OMA-TS-OpenCMAPI_Web_V1_1-20140505201409xx-D
Page 5 V(50)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Open Connection Manager WebAPI

	Draft Version 1.1 – xx Sep 2014

	Open Mobile Alliance

	OMA-TS-OpenCMAPI_Web_V1_1-201409xx-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
4.1
Version 1.1
8
5.
Detailed API specification
9
5.1
Device Discovery
9
5.2
Payload Data Structure of CMAPI interface messages
9
5.2.1
CMAPI-1 Messages
9
5.2.2
CMAPI-2 Messages
10
5.2.3
Binary Data Handling
11
5.2.4
Message Examples (Informative)
11
5.3
Error Codes
13
5.3.1
Error Codes
13
5.3.2
UICC Status Words
20
5.4
WebAPI Transport Bindings
21
5.4.1
WebSocket Transport Binding
21
5.4.2
HTTP Transport Binding
23
5.5
Security Considerations
24
Appendix A.
Change History (Informative)
25
A.1
Approved Version History
25
A.2
Draft/Candidate Version 1.1 History
25
Appendix B.
Static Conformance Requirements (Normative)
27
B.1
SCR for Mobile Broadband Device
27
B.2
SCR for laptop
27
B.3
SCR for wireless router
28
B.4
SCR for M2M device
28
B.5
SCR for Smart Phone
29
B.6
SCR for Tablets
29
B.7
SCR for Cloud Devices
30
Appendix C.
Web IDL Definitions (Informative)
31
Appendix D.
JavaScript Library of WebSocket API Binding (Informative)
32

Figures

No table of figures entries found.
Tables

13Table 1: CMAPI-1 Request Message Data Structure

13Table 2: CMAPI-1 Response Message Data Structure

14Table 3: CMAPI-2 Callback Message Data Structure

23Table 4: Return Values & Error Codes

24Table 5: Status Words Codes

29Table 6: CMEE Codes

30Table 6: Steps of Handling a CMAPI-1 Function Call

30Table 7: Steps of Handling a CMPI-1 Response Message

31Table 8: Extra Step of Handling a Callback Registration

31Table 9: Extra Step of Handling a Callback Unregistration

32Table 10: Steps of Handling a Callback

47Table 11: List CMAPI-1 Functions

48Table 12: List CMAPI-2 Functions

1. Scope

This specification of the OpenCMAPI defines interfaces (derived from [OpenCMAPI-TS]), through which connection management services are made available to Web applications.

The specification addresses the requirements enumerated in [OpenCMAPI-RD] and adheres to the architecture described in [OpenCMAPI-AD].
2. References

Normative References

	[JSON-RPC]
	“JSON RPC (Remote Procedure Call) Specification 2.0”,

URL: http://www.jsonrpc.org/specification

	[OpenCMAPI-TS]
	“Open Connection Manager API”, Open Mobile Alliance™, OMA-TS-OpenCMAPI-V1_1,

URL: http://www.openmobilealliance.org/

	[OpenCMAPI-AD]
	“Open Connection Manager API Architecture”, Open Mobile Alliance™, OMA-AD-OpenCMAPI-V1_1, URL: http://www.openmobilealliance.org/

	[OpenCMAPI-RD]

	“Open CM API Requirements”, Open Mobile Alliance™, OMA-RD-OpenCMAPI-V1_1,
URL: http://www.openmobilealliance.org/

	[OpenCMAPI-SUP-JSD]
	“JSON schema for the Open Connection Manager API”, Open Mobile Alliance™, OMA-SUP-JSD_deviceapi_opencmapi-V1_1, URL: http://www.openmobilealliance.org/

	[OpenCMAPI-SUP-WIDL]
	 “JSON schema for the Open Connection Manager API”, Open Mobile Alliance™, OMA-SUP-WIDL_ deviceapi_opencmapi-V1_1, URL: http://www.openmobilealliance.org/

	[RFC1034]
	"DOMAIN NAMES - CONCEPTS AND FACILITIES", P. Mockapetris, November 1987, URL:http://tools.ietf.org/html/rfc1034

	[RFC1035]
	"DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION", P. Mockapetris, November 1987, URL:http://tools.ietf.org/html/rfc1035

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,

URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999,

URL: http://www.ietf.org/rfc/rfc2616.txt

	[RFC6455]
	“The Web Socket Protocol”, I. Fette and A. Melnikov, December 2011,

URL: http://tools.ietf.org/html/rfc6455

	[RFC7159]
	“The JavaScript Object Notation (JSON) Data Interchange Format“,T. Bray, Ed., March 2014, URL:http://tools.ietf.org/html/rfc7159

	
	

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures,

URL: http://www.openmobilealliance.org/

	[Wi-Fi Alliance HS2.0 TS]
	Hotspot 2.0 (Release 2) Technical Specification version 1.0.0, Wi-Fi Alliance Wi-Fi CERTIFIED Passpoint™ (Release 2) program,

URL:https://www.wi-fi.org/Hotspot_2-0_(R2)_Technical_Specification_v1-0-0.pdf

Informative References

	[JSON-Schema]
	“JSON Schema: core definitions and terminology”, Francis Galiegue, Kris Zyp, Gary Court, URL:http://tools.ietf.org/html/draft-zyp-json-schema-04
Note: The referenced IETF draft is a work in progress, subject to change without notice.

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL: http://www.openmobilealliance.org/

	[RFC4122]
	“A Universally Unique IDentifier (UUID) URN Namespace”, P. Leach, M. Mealling, R. Salz, July 2005, URL: http://www.ietf.org/rfc/rfc4122.txt

	[RFC6202]
	“Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP”, April 2011, URL:http://tools.ietf.org/rfc/rfc6202.txt

	[W3C_WebSocket]
	“The WebSocket API”, W3C Candidate Recommendation 20 September 2012, Ian Hickson, ed., URL:http://www.w3.org/TR/websockets/

	
	

	
	

3. Terminology and Conventions

Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

Definitions
For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].
	Hotspot 2.0
	Hotspot 2.0 [Wi-Fi Alliance HS2.0 TS] (also known as Passpoint) is a set of specifications from the Wi-Fi Alliance.

	JSON
	The JSON refers to the definition of [RFC7159].

	Long Polling
	A variation of the traditional polling technique, where the server does not reply immediatelly to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of a push mechanism from a server to a client.

Abbreviations

	ANDSF
	Access Network Discovery and Selection Function

	API
	Application Programming Interface

	CM
	Connection Manager

	D2D
	Device to Device

	DNS
	Domain Name System

	GNSS
	Global Navigation Satellite System

	HTTP
	HyperText Transfer Protocol

	IoT
	Internet of Things

	JSON
	JavaScript Object Notation

	M2M
	Machine to Machine

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	OpenCMAPI
	Open Connection Manager (CM) Application Programming Interface (API)

	PIN
	Personal Identification Number

	ProSe
	Proximity Services (Also referred to as LTE D2D)

	PUK
	Personal Unlocking Key also called UNBLOCK PIN.

