional - The alternated WINS (Windows Internet Naming Service)

	ServingPLMNs
	UTF8*
	Optional - List of possible serving PLMNs (MCCMNC numerical values separated by a coma and a space ”, ”) on which the profile can be used (i.e.; MCCMNCvalue1, MCCMNCvalue2,, MCCMNCvaluen).

If the list is empty then the CellularProfile is valid for any PLMN.

The check is done at the API level.

	PCRequestedQoS
	QoSStructure*
	Optional - Requested QoS for Primary Context.

	PCMinimumQos
	QoSStructure*
	Optional - Minimum acceptable QoS for Primary Context

	PCTFT
	TrafficFlowTemplateType*
	Optional - Traffic Flow Template indicating the parameters values to be used for Packet Filtering in the Primary Context.

	PCDataCompression
	byte
	Optional - A numeric parameter that controls PDP data compression for Primary Context (applicable for SNDCP only) (refer to [3GPP TS 44.065]). Possible values defined in [3GPP TS 27.007].

	PCHeaderCompression
	byte
	Optional - A numeric parameter that controls PDP header compression (refer to [3GPP TS 44.065] and [3GPP TS 25.323]). Possible values defined in [3GPP TS 27.007].

	SecondaryContext1
	SecondaryContextType*
	Optional - 1st Secondary Context (if a null pointer value then no 1st SecondaryContext)

	SecondaryContext2
	SecondaryContextType*
	Optional - 2nd Secondary Context (if a null pointer value then no 2nd SecondaryContext)

	SecondaryContext3
	SecondaryContextType*
	Optional - 3rd Secondary Context (if a null pointer value then no 3rd SecondaryContext)

	SecondaryContext4
	SecondaryContextType*
	Optional - 4th Secondary Context (if a null pointer value then no 4th SecondaryContext)

	SecondaryContext5
	SecondaryContextType*
	Optional - 5th Secondary Context (if a null pointer value then no 5th SecondaryContext)

	SecondaryContext6
	SecondaryContextType*
	Optional - 6th Secondary Context (if a null pointer value then no 6th SecondaryContext)

	SecondaryContext7
	SecondaryContextType*
	Optional - 7th Secondary Context (if a null pointer value then no 7th SecondaryContext)

	SecondaryContext8
	SecondaryContextType*
	Optional - 8th Secondary Context (if a null pointer value then no 8th SecondaryContext)

	SecondaryContext9
	SecondaryContextType*
	Optional - 9th Secondary Context (if a null pointer value then no 9th SecondaryContext)

	SecondaryContext10
	SecondaryContextType*
	Optional - 10th Secondary Context (if a null pointer value then no 10th SecondaryContext)

	SecondaryContext11
	SecondaryContextType*
	Optional - 11th Secondary Context (if a null pointer value then no 11th SecondaryContext)

	SecondaryContext12
	SecondaryContextType*
	Optional - 12th Secondary Context (if a null pointer value then no 12ve SecondaryContext)

	SecondaryContext13
	SecondaryContextType*
	Optional - 13th Secondary Context (if a null pointer value then no 13th SecondaryContext)

	SecondaryContext14
	SecondaryContextType*
	Optional - 14th Secondary Context (if a null pointer value then no 14th SecondaryContext)

	SecondaryContext15
	SecondaryContextType*
	Optional - 15th Secondary Context (if a null pointer value then no 15th SecondaryContext)

	SecondaryContext16
	SecondaryContextType*
	Optional - 16th Secondary Context (if a null pointer value then no 16th SecondaryContext)

	isWlanAllowed
	dword
	To indicate if the profile is allowed to use WLAN (in case of offload for example – depending on dedicated service) or not:

· 0x00000000: Not allowed to use WLAN

· 0x00000001: Allowed to use WLAN

	maintainCellular
	dword
	To indicate if the PS connection shall be maintained during WLAN Access

· 0x00000000: do not maintain PS connection

· 0x00000001: Keep PS connection during WLAN Access

Change 2: Change 7.5.1 to support profile id instead of name
CMAPI_NetConnectSrv_MgrCellularProfile()

The CMAPI_NetConnectSrv_MgrCellularProfile() function is used to manage cellular profiles, including add/delete/update a profile information.

	Prototype

	dword CMAPI_NetConnectSrv_MgrCellularProfile (dword deviceID, dword CellularProfileID, CellularProfileType* CellularProfile, dword Operation)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	Cellular Profile ID, the unique identity for a profile. 0xFFFF is reserved and cannot be used.

	CellularProfile
	Input
	The details information about the profile.

	Operation
	Input
	The operation type to operate the profile, including Add, Delete, Update:

· 0x00000001: Add a profile

· 0x00000002: Delete a profile

· 0x00000003: Update a profile

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000004
	Invalid Operation

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00002002
	The cellular profile ID is not valid

	0X00002003
	The Cellular profile ID already exists, this only happen when creating a profile with an existing ID

	0X00002004
	The Cellular profile can not be updated while currently in use (connected)

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 3: Change 7.5.2 to support profile id instead of name
CMAPI_NetConnectSrv_GetCellularProfile()

The CMAPI_NetConnectSrv_GetCellularProfile() function is used to get the details of a specific Cellular Profile.

	Prototype

	dword CMAPI_NetConnectSrv_GetCellularProfile (dword deviceID, dword CellularProfileID, CellularProfileType* pCellularProfile, dword* pCellularProfileSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The profile ID for the Get operation. 0xFFFF is reserved and cannot be used.

	pCellularProfile
	Output
	The details for the profile information

	pCellularProfileSize
	Input/Output
	The size of the cellular profile buffer on input or if insufficient contains the necessary size

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X30000001
	The buffer is not sufficient to hold the data, the pCellularProfileSize will contain the minimum number of bytes required.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 4: Change 7.5.3 to support profile id instead of name
CMAPI_NetConnectSrv_GetCellularProfileList()

The CMAPI_NetConnectSrv_GetCellularProfileList() function is used to get a list of all Cellular Profile IDs.

	Prototype

	dword CMAPI_NetConnectSrv_GetCellularProfileList (dword deviceID, dword* pCellularProfileIDList, dword* pCellularProfileIDListSize, dword* pCellularProfileIDListCount)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pCellularProfileIDList
	Output
	The buffer to contain the list of profile IDs.

	pCellularProfileIDListSize
	Input/Output
	The size of the buffer on input or if insufficient contains the necessary size.

	pCellularProfileIDListCount
	Output
	Number of entries in the list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X30000002
	The buffer is not sufficient to hold the data, the pCellularProfileIDListSize will contain the minimum number of bytes required.

	0X30000028
	The structure is not sufficient to hold the data, the CellularProfileIDListSize will contain the minimum number of bytes required.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 5: Change 7.5.7 to support profile id instead of name
CMAPI_NetConnectSrv_GetCurrentConnType()

The CMAPI_NetConnectSrv_GetCurrentConnType() function is used to get the current connection type.

	Prototype

	
dword NetConnectSrv_GetCurrentConnType (dword deviceID, dword CellularProfileID, dword* pCurrentConnType)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	Optional - The ID of the Cellular Profile to be used for this function. 0xFFFF must be used in the optional state.

	pCurrentConnType
	Output
	The connection type:

· 0x00000000: DIAL_UP(RAS)

· 0x00000001: NDIS

· 0x00000002: EmulatedEthernet

· 0x00000003: None

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 6: Change 7.5.8 to support profile id instead of name
CMAPI_NetConnectSrv_Connect_Async()

The CMAPI_NetConnectSrv_Connect_Async() function is used to connect to a network. CMAPI_NetConnectSrv_Connect_Async is asynchronous; it initiates a connection and then returns immediately. When the connection has finished the Callback CMAPI_Callback_Connect_Async_Complete is invoked.
	Prototype

	dword CMAPI_NetConnectSrv_Connect_Async (dword deviceID, dword CellularProfileID, dword ConnType)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile to be used for this function. 0xFFFF is reserved and cannot be used.

	ConnType
	Input
	The connection type:

· 0x00000000: DIAL_UP(RAS)

· 0x00000001: NDIS

· 0x00000002: EmulatedEthernet

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000006
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00003001
	The requested bearer is not possible

	0X00003009
	The requested connection type is not valid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000002
	The authentication is failed

Change 7: Change 7.5.9 to support profile id instead of name
CMAPI_NetConnectSrv_Disconnect_Async()

The CMAPI_NetConnectSrv_Disconnect_Async() function is used to disconnect from the network. CMAPI_NetConnectSrv_Disconnect_Async is asynchronous; it initiates the disconnect operation and then returns immediately. When the disconnect operation has finished the Callback CMAPI_Callback_Disconnect_Async_Complete is invoked.
	Prototype

	dword CMAPI_NetConnectSrv_Disconnect_Async (dword deviceID, dword CellularProfileID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile to be used for this function. 0xFFFF is reserved and cannot be used.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000006
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00003002
	There is no connection to disconnect from

	0X00003009
	The requested connection type is not valid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 8: Change 7.5.10 to support profile id instead of name
CMAPI_NetConnectSrv_CancelConnect_Async()

The CMAPI_NetConnectSrv_CancelConnect_Async() function is used to cancel of connect operation (as a result of a call to CMAPI_NetConnectSrv_Connect_Async). CMAPI_NetConnectSrv_CancelConnect_Async is asynchronous; it initiates the cancelation of an ongoing connect operation and then returns immediately. When the cancellation of the connect operation has finished the Callback CMAPI_Callback_CancelConnect_Async_Complete is invoked.