	RFC
	Request For Comments

	RPC
	Remote Procedure Call

	SCR
	Static Conformance Requirements

	SMS
	Short Message Service

	TLS
	Transport Layer Security

	UICC
	Universal Integrated Circuit card

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	USSD
	Unstructured Supplementary Service Data

	WLAN
	Wireless Local Area Network

4. Introduction

With the multiplicity of networks available and the need for more connectivity, there is a market demand for a standardized WebAPI to provide connection management functionalities which would facilitate development and integration of Connection Manager Web Applications as well as to provide more status information about the connection to any Web application using mobile data services.
The goal of the OMA OpenCM WebAPI is to facilitate the development of Connection Manager Web Applications to the mobile environment and to provide additional services such as Information Status to Web applications relying on connectivity to mobile networks.
In this context, the Technical Specification for the Open Connection Management WebAPI defines a WebAPI binding for the [OpenCMAPI_TS] specification, i.e. it provides the CMAPI device discovery, a transport independent JSON-RPC payload data structure, return values, error codes and two transport bindings (native HTTP and WebSockets).
In the context of this specification a WebIDL [OpenCMAPI-SUP-WIDL] and a JSON schema [OpenCMAPI-SUP-JSD] is provided.
Appendix D. describes how a JavaScript Library implements the WebAPI based on WebSocket Transport binding.
Version 1.1

Version 1.1 is the first version which was produced of this document as WebAPI was not part of the scope of OpenCMAPI Enabler 1.0.
This version of the specification addresses the following aspects:
· Security and concurrency control function, e.g. access control and authorization

· Device Discovery & Device Handling

· Device Services

· Cellular Network Connection Management

· PIN/PUK Management

· Interaction with the UICC

· WLAN connection management including extensions to support of Hotspot 2.0, ANDSF & user and operator preferences
· Information Status handling

· Statistics handling

· GNSS handling

· SMS&USSD management

· Push Data service management

· Callbacks & Registration/Deregistration to receive callbacks

·
· Phone Book /Contacts management support
· Support of extended device services
·
· Support of P2P (or D2D or ProSe as known in 3GPP) Direct connection

· Router Management support

· Support of IP Multimedia Services functions

· Support of dedicated M2M/IoT functions
5. Detailed API specification

This section is organized to support a comprehensive understanding of the OpenCM WebAPI design. It specifies the device discovery, message payload data structures, transport bindings and error handling.
Device Discovery
All devices implementing the Web Binding of OpenCMAPI v1.1 SHALL register the name “cmapi.device” on its local network. Thus those devices SHALL be discovered by innate DNS ([RFC1034], [RFC1035]) resolution of “cmapi.device”.
Payload Data Structure of CMAPI interface messages
This section defines the transport independent representation of CMAPI-1 and CMAPI-2 interfaces.
The request and response messages are based on JSON-RPC 2.0 [JSON-RPC]. JSON-RPC is a stateless, light-weight remote procedure call based on JSON data format [RFC7158].
CMAPI functionality is implemented by using extended JSON-RPC data objects as the Application Data. A schema for each message is provided in [OpenCMAPI-SUP-JSD] that is based on [JSON-Schema].
CMAPI-1 Messages
CMAPI-1 request messages are originated from the client, response messages are originated from the CMAPI implementation.
CMAPI-1 Request Message
The CMAPI-1 request message conforms to the structure as defined in [JSON-RPC], extended by “cmapiversion”. The details are as follows:

	Member
	Type
	Optional
	Description

	jsonrpc
	String
	No
	It SHALL be the exact value of “2.0”.

	cmapiversion
	String
	No
	It SHALL be the exact value of “1.1”.

	method
	String
	No
	The name of the method to be invoked. It SHALL be the name of a function call as specified in [OpenCMAPI-TS], e.g. “CMAPI_Network_GetRFInfo”.

	id
	String
	No
	An identifier established by the Client, which is used to match the response with the request that it is replying to.

It SHALL be the globally unique identifier to distinguish each CMAPI-1 function call originated by a Web application.
Note: How such a globally unique identifier is generated is out of scope of this specification, however, it is pointed out that for example UUID [RFC4122] provides a way to implement such a scheme.

The CMAPI-1 function call and corresponding response messages SHALL have the same “id” value
Note: This specification does not use notifications as specified in [JSON-RPC], i.e. the “id” property SHALL NOT be omitted (or Null).

	params
	Object
	No
	Object, with member names that match the Server expected parameter names. It SHALL be a structure of specific parameters of a CMAPI-1 function call. The set of parameters is unique for each CMAPI-1 function call as specified in [OpenCMAPI-TS].

Table 1: CMAPI-1 Request Message Data Structure
CMAPI-1 Response Message
The CMAPI-1 response message conforms to the structure as defined in [JSON-RPC], extended by “cmapiversion”. The details are as follows:

	Member
	Type
	Optional
	Description

	jsonrpc
	String
	No
	It SHALL be the exact value of “2.0”.

	cmapiversion
	String
	No
	It SHALL be the exact value of “1.1”.

	id
	String
	No
	It SHALL be the same value of “id” member in the prior request message of corresponding function call.

Multiple sequential response messages are possible for the same prior CMAPI-1 function call. Their “id” SHALL be the same value.
If there was an error in detecting the id in the request object (e.g. parse error/invalid request), it SHALL be Null.

	error
	Object
	Yes
	In case of an error it SHALL be the error structure according to [JSON-RPC] indicating the execution status of the corresponding CMAPI-1 function call. Please refer to section 5.3 for CMAPI specific error codes.
On success this member SHALL be omitted.
The error structure SHALL include the members “code” and “message”. For “code” the integer value of the error as listed in the table in section 5.3.1 SHALL be used. For “message” the text in the description column in the table in section 5.3.1 SHALL be used.
 The error structure MAY include the member “data”. It may be a used for additional information about the error.

	result
	Object
	Yes
	On success it SHALL be a structure of the information with regard to execution outcome resulting from the function call as specified in [OpenCMAPI-TS]. In case of an error this member SHALL be omitted.
Note: The structure of the response is unique for each CMAPI-1 function call

Table 2: CMAPI-1 Response Message Data Structure

CMAPI-2 Messages
The CMAPI-2 interface is an asynchronous interface used to provide callbacks (i.e. notifications) and the registration/deregistration mechanisms to receive these callbacks.
The CMAPI-2 callback message conforms to the structure defined in [JSON-RPC], extended by “cmapiversion” and “callbackId”. The details are as follows:

	Member
	Type
	Optional
	Description

	jsonrpc
	String
	No
	It SHALL be the exact value of “2.0”.

	cmapiversion
	String
	No
	It SHALL be the exact value of “1.1”.

	id
	String
	No
	It SHALL be a globally unique identifier to distinguish each CMAPI-2 callback function.