	Prototype

	dword CMAPI_NetConnectSrv_CancelConnect_Async (dword deviceID, dword CellularProfileID)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile to be used for this function. 0xFFFF is reserved and cannot be used.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile id does not exist

	0X00002002
	The cellular profile id is not valid

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00003004
	There is no connecting session for cancellation

	0X00003005
	The Connection is releasing

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 9: Change 7.5.11 to support profile id instead of name
CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async()

The CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async() function is used to connect to a network. CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async is asynchronous; it initiates a connection and then returns immediately. When the connection has finished the Callback CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect_Async_Complete is invoked.
	Prototype

	dword CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async (dword deviceID, dword CellularProfileID, byte SecondaryContextnumber)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile to be used for this function. 0xFFFF is reserved and cannot be used.

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

The API shall check first if a Primary context is activated for this cellular profile

The API will check if in the cellular profile the pointer to the Secondary context is set to NULL or not. If not NULL, the function will try to activate the secondary context.

The API will also check if this Secondary context is already activated or in progress of activation

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000006
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00003001
	The requested bearer is not possible

	0X00003009
	The requested connection type is not valid

	0X00003201
	No Primary context activated

	0X00003202
	The secondary context doesn’t exist

	0X00003203
	The secondary context is already activated/created

	0X00003204
	The secondary context activation is in progress

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	0XF0000002
	The authentication is failed

Change 10: Change 7.5.12 to support profile id instead of name
7.20.1 CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async()

The CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async() function is used to disconnect from the network. CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async is asynchronous; it initiates the disconnect operation and then returns immediately. When the disconnect operation has finished the Callback CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete is invoked.
	Prototype

	dword CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async (dword deviceID, dword CellularProfileID, byte SecondaryContextnumber)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile to be used for this function. 0xFFFF is reserved and cannot be used.

	SecondaryContext number
	Input
	Secondary context number from 1 to 16. The API will check if in the cellular profile the pointer to the Secondary context is set to NULL or not. If not NULL, the function will try to deactivate the secondary context.

The API will also check if this Secondary context is already deactivated or in progress of deactivation

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000006
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00003002
	There is no connection to disconnect from

	0X00003009
	The requested connection type is not valid

	0X00003202
	The secondary context doesn’t exist

	0X00003205
	The secondary context is already deactivated

	0X00003206
	The secondary context deactivation is in progress

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 11: Change 7.5.13 to support profile id instead of name
CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async()

The CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async() function is used to cancel of connect operation (as a result of a call to CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async). CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async is asynchronous; it initiates the cancelation of an ongoing connect operation and then returns immediately. When the cancellation of the connect operation has finished, the Callback CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async_Complete is invoked.

	Prototype

	dword CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async (dword deviceID, dword CellularProfileID, byte SecondaryContextnumber)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile to be used for this function. 0xFFFF is reserved and cannot be used.

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

The API will check if in the cellular profile the pointer to the Secondary context is set to NULL or not. If not NULL, the function will try to activate the secondary context.

The API will also check if this Secondary context is already deactivated or in progress of deactivation

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00002002
	The cellular profile ID is not valid

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00003004
	There is no connecting session for cancellation

	0X00003005
	The Connection is releasing

	0X00003202
	The secondary context doesn’t exist

	0X00003207
	The secondary context is already deactivating

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 12: Change 7.6.1 to support profile id instead of name
CMAPI_NetCon_GetConnectionStatus()

The CMAPI_NetCon_GetConnectionStatus() is used to obtain information about the connection status.
	Prototype

	
dword CMAPI_NetCon_GetConnectionStatus (dword deviceID, dword CellularProfileID, dword* pConnectionStatus, dword* pTypes, IPAddress* pAddress, dword* pAddressSize, qword* pTxDataRate, qword* pRxDataRate, qword* pTxPackets, qword* pRxPackets, qword* pTxBytes, qword* pRxBytes, dword* pDuration)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	Optional - The ID of the Cellular Profile to be used for this function. 0xFFFF is used in the optional condition.

	pConnectionStatus
	Output
	Connection status values:

· 0x00000000: Connected

· 0x00000001: Disconnected (it may be possible to distinguish between passive and active disconnection)

· 0x00000002: Connecting

· 0x00000003: Disconnecting

· 0x00000004: Scanning

· 0x00000010: Unknown state

	pTypes
	Output
	Indication of the radio access technology currently used

In the case of a device with multiple radios, there MAY be multiple settings returned.