Note: How such a globally unique identifier is generated is out of scope of this specification, however, it is pointed out that for example UUID [RFC4122] provides a way to implement such a scheme.
Note: This specification does not use notifications as specified in [JSON-RPC], i.e. the “id” property SHALL NOT be omitted (or null).

	error
	Object
	Yes
	In case of an error it SHALL be the error structure according to [JSON-RPC] indicating the execution status of a CMAPI-2 callback function. Please refer to section 5.3 for CMAPI specific error codes.
On success this member SHALL be omitted.

The error structure SHALL include the members “code” and “message”. For “code” the integer value of the error as listed in the table in section 5.3.1 SHALL be used. For “message” the text in the description column in the table in section 5.3.1 SHALL be used.
 The error structure MAY include the member “data”. It may be a used for additional information about the error.

	result
	Object
	Yes
	On success it SHALL be a structure of the information that the application server intends to inform the Web application as specified in [OpenCMAPI-TS].
Note: The structure of callback is unique for each CMAPI-2 callback function
In case of an error this member SHALL be omitted.

	callbackId
	String
	No
	It SHALL be present if and only if it is a CMAPI-2 callback message, and indicate the type of callback function as specified in [OpenCMAPI-TS].

Table 3: CMAPI-2 Callback Message Data Structure
Binary Data Handling
Occasionally, binary data may be passed as a parameter in a request message, or returned in a response message after the function call is executed, or part of a callback message. BASE64 encoding SHALL be applied to binary data before it is constructed into the data structure of a request message, or a response message, or a callback message.

Message Examples
(Informative)
CMAPI-1 Request Message Example
An example of a request message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:

{

 "jsonrpc": "2.0",
 “cmapiversion”: “1.1”,

 "method": "CMAPI_Network_GetRFInfo",

 "id": "111",

 "params": {

 "deviceId": "1"

 }

}
CMAPI-1 Response Message Examples
An example of a successful response message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:

{

 "jsonrpc": "2.0",
 “cmapiversion”: “1.1”,

 "id": "111",

 "result": {

 "RFInfoListElements": 1,

 "RFInfoList": [

 {

 "Radio": "WCDMA_UMTS",

 "maxDataRateUL": 1024,

 "maxDataRateDL": 1024,

 "frequencyBand": "1900 PCS",

 "channelNumberUL": "333,444",

 "channelNumberDL": "333,444"

 }

]

 }

}
An example of a error response message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:
{

 "jsonrpc": "2.0",
 “cmapiversion”: “1.1”,

 "id": "111",

 " error": {

 "code": 1,

 "message": “A fatal error has occurred.”

 }

 }
CMAPI-2 Callback Message Example
An example of a CMAPI-2 Callback Message “CMAPI_Callback_DeviceChanged()” is as follows:

{

 "jsonrpc": "2.0",
 “cmapiversion”: “1.1”,

 "id": "511",

 "callbackId": "CMAPI_Callback_DeviceChanged",

 "result": {

 "deviceId": 1,

 "deviceState": 3,

 "radio": 64,

 "deviceCapability": 1,

 "connectionType": 32,

 "deviceType": 5,

 "description": "This is a wireless router",

 "uniqueIdentifier": "1234567890"

 }

}
Error Codes
This section defines the CMAPI specific error codes and UICC Status Words.
For error handling specific to the transport please refer to the respective transport binding sections 5.5.1.4 and 5.5.2.6. For error handling specific to JSON-RPC please refer to [JSON-RPC].
Error Codes
The error codes table is used to capture the warnings, error codes and information when the Open CMAPI is running. Some additional warnings and output information can be defined depending on the implementation.
	Error Codes

	Integer Value
	Hex Value
	Description

	General Error Codes

	1
	0X00000001
	A fatal error has occurred.

	2
	0X00000002
	Invalid Parameter

	4
	0X00000004
	Invalid Operation

	5
	0X00000005
	No service

	6
	0X00000006
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	7
	0X00000007
	This optional function is not supported by this implementation

	16
	0X00000010
	The OpenCMAPI implementation cannot perform this operation since there is currently a connection which prevents the request. NOTE: The OpenCMAPI implementation may be able to apply the change in some conditions and may return success instead of this return code in some connected conditions.

	17
	0X00000011
	The type of data requested is not present

	19
	0X00000013
	QoS unsupported

	20
	0X00000014
	Not connected

	Device Error Codes

	256
	0X00000100
	The UniqueIdentifier is referencing a non-existing device

	257
	0X00000101
	The deviceID references a non-existing device or a device which is not open

	258
	0X00000102
	The device is already opened.

	259
	0X00000103
	Maximum number of device that the API can handle per client is reached (can be 1), close another open device handle.

	260
	0X00000104
	The device does not contain hardware which supports this operation.

	261
	0X00000105
	The radio references a radio which the device does not support

	262
	0X00000106
	The radio references a radio which the device does not support (exception, this error is not reported if the radio is set to 0xFF (all)).

	263
	0X00000107
	System not supported by the device

	264
	0X00000108
	The requested data is not meaningful for a 3GPP device.

	265
	0X00000109
	The requested data is not meaningful for a 3GPP2 device.

	272
	0X00000110
	The device cannot be activated while connected.

	273
	0X00000111
	The device is not connected

	274
	0X00000112
	The routerID references a non-existing router

	
	
	

	288
	0X00000120
	Configuration not supported by the device

	289
	0X00000121
	The device does not offer this capability

	304
	0X00000130
	The device is not in a power state which allows this operation.

	305
	0X00000131
	Requested power state is not supported by the device (ex power saving)

	306
	0X00000132
	Radio off

	307
	0X00000133
	The power state is invalid

	308
	0X00000134
	The system ID is invalid

	309
	0X00000135
	No IMSI available

	320
	0X00000140
	The MACAddress references a non-existing Connected Device

	336
	0X00000150
	The threshold value(s) is/are invalid

	337
	0X00000151
	The location is invalid

	352
	0X00000160
	The PDP context ID is invalid

	353
	0X00000161
	The PDP Type is invalid

	356
	0X00000164
	The back off time interval is invalid

	528
	0X00000210
	Control Key not supported by this system (when an ID of a 3GPP2 only Control Key is sent to a 3GPP system device or when an ID of a 3GPP only Control Key is sent to a 3GPP2 system device).