· 0x00000010: GSM service

· 0x00000020: GPRS service

· 0x00000040: EDGE service

· 0x00000080: CDMA service

· 0x00000100: QNC service

· 0x00000200: 1X-RTT service

· 0x00000400: EV-DO service

· 0x00000800: EV-DV service

· 0x00001000: IOTA service

· 0x00002000: IOTA REVA service

· 0x00004000: UMTS service

· 0x00008000: HSDPA service (Included for legacy purpose, not all operators use HSDPA+)

· 0x00010000: HSUPA service

· 0x00020000: HSPA Plus service

· 0x00040000: PHS service

· 0x00080000: FOMA service

· 0x00100000: LTE service

· 0x10000000: WLAN service

	pAddress
	Output
	IPaddress on interface

	pAddressSize
	Input/Output
	The size of the IPAddress buffer on input. If insufficient, contains the size needed on return.

	pTxDataRate
	Output
	Transmitted Connection Data Rate in Kbit/s

	pRxDataRate
	Output
	Received Connection Data Rate in Kbit/s

	pTxPackets
	Output
	Number of packets transmitted since connection establishment

	pRxPackets
	Output
	Number of packets received since connection establishment

	pTxBytes
	Output
	Number of bytes transmitted since connection establishment

	pRxBytes
	Output
	Number of bytes received since connection establishment

	pDuration
	Output
	Number of seconds elapsed since connection establishment

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The cellular profile ID does not exist

	0X00002002
	The Cellular profile ID is not valid

	0X30000007
	The IPAddress buffer is not sufficient to hold the address. IPAddressSize contains the minimum number of bytes required.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 13: Change 7.6.2 to support profile id instead of name
CMAPI_NetCon_SetAutoConnectMode()

The CMAPI_NetCon_SetAutoConnectMode() function is used to set/disable “autoconnect” mode. When the autoconnect functionality is triggered, the default profile for the device will be used to make the connection. The default profile must be set in the CMAPI_NetCon_SetDefaultProfile method. If there is need to request the PIN, this will be signalled asynchronously as needed through the callback CMAPI_Callback_VerifyPIN. The application should register for the callback before turning on one of the autoconnect modes. If the application does not register and the autoconnect is triggered when a PIN is required, the autoconnect function will not be successful and the application cannot be notified.
	Prototype

	
dword CMAPI_NetCon_SetAutoConnectMode (dword deviceID, dword CellularProfileID, dword Mode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	Optional - The ID of the Cellular Profile to be used for this function. 0xFFFF is used in the optional condition.

	Mode
	Input
	· 0x00000000: Disable autoconnect
· 0x00000001: Enable for home network

· 0x00000002: Enable for home and roaming network

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00002002
	The Cellular profile ID is not valid

	0X00002005
	A default profile has not been set for this device.

	0X0000300A
	There is currently a connection which prevents this operation. It is necessary to disconnect before the requested operation can be completed.

	0X00003101
	The requested mode is not valid.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 14: Change 7.6.3 to support profile id instead of name
7.20.2 CMAPI_NetCon_GetAutoConnectMode()

The CMAPI_NetCon_GetAutoConnectMode() function is used to return the current “autoconnect” mode.

	Prototype

	
dword CMAPI_NetCon_GetAutoConnectMode (dword deviceID, dword CellularProfileID, dword* pMode)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	Optional - The ID of the Cellular Profile to be used for this function. 0xFFFF is used in the optional condition.

	pMode
	Output
	· 0x00000000: Disable autoconnect
· 0x00000001: Enable for home network

· 0x00000002: Enable for home and roaming network

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00002002
	The Cellular profile ID is not valid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 15: Change 7.6.4 to support profile id instead of name
CMAPI_NetCon_SetDefaultProfile()

The CMAPI_NetCon_SetDefaultProfile() function is used to identify the profile that shall be used when the device is in auto connect mode (See CMAPI_NetCon_SetAutoConnectMode).
	Prototype

	
 dword CMAPI_NetCon_SetDefaultProfile (dword deviceID, dword CellularProfileIDdefault)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileIDdefault

	Input
	The cellular profile ID per default (reference CellularProfileID). 0xFFFF is reserved and cannot be used.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00002002
	The Cellular profile ID is not valid

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 16: Change 7.6.7 to support profile id instead of name
CMAPI_NetCon_SetNoDataProfile()

The CMAPI_NetCon_SetNoDataProfile() function is used to set up (enabled or disabled) the nodataprofile. The nodataprofile is used, for example, to simulate in LTE the equivalent of Attachment in 3G as in LTE, there is no similar behaviour - always connected.

	Prototype

	
 dword CMAPI_NetCon_SetNoDataProfile (dword deviceID, dword CellularProfileID, dword State)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	Cellular Profile ID, the unique identity for a profile. 0xFFFF is reserved and cannot be used.