	529
	0X00000211
	The control key value is invalid

	UICC Error Codes

	1281
	0X00000501
	There is no smart card support for this device

	1282
	0X00000502
	Smart card not accessible

	1361
	0X00000551
	ENVELOPE command was not sent to SIM/R-UIM/UICC as overlapping was detected.

	1362
	0X00000552
	The envelope command is invalid

	1363
	0X00000553
	The terminal profile is invalid

	1364
	0X00000554
	The function succeeded except for the overlapping ToolKit functions with the device or another or other Connection Manager Application(s)

	1365
	0X00000555
	The terminal response is invalid

	Profile Error Codes

	8193
	0X00002001
	The Cellular profile name does not exist

	8194
	0X00002002
	The Cellular profile name is not valid

	8195
	0X00002003
	The Cellular profile name is already existing, only happen when creating a profile with a existing name

	8196
	0X00002004
	The Cellular profile can not be updated while currently in use (connected)

	8197
	0X00002005
	A default profile has not been set for this device.

	8449
	0X00002101
	The user name is not valid

	8450
	0X00002102
	The password is not valid

	8452
	0X00002104
	The APN is not valid

	8453
	0X00002105
	The IP Address is not valid

	8454
	0X00002106
	The primary DNS address is not valid

	8455
	0X00002107
	The secondary DNS address is not valid

	8456
	0X00002108
	The Auth type is not valid

	8457
	0X00002109
	The IPAddrType is not valid

	8458
	0X0000210A
	The profile type is not valid

	8459
	0X0000210B
	The timeout is not valid

	8706
	0X00002202
	The type of IP address is not available.

	Network Connection Error Codes

	12289
	0X00003001
	The requested bearer is not possible

	12290
	0X00003002
	There is no connection to disconnect from

	12292
	0X00003004
	There is no connecting session for cancellation

	12293
	0X00003005
	The Connection is releasing

	12294
	0X00003006
	Remote system not present

	12295
	0X00003007
	The supplied index identifies a record which does not exist.

	12296
	0X00003008
	Current APN cannot be retrieved because there is no connection.

	12297
	0X00003009
	The requested connection type is not valid

	12298
	0X0000300A
	There is currently a connection which prevents this operation. It is necessary to disconnect before the requested operation can be completed.

	12545
	0X00003101
	The requested mode is not valid

	12546
	0X00003102
	The requested PLMNID is not valid

	12547
	0X00003103
	The requested bearer or combination of bearers is not valid.

	12801
	0X00003201
	No Primary context activated

	12802
	0X00003202
	The secondary context doesn’t exist

	12803
	0X00003203
	The secondary context is already activated/created

	12804
	0X00003204
	The secondary context activation is in progress

	12805
	0X00003205
	The secondary context is already deactivated

	12806
	0X00003206
	The secondary context deactivation is in progress

	12807
	0X00003207
	The secondary context is already deactivating

	CDMA 2000 Error Codes

	16385
	0X00004001
	Unrecognized session identifier.

	16386
	0X00004002
	The SPC is valid.

	16387
	0X00004003
	The SPC is invalid.

	16388
	0X00004004
	The requested activation code is invalid.

	16389
	0X00004005
	Activation failed (other than invalid activation code).

	16390
	0X00004006
	The index is invalid

	16391
	0X00004007
	File does not exist at the given path.

	16392
	0X00004008
	An invalid PRL file is entered.

	16395
	0X0000400B
	No record exists at the specified index.

	16396
	0X0000400C
	The ACCOLC is invalid.

	16397
	0X0000400D
	The requested ForceRev0 is invalid

	16398
	0X0000400E
	The CustomSCP is invalid

	16399
	0X0000400F
	The protocol is invalid

	16400
	0X00004010
	The broadcast is invalid

	16401
	0X00004011
	The application is invalid

	16402
	0X00004012
	The roaming is invalid

	16403
	0X00004013
	The SID is invalid

	16404
	0X00004014
	The MDN is invalid

	16405
	0X00004015
	The MIN is invalid

	16406
	0X00004016
	The PRL is invalid

	16407
	0X00004017
	The MNHA is invalid

	16408
	0X00004018
	The MNAAA is invalid

	16409
	0X00004019
	The session type is invalid

	16410
	0X0000401A
	The session state is invalid

	16411
	0X0000401B
	The failure reason is invalid

	16412
	0X0000401C
	The retry count is invalid

	16413
	0X0000401D
	The session pause is invalid

	16414
	0X0000401E
	The selection is invalid

	16415
	0X0000401F
	The session id is invalid

	16416
	0X00004020
	The defer is invalid

	16417
	0X00004021
	The feature state is invalid

	16418
	0X00004022
	The update feature state is invalid.

	16419
	0X00004023
	The firmware update feature state is invalid

	16420
	0X00004024
	The reason is invalid

	16421
	0X00004025
	The mode is invalid

	16422
	0X00004026
	The enabled value is invalid

	16423
	0X00004027
	The RevTunn value is invalid

	16424
	0X00004028
	The NAI is invalid

	16425
	0X00004029
	The HASPI is invalid

	16426
	0X0000402A
	The AAASPI is invalid

	16427
	0X0000402B
	The Address parameter was not formatted properly.

	16428
	0X0000402C
	The Primary Home Agent parameter was not formatted properly.

	16429
	0X0000402D
	The Secondary Home Agent parameter was not formatted properly.

	16430
	0X0000402E
	The retry limit is invalid

	16431
	0X0000402F
	The retry interval is invalid

	16432
	0X00004030
	The Reregperiod is invalid

	16433
	0X00004031
	The Reregtraffic is invalid

	16434
	0X00004032
	The HAAuthenticator is invalid

	16435
	0X00004033
	The HA2002bis is invalid

	SMS Error Codes

	20481
	0X00005001
	Failure of communication with device

	20482
	0X00005002
	Timer expired without receiving response from device

	20483
	0X00005003
	Response with error indication from device

	20484
	0X00005004
	Operation NOT supported

	20485
	0X00005005
	SMS message NOT found

	20486
	0X00005006
	The SMS record is invalid

	20487
	0X00005007
	The ifrom value is invalid

	20488
	0X00005008
	The SMSC value is invalid

	20489
	0X00005009
	The PSI value is invalid

	20490
	0X0000500A
	The delivery report switch is invalid

	20491
	0X0000500B
	The SMS Class is invalid

	20492
	0X0000500C
	The msgID is invalid

	22785
	0X00005901
	The USSD Data is invalid

	Contact Management Error Codes

	21761
	0X00005501
	The contact record is invalid

	21762
	0X00005502
	Memory capacity exceeded.

	21763
	0X00005503
	The index is invalid

	21764
	0X00005504
	The contact location value is invalid

	Information Status Error Codes

	24577
	0X00006001
	The type of data requested is not present

	24578
	0X00006002
	The type is not valid

	24579
	0X00006003
	Remote system not present

	24580
	0X00006004
	The supplied index identifies a record which does not exist.

	24581
	0X00006005
	Current APN cannot be retrieved because there is no connection.

	24582
	0X00006006
	The type of IP address is not available.

	24583
	0X00006007
	IP Address is not currently assigned (advisable to retry call)

	24584
	0X00006008
	Authentication failure

	GNSS Error Codes

	28673
	0X00007001
	The GNSS state is invalid

	28674
	0X00007002
	The operation is invalid

	28675
	0X00007003
	The accuracy threshold is not supported

	28676
	0X00007004
	The server address is invalid.

	28677
	0X00007005
	The server port is invalid.

	28678
	0X00007006
	The server FQDN is invalid.

	28679
	0X00007007
	The tracking value is invalid

	P2P Direct Management Error Codes

	32769
	0X00008001
	The P2PTechnology is not supported

	32770
	0X00008002
	The P2P Technology is invalid

	32771
	0X00008003
	The Service Record is invalid

	32772
	0X00008004
	The list of Remote Devices is invalid.

	32773
	0X00008005
	The list of Service Identifiers is invalid.

	32774
	0X00008006
	The ID of the Connection is invalid.

	32775
	0X00008007
	The list of Device ID is invalid

	32776
	0X00008008
	The ID of the group is invalid

	32777
	0X00008009
	The ID of the Remote Device is invalid

	32778
	0X0000800A
	The Invitation ID is invalid

	Router Management Error Codes

	36865
	0X00009001
	The routerConfig value(s) are incorrect

	36866
	0X00009002
	The policy value(s) are incorrect

	36867
	0X00009003
	The restrict value(s) are incorrect

	36868
	0X00009004
	The administrator password is incorrect

	WLAN Error Codes

	65537
	0X00010001
	No network exists at the specified index.

	65538
	0X00010002
	Predefined networks are not able to be modified.

	65540
	0X00010004
	The SSID is invalid

	65541
	0X00010005
	The BSSID is invalid

	65542
	0X00010006
	The Friendly Name is invalid

	65543
	0X00010007
	The security parameter is invalid

	65544
	0X00010008
	The mode parameter is invalid

	65545
	0X00010009
	The hidden parameter is invalid

	65546
	0X0001000A
	The key is invalid

	65547
	0X0001000B
	The EAP authentication method is invalid

	65548
	0X0001000C
	The EAP configuration is invalid

	65549
	0X0001000D
	The WLAN Encryption Type is invalid

	69633
	0X00011001
	There is no existing WLAN connection

	69634
	0X00011002
	Security mode does not allow connectivity to unknown networks.

	69637
	0X00011005
	Operation is prohibited by security policy.

	69638
	0X00011006
	No pending operation.

	69639
	0X00011007
	The pin for WPS was malformed or incorrect size

	69640
	0X00011008
	The device is not connected

	69641
	0X00011009
	 Device (i.e.: WLAN only device that does not support NAA on UICC for authentication) does not support the requested function.

	73729
	0X00012001
	The SSID does not reference a valid known network.

	73730
	0X00012002
	The BSSID does not reference a valid known network

	73731
	0X00012003
	IP Address is not currently assigned (advisable to retry call)

	73732
	0X00012004
	Authentication failure

	77825
	0X00013001
	Invalid combination of AUTH and CIPHER

	77826
	0X00013002
	Index NOT referring to a valid known network

	77827
	0X00013003
	NO existing WLAN connection

	77828
	0X00013004
	IP address NOT valid

	77829
	0X00013005
	Subnet mask NOT valid

	77830
	0X00013006
	Operation prohibited by security policy

	77831
	0X00013007
	The specified index is to large and would leave a gap in the known networks list

	77832
	0X00013008
	Index is not valid for user defined networks. Please try a higher index.

	77833
	0X00013009
	The mode is invalid

	77834
	0X0001300A
	The address is invalid

	77835
	0X0001300B
	The subnet mask is invalid

	77836
	0X0001300C
	The http proxy is invalid

	77837
	0X0001300D
	The mac address is invalid

	77838
	0X0001300E
	The default gateway is invalid

	81921
	0X00014001
	The Advertisement Protocol Element is invalid

	81922
	0X00014002
	The Query List ANQP element is invalid

	81923
	0X00014003
	The HS Query List is invalid

	81953
	0X00014021
	HS 2.0 MO is not supported by the device

	81954
	0X00014022
	ANDSF MO is not supported by the device

	PIN/PUK management Error Codes

	
	
	SW1 and SW2 are the Status Words provided by the SIM/R-UIM/UICC (see next chapter). If no Status Word is provided, SW1SW2 will be replaced by “0000”.

	2684SW1SW2
	0X1001SW1SW2
	Wrong PIN.

	2685SW1SW2
	0X1002SW1SW2
	PIN is blocked. PUK (UNBLOCK PIN) needed.

	2686SW1SW2
	0X1003SW1SW2
	Wrong Old PIN.

	2687SW1SW2
	0X1004SW1SW2
	Old PIN is blocked. PUK (UNBLOCK PIN) needed.

	2688SW1SW2
	0X1005SW1SW2
	Wrong PUK.

	2689SW1SW2
	0X1006SW1SW2
	PUK (UNBLOCK PIN) blocked.

	2690SW1SW2
	0X1007SW1SW2
	Invalid parameter(s)

	285212673
	0X11000001
	The NAA Name is invalid

	285212674
	0X11000002
	The PIN Type is invalid

	285212675
	0X11000003
	The PUK Type is invalid

	Reserved for other use

	805306368 to
1073741823
	0X30000000 to
0X3FFFFFFF
	Reserved for other purpose – do not use

	M2M/IoT related Error Codes

	107381XXXX
	0X4001XXXX
	Operation cannot be done – Back off timer in place – time left is indicated by the 4 last digits (in seconds)

XXXX is the time left in seconds – example: 0X40010360 in Hex or 1073810630 in decimal mean 360 seconds are left

	10748MMCME
	0X401MMCME
	Error codes related to GSM Mobility Management where MM indicates the Mobility Management Cause code and CME the code for Mobile Equipment error.

	10759GMCME
	0X402GMCME
	Error codes related to GPRS Mobility Management where GM indicates the GPRS Mobility Management Cause code and CME the code for Mobile Equipment error.

	10769SMCME
	0X403SMCME
	Error codes related to Session Management where SM indicates the Session Management Cause code and CME the code for Mobile Equipment error.

	10780XXCMS
	0X404XXCMS
	Error codes related to other reasons where XX indicates other Cause code and CMS the code for Mobile Equipment specific error.