	State

	Input
	To indicate if the Nodataprofile needs to be enabled or not:

· 0x00000000: disabled

· 0x00000001: enabled

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 17: Change 7.6.8 to support profile id instead of name
CMAPI_NetCon_GetNoDataProfile()

The CMAPI_NetCon_GetNoDataProfile() function is used to return the current state of the nodata profile (enabled or disabled).

	Prototype

	
dword CMAPI_NetCon_GetNoDataProfile (dword deviceID, dword* pCellularProfileID, dword* pState)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	pCellularProfileID
	Output
	Cellular Profile ID, the unique identity for a profile. 0xFFFF is reserved and cannot be used.

	
	
	

	pState
	Output
	To indicate if the Nodataprofile is enabled or not:

· 0x00000000: disabled

· 0x00000001: enabled

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 18: Change 7.13.1 to support profile id instead of name
CMAPI_NetStatistic_GetConnectionStatistics()

The CMAPI_NetStatistic_GetConnectionStatistics() function is used to obtain network traffic statistics info

	Prototype

	
 dword CMAPI_NetStatistic_GetConnectionStatistics (dword deviceID, dword CellularProfileID, qword* pTx, qword* pRx, qword* pAverageTx, qword* pAverageRx, qword* pMaxTx, qword* pMaxRx, qword* pDuration, dword* pOverflow)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	Optional - The ID of the Cellular Profile to be used for this function. 0xFFFF is used in the optional condition.

	pTx
	Output
	Bytes sent for a given connection

	pRx
	Output
	Bytes received for a given connection

	pAverageTx
	Output
	Average upload speed in Bit/s for the given connection

	pAverageRx
	Output
	Average download speed in Bit/s for the given connection

	pMaxTx
	Output
	Maximum upload speed in Bit/s for the given connection

	pMaxRx
	Output
	Maximum download speed in Bit/s for the given connection

	pDuration
	Output
	The connection duration in milliseconds

	pOverflow
	Output
	Bitmap parameter to signal overflow argument

· 0x00000001: Tx overflow

· 0x00000002: Rx overflow

· 0x00000004: duration overflow

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000111
	The device is not connected

	0X00002001
	The Cellular profile ID does not exist

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 19: Change 7.14.6 to support profile id instead of name
CMAPI_Information_GetAPN()

The CMAPI_Information_GetAPN() function is to obtain the APN identifier.

To iterate through the supplied APNs, the caller would start at the 0 index and monotonically increment the index until the error code indicates there are no more records available.

The APN is defined in [3GPP TS 23.003] as of consisting of a mandatory Network Identifier and an optional Operator Identifier.

	Prototype

	dword CMAPI_Information_GetAPN (dword deviceID, RadioType Radio, dword CellularProfileID, dword index, UTF8* pNetworkIdentifier, dword* pNetworkIdentifierSize, UTF8* pOperatorIdentifier, dword* pOperatorIdentifierSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Radio
	Input
	See RadioType definition

	CellularProfileID
	Input
	Optional - The ID of the Cellular Profile to be used for this function. 0xFFFF is used in the optional condition.

	index
	Input
	The index of the entry to return (0xFFFFFFFF returns the current APN in use)

	pNetworkIdentifier
	Output
	The network identifier

	pNetworkIdentifierSize
	Input/Output
	The size of the network identifier buffer

	pOperatorIdentifier
	Output
	The operator identifier

	pOperatorIdentifierSize
	Input/Output
	The size of the operator identifier buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000105
	The radio references a radio which the device does not support.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00006004
	The supplied index identifies a record which does not exist.

	0X00006005
	Current APN cannot be retrieved because there is no connection.

	0X30000004
	The network identifier buffer is not large enough, pNetworkIdentifierSize holds the minimum necessary size in bytes

	0X30000005
	The operator identifier buffer is not large enough, pOperatorIdentifierSize holds the minimum necessary size in bytes.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 20: Change 7.14.7 to support profile id instead of name
CMAPI_Information_GetIPAddress()

The CMAPI_Information_GetIPAddress() function is used to retrieve the current IP address assigned to the device and the type of the address assigned.

	Prototype

	dword CMAPI_Information_GetIPAddress (dword deviceID, dword CellularProfileID, dword addressType, IPAddress* pAddress, dword* pAddressSize)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile to be used for this function

If the ID is set to "0xFFFF", the IPAddress of the WLAN interface is returned

	addressType
	Input
	The types of IP Address to return

· 0x00000001: IPv4

· 0x00000002: IPv6 (IPv4-compatible IPv6 Address in case of IPv4 address)

· 0x00000003: IPv6 (IPv4-mapped IPv6 address in case of IPv4 address)

	pAddress
	Output
	The address for the current connection

	pAddressSize
	Input/Output
	The address size

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred..

	0X00000014
	Not connected

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000105
	 The radio references a radio which the device does not support.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00006006
	The type of IP address is not available.