	Security Errors

	4026531841
	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	4026531842
	0XF0000002
	The authentication failed

	4026531843
	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

	4026531844
	0XF0000004
	The security request was malformed. Please consult vendor materials and/or output log.

	4026531845
	0XF0000005
	The requested access level is not supported

	4026531846
	0XF0000006
	The WLAN Encryption Type used is not allowed. Please use proper Encryption type

Table 4: Return Values & Error Codes
UICC Status Words
The following table is listing possible Status Words (SW1 and SW2) provided by the SIM/R-UIM/UICC in accordance with the [ETSI TS 102 221] Status Words list.
	Status Words

	
	Status words (SW1 SW2)
	Description

	144 00
	90 00
	Normal ending of the command

	145 00
	91 XX
	Normal ending of the command, with extra information from the proactive UICC containing a command for the terminal. Length 'XX' of the response data

	098 00
	62 00
	No information given, state of non volatile memory unchanged

	099 CX
	63 CX
	Command successful but after using an internal update retry routine 'X' times
Verification failed, 'X' retries remaining (For the VERIFY PIN command, SW1SW2 indicates that the command was successful but the PIN was not correct and there are 'X' retries left. For all other commands it indicates the number of internal retries performed by the card to complete the command.)

	100 00
	64 00
	No information given, state of non-volatile memory unchanged

	101 00
	65 00
	No information given, state of non-volatile memory changed

	101 81
	65 81
	Memory problem

	103 XX
	67 XX
	The interpretation of this status word is command dependent, except for SW2 = '00' (Wrong length)

	104 00
	68 00
	No information given

	104 81
	68 81
	Logical channel not supported

	104 82
	68 82
	Secure messaging not supported

	105 00
	69 00
	No information given

	105 83
	69 83
	Authentication/PIN method blocked

	105 84
	69 84
	Referenced data invalidated

	105 89
	69 89
	Command not allowed - secure channel - security not satisfied

	106 81
	6A 81
	Function not supported

	106 86
	6A 86
	Incorrect parameters P1 to P2

	106 88
	6A 88
	Referenced data not found

	107 00
	6B 00
	Wrong parameter(s) P1-P2

	110 00
	6E 00
	Class not supported

	111 XX
	6F XX
	The interpretation of this status word is command dependent, except for SW2 = '00' (Technical problem, no precise diagnosis)

Table 5: Status Words Codes
CMEE codes

The following tables are listing possible GSM Mobile Equipment error codes and GSM network error codes.
	Causes Codes Related to GSM Mobility Management

	MM

Code
	CME

Code
	Cause
	Reason
	Action proposed

	2
	
	IMSI unknown in HLR
	This cause is sent to the MS if the MS is not known (registered) in the HLR. This cause code does not affect operation of the GPRS service, although it may be used by a GMM procedure.
	

	3
	103
	Illegal MS
	This cause is sent to the MS when the network refuses service to the MS either because an identity of the MS is not acceptable to the network or because the MS does not pass the authentication check, i.e. the SRES received from the MS is different from that generated by the network.
	

	4
	
	IMSI unknown in VLR
	This cause is sent to the MS when the given IMSI is not known at the VLR.
	

	5
	
	IMEI not accepted
	This cause is sent to the MS if the network does not accept emergency call establishment using an IMEI.
	

	6
	106
	Illegal ME
	This cause is sent to the MS if the ME used is not acceptable to the network, e.g. blacklisted.
	

	11
	111
	PLMN not allowed
	This cause is sent to the MS if it requests location updating in a PLMN where the MS, by subscription or due to operator determined barring is not allowed to operate.
	

	12
	112
	Location Area not allowed
	This cause is sent to the MS if it requests location updating in a location area where the MS, by subscription, is not allowed to operate.
	

	13
	113
	Roaming not allowed in this location area
	This cause is sent to an MS which requests location updating in a location area of a PLMN which restricts roaming to that MS in that Location Area, by subscription.
	

	17
	615
	Network failure
	This cause is sent to the MS if the MSC cannot service an MS generated request because of PLMN failures, e.g. problems in MAP.
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	22
	42
	Congestion
	This cause is sent if the service request cannot be processed because of congestion (e.g. no channel, facility busy/congested etc.)
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	32
	132
	Service Option Not Supported.
	This cause is sent when the MS requests a service/facility in the CM SERVICE REQUEST message which is not supported by the PLMN.
	Additionally, device should not retry the attempt on the same PLMN unless prompted externally to do so (i.e. modem should not automatically retry).

	33
	133
	Requested Service Option Not Subscribed
	This cause is sent when the MS requests a service option for which it has no subscription.
	Additionally, device should not retry the attempt unless prompted externally to do so (i.e. modem should not automatically retry).

	34
	134
	Service option temporarily out of order
	This cause is sent when the MSC cannot service the request because of temporary outage of one or more functions required for supporting the service.
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	38
	
	Call Cannot be identified
	This cause is sent when the network cannot identify the call associated with a call re-establishment request.
	

	Causes Codes Related to GPRS Mobility Management

	GM

Code
	CME

Code
	Cause
	Reason
	Action proposed

	7
	107
	GPRS Services Not Allowed
	This cause is sent to the MS if it requests an IMSI attach for GPRS services, but is not allowed to operate GPRS services.
	

	8
	
	GPRS services and non-GPRS services not allowed
	This cause is sent to the MS if it requests a combined IMSI attach for GPRS and non-GPRS services, but is not allowed to operate either of them.
	

	9
	
	MS identity cannot be derived by the network
	This cause is sent to the MS when the network cannot derive the MS's identity from the P-TMSI in case of inter-SGSN routing area update.
	

	10
	
	Implicitly detached
	This cause is sent to the MS either if the network has implicitly detached the MS, e.g. some while after the Mobile reachable timer has expired, or if the GMM context data related to the subscription does not exist in the SGSN e.g. because of a SGSN restart.
	

	14
	111
	GPRS services not allowed in this PLMN
	This cause is sent to the MS which requests GPRS service in a PLMN which does not offer roaming for GPRS services to that MS.
	

	16
	
	MSC temporarily not reachable
	This cause is sent to the MS if it requests a combined GPRS attach or routing are updating in a PLMN where the MSC is temporarily not reachable via the GPRS part of the GSM network.
	

	
	148
	unspecified GPRS error
	
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	Causes Codes Related to Session Management

	SM

Code
	CME

Code
	Cause
	Reason
	Action proposed

	25
	
	LLC or SNDCP failure
	This cause code is used by the MS indicate that a PDP Context is deactivated because of a LLC or SNDCP failure (e.g. if the SM receives a SNSM-STATUS.request message with cause "DM received " or " invalid XID response)
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	26
	
	Insufficient resources
	This cause code is used by the MS or by the network to indicate that a PDP Context activation request or PDP Context modification request cannot be accepted due to insufficient resources.
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	27
	134
	Unknown or missing access point name
	This cause code is used by the network to indicate that the requested service was rejected by the external packet data network because the access point name was not included although required or if the access point name could not be resolved.
	Additionally, do not retry with same APN unless device is power cycled.