	0X00006007
	IP Address is not currently assigned (advisable to retry call)

	0X00006008
	Authentication failure

	0X30000024
	The address buffer is not large enough, pAddressSize contains the minimum required size in bytes.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 21: Change 7.14.11 to support profile id instead of name
CMAPI_Information_GetQoS()

The CMAPI_Information_GetQoS() function is used to retrieve the QoS parameters related to the network as defined in [3GPPTS 23.107].

	Prototype

	dword CMAPI_Information_GetQoS (dword deviceID,dword CellularProfileID, QoSStructure* pQoSContextList, dword* pQoSContextListSize, dword* pQoSContextListCount)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	Cellular Profile ID, the unique identity for a profile. 0xFFFF is reserved and cannot be used.

	pQoSContextList
	Output
	The list of the QoS structures per context associated with the Cellular Profile ID

	pQoSContextListSize
	Input/Output
	The size of the buffer in Bytes for the QoSContextlist or if insufficient, contain the necessary size

	pQoSContextListSizeCount
	Output
	Number of entries in the list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000013
	QoS unsupported

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X00002001
	The Cellular profile ID does not exist

	0X00006003
	Remote system not present

	0X30000026
	The pQoSContextList Buffer is not large enough.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

Change 22: Change 8.3.4 to support profile id instead of name
CMAPI_Callback_Connect_Async_Complete()

The CMAPI_Callback_Connect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_Connect_Async .

	Prototype

	dword CMAPI_Callback_Connect_Async_Complete (CallbackStatus status, dword deviceID, dword CellularProfileID, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile it applies to.

	result
	Input
	· 0x00000000: The connection succeeded

· 0x00000001: The connect attempt failed, reason : The network connection was refused by network

· 0x00000002: The connect attempt failed, reason : TBD

Change 23: Change 8.3.5 to support profile id instead of name
CMAPI_Callback_Disconnect_Async_Complete()

The CMAPI_Callback_Disconnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_Disconnect .

	Prototype

	dword CMAPI_Callback_Disconnect_Async_Complete (CallbackStatus status, dword deviceID, dword CellularProfileID, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile it applies to

	result
	Input
	· 0x00000000: The disconnect operation succeeded

· 0x00000001: The disconnect attempt failed, reason : TBD

Change 24: Change 8.3.6 to support profile id instead of name
CMAPI_Callback_CancelConnect_Async_Complete()

The CMAPI_Callback_CancelConnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_CancelConnect_Async.

	Prototype

	dword CMAPI_Callback_CancelConnect_Async_Complete (CallbackStatus status, dword deviceID, dword CellularProfileID, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile it applies to

	result
	Input
	· 0x00000000: The connect operation was cancelled.

· 0x00000001: The cancel operation failed, reason : TBD

Change 25: Change 8.3.7 to support profile id instead of name
CMAPI_Callback_SessionStateChange()

The CMAPI_Callback_SessionStateChange() function is used to communicate the session state change

	Prototype

	dword CMAPI_Callback_SessionStateChange (dword deviceID, dword CellularProfileID, dword connectionStatus)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile it applies to

	connectionStatus
	Input
	The new status of the connection of the device:

· 0x00000000: Connected

· 0x00000001: Disconnected (it may be possible to distinguish between passive and active disconnection)

· 0x00000002: Connecting

· 0x00000003: Disconnecting

· 0x00000004: Scanning

· 0x00000010: Unknown state

Change 26: Change 8.3.19 to support profile id instead of name
CMAPI_Callback_ByteCount

The CMAPI_Callback_ByteCount() function is used to indicate the current byte count. This is a periodic notification. This callback SHALL be made immediately when the application registers for this message. The callback SHALL also occur at a maximum of every 15 seconds when the connection is not Dormant. The OpenCMAPI implementation is free to make this callback sooner if deemed useful, in any event the callback MAY NOT occur with greater frequency than once a second. The byte count accumulates between the last connection and either a manual disconnect or some other event that causes the radio to be in disconnected state. This callback must not occur while in the disconnected state.

	Prototype

	dword CMAPI_Callback_ByteCount (dword deviceID, dword CellularProfileID, qword Tx, qword Rx, dword wrapped)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile it applies to

	Tx
	Input
	The current count of Tx bytes.

	Rx
	Input
	The current count of Rx bytes

	wrapped
	Input
	This is used to denote when Tx and/or Rx counters have overflowed. Counting will continue like normal and the indication will be set once for each overflow. The following definition is a bitwise combination and allows for Tx and/or Rx to be set at the same time.

· 0x00000000: No Overflow

· 0x00000001: Tx overflow

· 0x00000002: Rx overflow

Change 27: Change 8.3.21 to support profile id instead of name
CMAPI_Callback_QoSChange()

The CMAPI_Callback_QoSChange() function is used to communicate a change in QoS as defined in [3GPP TS 23.107].