	28
	
	Unknown PDP address or PDP type
	This cause code is used by the network to indicate that the requested service was rejected by the external packet data network because the PDP address or type could not be recognised.
	Additionally, do not retry with same PDP address and/or type unless device is power cycled.

	29
	149
	User authentication failed
	This cause code is used by the network to indicate that the requested service was rejected by the external packet data network due to a failed user authentication (e.g. rejected by Radius)
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	30
	
	Activation rejected by GGSN
	This cause code is used by the network to indicate that the requested service was rejected by the GGSN.
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	31
	
	Activation rejected, unspecified
	This cause code is used by the network to indicate that the requested service was rejected due to unspecified reasons.
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	32
	132
	Service option not supported
	This cause code is used by the network when the MS requests a service which is not supported by the PLMN.
	Additionally, device should not retry the attempt on the same PLMN unless prompted externally to do so (i.e. modem should not automatically retry).

	33
	133
	Requested service option not subscribed
	This cause is sent when the MS requests a service option for which it has no subscription.
	Additionally, device should not retry the attempt on the same PLMN unless prompted externally to do so (i.e. modem should not automatically retry).

	34
	134
	Service option temporarily out of order
	This cause is sent when the MSC cannot service the request because of temporary outage of one or more functions required for supporting the service.
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	35
	
	NSAPI already used
	This cause code is used by the network to indicate that the NSAPI requested by the MS in the PDP Context activation is already used by another active PDP Context of this MS.
	Device may choose to use a different NSAPI, or retry after the context using the required NSAPI has been deactivated.

	36
	
	Regular PDP Context deactivation
	This cause code is used to indicate a regular MS or network initiated PDP Context deactivation.
	

	37
	
	QoS not accepted
	This cause code is used by the MS if the new QoS cannot be accepted that were indicated by the network in the PDP Context Modification procedure.
	N/A

	38
	615
	Network Failure
	This cause code is used by the network to indicate that the PDP Context deactivation is caused by an error situation in the network.
	Additionally, retry retries may be attempted, but no more frequently than once every 60 seconds

	39
	
	Reactivation requested
	This cause code is used by the network to request a PDP Context reactivation after a GGSN restart.
	Additionally, the device may re-establish the PDP Context.

	40
	
	Feature not supported
	This cause code is used by the MS to indicate that the PDP Context activation initiated by the network is not supported by the MS.
	N/A

	Causes Codes Related to other reasons

	XX

Code
	CMS

Code
	Cause
	Reason
	Action proposed

	
	8
	Operator determined barring
	This cause indicates that the device has tried to send a mobile originating short message when the device's network operator or service provider has forbidden such transactions.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	10
	Call barred
	This cause indicates that the outgoing call barred service applies to the short message service for the called destination.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	21
	Short message transfer rejected
	This cause indicates that the equipment sending this cause does not wish to accept this short message, although it could have accepted the short message since the equipment sending this cause is neither busy nor incompatible.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	27
	Destination out of service
	This cause indicates that the destination indicated by the Device cannot be reached because the interface to the destination is not functioning correctly. The term "not functioning correctly" indicates that a signalling message was unable to be delivered to the remote user; e.g., a physical layer or data link layer failure at the remote user, user equipment off-line, etc.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	28
	Unidentified subscriber
	This cause indicates that the subscriber is not registered in the PLMN (i.e. IMSI not known).
	SMS back-off, blocking immediately any new SMS TX request sent

	
	29
	Facility rejected
	This cause indicates that the facility requested by the Device is not supported by the PLMN.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	30
	Unknown subscriber
	This cause indicates that the subscriber is not registered in the HLR (i.e. IMSI or directory number is not allocated to a subscriber).
	SMS back-off, blocking immediately any new SMS TX request sent

	
	38
	Network out of order
	This cause indicates that the network is not functioning correctly and that the condition is likely to last a relatively long period of time; e.g., immediately reattempting the short message transfer is not likely to be successful.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	41
	Temporary failure
	This cause indicates that the network is not functioning correctly and that the condition is not likely to last a long period of time; e.g., the Device may wish to try another short message transfer attempt almost immediately.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	42
	Congestion
	This cause indicates that the short message service cannot be serviced because of high traffic.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	47
	Resources unavailable, unspecified
	This cause is used to report a resource unavailable event only when no other cause applies.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	50
	Requested facility not subscribed
	This cause indicates that the requested short message service could not be provided by the network because the user has not completed the necessary administrative arrangements with its supporting networks.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	69
	Requested facility not implemented
	This cause indicates that the network is unable to provide the requested short message service.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	81
	Invalid short message transfer reference value
	This cause indicates that the equipment sending this cause has received a message with a short message reference which is not currently in use on the MS-network interface.
	SMS back-off, blocking immediately any new SMS TX request sent

	
	148
	 Unspecified GPRS error
	
	

	17
	
	 Network failure
	This cause is sent to the MS if the MSC cannot service an MS generated request because of PLMN failures, e.g. Problems in MAP.
	SMS back-off, blocking immediately any new SMS TX request sent

	21
	
	Congestion
	This cause is sent if the service request cannot be processed because of congestion (e.g. no channel, facility busy/congested, etc).
	SMS back-off, blocking immediately any new SMS TX request sent

Table 6: CMEE Codes

WebAPI Transport Bindings
The specification defines two transport bindings for the CMAPI messages, first based on the WebSocket Protocol and second is based on HTTP.
WebSocket Transport Binding
This section introduces a transport binding for the CMAPI messages defined in section 5.2 using the W3C WebSocket API [W3C_WebSocket] and the underlying Web Socket Protocol [RFC6455] for both request/response and callbacks.

WebSocket provides Web applications with a full-duplex communication channel over a persistent connection. It enables a stream of messages, which is a perfect fit for the message exchange of OpenCMAPI..
Design Principle
The nature of modern Web applications is asynchrony. The “WebSocket” interface designed in W3C Web Socket API enables the asynchrony of a Web application over a full-duplex communication channel. Once a “WebSocket” connection object is established with the application server:

· sending a message in a Web application: message from a Web application can be sent to the application server using the “send(data)” method, which is non-blocking and immediately returns to the Web application

· receiving a message in a Web application: a Web application can use a “EventHandler onmessage” event handler to receive and handle messages from the application server.
CMAPI-1 Transport Binding
CMAPI-1 defines normal function calls, which is normally synchronous in native API. The native application makes a function call and waits until the function finishes the communication with the application server and returns the result.