	Prototype

	dword CMAPI_Callback_QoSChange (dword deviceID, dword CellularProfileID, QoSStructure* QoS)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile it applies to

	QoS
	Input
	See QoS Structure definition

Change 28: Change 8.3.33 to support profile id instead of name
CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect_Async_Complete()

The CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async.

	Prototype

	dword CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect_Async_Complete (CallbackStatus status, dword deviceID, dword CellularProfileID, byte SecondaryContextnumber, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile it applies to

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

	result
	Input
	· 0x00000000: The connection succeeded

· 0x00000001: The connect attempt failed, reason: The network connection was refused by network

· 0x00000002: The connect attempt failed, reason: TBD

Change 29: Change 8.3.34 to support profile id instead of name
CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete()

The CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Aysnc.

	Prototype

	dword CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete (CallbackStatus status, dword deviceID, dword CellularProfileID, byte SecondaryContextnumber, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile it applies to

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

	result
	Input
	· 0x00000000: The disconnect operation succeeded

· 0x00000001: The disconnect attempt failed, reason: TBD

Change 30: Change 8.3.35 to support profile id instead of name
CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async_Complete()

The CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async_Complete() function is invoked as a result of a previous call to CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async.

	Prototype

	dword CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async_Complete (CallbackStatus status, dword deviceID, dword CellularProfileID, byte SecondaryContextnumber, dword result)

	Parameters

	Field Name
	Mode
	Description

	status
	Input
	The status of the callback.

	deviceID
	Input
	The ID of the device concerned

	CellularProfileID
	Input
	The ID of the Cellular Profile it applies to

	SecondaryContext number
	Input
	Secondary context number from 1 to 16.

	result
	Input
	· 0x00000000: The connect operation was cancelled.

· 0x00000001: The cancel operation failed, reason : TBD

Change 31: Change 9.1 Buffer Error Codes to support profile id instead of name
	Buffer Error Codes

	
	Listing all buffer error codes

	0X30000000
	The OpenCMAPIVersion buffer is not large enough

	0X30000001
	The buffer is not sufficient to hold the data, pCellularProfileSize will contain the minimum number of bytes required.

	0X30000002
	The buffer is not sufficient to hold the data, the pCellularProfileIDListSize will contain the minimum number of bytes required.

	0X30000003
	The size of the network info buffer is insufficient. pNetworkInfoSize contains the minimum number of bytes required.

	0X30000004
	The network identifier buffer is not large enough, pNetworkIdentifierSize holds the minimum necessary size in bytes

	0X30000005
	The operator identifier buffer is not large enough, pOperatorIdentifierSize holds the minimum necessary size in bytes.

	0X30000006
	The RFInfoList buffer is not large enough

	0X30000007
	The IPAddress buffer is not sufficient to hold the address. IPAddressSize contains the minimum number of bytes required.

	0X30000008
	The pFile buffer was insufficient; pFileSize contains the minimum number of bytes required.

	0X30000009
	The buffer is insufficient. pScanListSize contains the minimum number of bytes necessary to hold the scan list.

	0X3000000A
	The NAI buffer is insufficient. pNAISize contains the minimum number of bytes required.

	0X3000000B
	The address buffer is insufficient. The size parameter contains the minimum required byte size.

	0X3000000C
	The primary ha address buffer is insufficient. The size parameter contains the minimum required byte size.

	0X3000000D
	The secondary ha address buffer is insufficient. The size parameter contains the minimum required byte size.

	0X3000000E
	The description buffer needs to be larger; the description length is set to the minimum number of bytes required.

	0X3000000F
	The unique identifier buffer needs to be larger; the unique identifier length is set to the minimum number of bytes required.

	0X30000010
	The manufacturer name buffer is not large enough.

	0X30000011
	The Model buffer is not large enough.

	0X30000012
	The device name buffer is not large enough.

	0X30000013
	The IMSI buffer is not large enough

	0X30000014
	The NAA name buffer is not large enough

	0X30000015
	The MDN buffer is not large enough

	0X30000016
	The IMEI buffer is not large enough

	0X30000017
	The ESN buffer is not large enough.

	0X30000018
	The MEID buffer is not large enough

	0X30000019
	The MSISDN buffer is not large enough

	0X3000001A
	The FWVersion buffer is not large enough

	0X3000001B
	Frequency Band buffer not large enough

	0X3000001C
	Channel Number UL buffer not large enough

	0X3000001D
	Channel Number DL buffer not large enough

	0X3000001E
	 The SSID buffer is not large enough. pSSIDSize contains the minimum required buffer size in bytes.

	0X3000001F
	The BSSID buffer is not large enough. pBSSIDSize contains the minimum required buffer size in bytes.

	0X30000020
	The pParameters buffer is not large enough. pParametersSize contains the minimum buffer length required.

	0X30000021
	The pMacAddress buffer is not large enough. pMacAddressSize contains the minimum buffer length required.

	0X30000022
	The pPINPUKStatusList is not large enough.

	0X30000023
	The buffer is not large enough to hold the required data. pDataSize is set to the minimum required size in bytes.

	0X30000024
	The address buffer is not large enough, pAddressSize contains the minimum required size in bytes.

	0X30000025
	Version buffer is not large enough, pDriverVersionSize contains the required size in bytes.

	0X30000026
	The pQoSContextList Buffer is not large enough.

	0X30000027
	The pICCID buffer is not large enough.

	0X30000028
	The structure is not sufficient to hold the data, the CellularProfileIDListSize will contain the minimum number of bytes required.

	0X30000029
	The pDevAttributes Buffer is not large enough.

	0X30000030
	The buffer is not sufficient to hold the data, the pHomeNetworkNamelength will contain the minimum number of bytes required.

	0X30000031
	The buffer is not sufficient to hold the data, the pServingNetworkInfoListSize will contain the minimum number of bytes required.

	0X30001000
	The size for the pNAAlist buffer is not sufficient, the NAAListsize will contain the number of the elements in the list.

	0X30005001
	The SMS record buffer is not large enough.

	0X30005002
	SMSCValue buffer is not large enough

	0X30005003
	PSIValue buffer is not large enough

	0X30005004
	The size for the plDList buffer is not sufficient, the plDListSize will contain the number of the elements in the list.

	0X30007001
	The ServerAddress buffer needs to be larger, The ServerAddressSize is set to the minimum number of bytes required.

	0X30007002
	The ServerFQDN buffer needs to be larger. The ServerFQDNSize is set to the minimum number of bytes required.

	0X30007003
	The timestamp buffer is not large enough.

	0X30009001
	The pRouterConfigList buffer is not large enough

	0X30009002
	The pConDevList buffer is not large enough

	0X30009003
	The pPolicyList buffer is not large enough

	0X30009004
	The pRestrictList buffer is not large enough

	0X30010001
	The size of the network structure is not large enough pSize contains the minimum size required.

	0X30010002
	The address buffer is not large enough, pAddressSize contains the minimum required size in bytes.

	0X30010003
	Version buffer is not large enough, pSize contains the required size in bytes.

	0X30010004
	The pSEServices Buffer is not large enough, pSEServicesSize contains the required size in bytes

Change 32: Change 9.1 Profile Error Codes to support profile id instead of name
	Profile Error Codes

	0X00002001
	The Cellular profile ID does not exist

	0X00002002
	The Cellular profile ID is not valid

	0X00002003
	The Cellular profile ID already exists, this only happen when creating a profile with an existing ID

	0X00002004
	The Cellular profile can not be updated while currently in use (connected)

	0X00002005
	A default profile has not been set for this device.

	0X00002101
	The user name is not valid

	0X00002102
	The password is not valid

	0X00002104
	The APN is not valid

	0X00002105
	The IP Address is not valid

	0X00002106
	The primary DNS address is not valid

	0X00002107
	The secondary DNS address is not valid

	0X00002108
	The Auth type is not valid

	0X00002109
	The IPAddrType is not valid

	0X0000210A
	The profile type is not valid

	0X0000210B
	The timeout is not valid

	0X00002202
	The type of IP address is not available.

Change 33: Fix small typo in 7.5.5
CMAPI_NetConnectSrv_GetNetworkList_Sync()

 The CMAPI_NetConnectSrv_GetNetworkList_Sync() will search and compile a list of available Networks. The calling thread will be blocked until the search has completed.

	Prototype

	dword CMAPI_NetConnectSrv_GetNetworkList_Sync (dword deviceID, dword Timeout, NetworkInfoType* pNetworkInfo, dword* pNetworkInfoSize, dword* pNetworkInfoCount)

	Parameters

	Field Name
	Mode
	Description

	deviceID
	Input
	The ID of the device concerned

	Timeout
	Input
	The maximum time out for the network search (in seconds)

	pNetworkInfo
	Output
	The Network Information (see NetworkInfoType definition) buffer. The NetworkInfo structures will be laid out at the front of the buffer.

	pNetworkInfoSize
	Input/Output
	The size of the network info buffer or if insufficient contains the necessary size.

	pNetworkInfoCount
	Output
	The total number of elements in the array of NetworkInfo

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred.

	0X00000101
	The deviceID references a non-existing device or a device which is not open

	0X00000104
	The device does not contain hardware which supports this operation.

	0X00000130
	The device is not in a power state which allows this operation.

	0X30000003
	The size of the network info buffer is insufficient. pNetworkInfoSize contains the minimum number of bytes required.

	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 35)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 35)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