However, in WebSocket API Binding, because of the asynchrony nature of WebSocket interface and the asynchronous way for a Web application to handle sending a message and receiving a message, CMAPI-1 functions are all modelled as asynchronous function calls. It means that all function calls are effectively the same as “_Async()” calls in semantics. The binding details are as follows:

· All CMAPI-1 function signatures are defined in WebIDL in [OpenCMAPI-SUP-WIDL];
· An extra parameter “ResultCallback cb” is added to every function signature so that the Web application can specify a callback function “cb” to receive and handle the response message of the function call from the application server

· “ResultCallback” interface is defined in WebIDL for the callback function “cb” of an asynchronous function call to receive and handle the response message formatted as a JSON-RPC data object “CmapiResponse” defined in section 5.2.1.2 and WebIDL as well.

· When a CMAPI-1 function call is invoked by a Web application, the JavaScript Library that implements the WebSocket API Binding follows the steps in the table below.
	Step 1
	Assign a globally unique transaction “id” for this CMAPI-1 function call (see section 5.2.1.1)

	Step 2
	Construct the JSON-RPC request object, whose format is defined in section 5.2.1.1, based on the transaction “id”, the method and parameters of this CMAPI-1 function call.

	Step 3
	Set up the transaction “id” and callback function “cb” with the event handler of “onmessage” of the “WebSocket” object so that the corresponding “CmapiResponse” data object can be routed to this callback function “cb” according to matching the transaction “id” appropriately (see Section 5.2.1)

	Step 4
	Send the request message of this CMAPI-1 function call to the application server using “send(data)” method of the “WebSocket” object

	Step 5
	Immediately return to the Web application without blocking on waiting for the response message from the application server, which will be received and handled asynchronously.

Table 6: Steps of Handling a CMAPI-1 Function Call

· When a response message from the application server is received by the “WebSocket” object of the JavaScript Library that implements the WebSocket API Binding, the event handler of “onmessage” of the “WebSocket” object is invoked to:

	Step 1
	Construct the “CmapiResponse” JSON-RPC object according to the response message (see section 5.2.1.2).

	Step 2
	Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior request messages.

	Step 3
	If there is a match of transaction “id”, invoke the corresponding callback function “cb” and pass “CmapiResponse” as its parameter.

	Step 4
	If there is no match, handle it in the way defined in section 5.5.1.4.

Table 7: Steps of Handling a CMPI-1 Response Message

· It should be noted that there may be more than one response messages of a CMAPI-1 function call sequentially sent from the application server. Those response messages are in sequence, and may indicate different stages of serving the CMAPI-1 function call in the application server. For example, the stages of a function call request may include “received”, “processing”, “completed” etc in the application server, Those multiple response messages SHALL have the same transaction “id” as that of the original CMAPI-1 function call.

CMAPI-2 Transport Binding
CMAPI-2 defines callback functions, which are sent to the client device in the same way as delivering response messages of CMAPI-1 function calls through the “WebSocket” object. In addition, there are two application-initiated function calls to register and unregister callback functions:

· When a Web application registers a callback function, the JavaScript Library that implements the WebSocket API Binding handles this function call in the same way as that of CMAPI-1 function calls. In addition, there is one more step to follow:

	Step 1
	The JavaScript Library sets up the “callbackId” and the callback function “cb” with the event handler of “onmessage” of the “WebSocket” object so that the corresponding “CmapiResponse” data object can be routed to this callback function “cb” according to matching the “callbackId” appropriately (see Section 5.2.2).

Table 8: Extra Step of Handling a Callback Registration

· When a Web application unregisters a callback function, the JavaScript Library that implements the WebSocket API Binding SHALL handle this function call in the same way as that of CMAPI-1 function calls. In addition, there is one more step to follow:

	Step 1
	JavaScript library SHALL remove the prior setup of the “callbackId” and the callback function “cb” with the event handler of “onmessage” of the “WebSocket” object.

Table 9: Extra Step of Handling a Callback Unregistration
When a “WebSocket” object of the JavaScript Library that implements the WebSocket API Binding receives a message from the application server, the event handler of “onmessage” of the “WebSocket” object is invoked to:

	Step 1
	Construct the “CmapiResponse” JSON-RPC object according to the message (see Section 5.2.2).

	Step 2
	Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior CMAPI-1 request messages.

	Step 3
	If there is a match of transaction “id”, handle it in the way defined in Section 5.4.1.2.

	Step 4
	If there is no match:

· If there is a “callbackId” member in “CmapiResponse” with a valid value, match it with the list of registered “callbackIds”.

· If the “callbackId’ is in the list of registered “callbackIds”, invoke the corresponding callback function “cb” and pass “CmapiResponse” as its parameter.

· If the “callbackId’ is not in the list of registered “callbackIds”, call general error handling functions defined in Section 5.4.1.4.
· If there is not a “callbackId” member in “CmapiResponse”, or if the “callbackId” member is empty or invalid value, call general error handling functions defined in Section 5.4.1.4.

	Step 5
	It should be noted that the same type of callback function may be initiated and sent from the server more than once for the changed situation of the same characteristics. Those multiple messages of the same “callbackId” SHALL NOT have the same transaction “id” in order to distinguish those changes.

Table 10: Steps of Handling a Callback
WebSocket Transport Error Handling
The error handling mechanism SHALL be able to handle those generic errors defined in [JSON-RPC] and CMAPI-specific errors defined in section 5.3
In addition, the following general error conditions will be handled according to operators’ policy.

· In the message from application server, the transaction “id” doesn’t match any transaction “id” of prior CMAPI-1 request messages, and the “callbackId” is either absent or empty or invalid value.
· In the message from application server, the “callbackId” is not in the list of registered CMAPI-2 “callbackIds”.
HTTP Transport Binding
This section introduces the transport binding for the CMAPI messages defined in section 5.2 using HTTP for synchronous request /response and HTTP Long Polling used for callbacks.
General
CMAPI SHALL support HTTP1.1 [RFC2616] for CMAPI-1 and CMAPI-2 interfaces.
Content Type

CMAPI SHALL support messages formatted as entity-bodies with the following content type:

· application/json media type. The application/ json media type is used when a single CMAPI-1 or CMAPI-2 interface message is included in the HTTP request/response.
HTTP Method

CMAPI SHALL send all request messages on CMAPI-1 and CMAPI-2 interface as HTTP POST method requests.
CMAPI-1 HTTP Transport Binding
CMAPI-1 communication between Web applications and a CMAPI is carried out using HTTP POST requests and HTTP responses, with the JSON objects (as specified in section 5.2.1) as data.
CMAPI-2 HTTP Transport Binding
The method for a Web application to receive asynchronous notifications via CMAPI-2 interface about the callbacks the Web application has registered to is based on HTTP requests and often referred to as “HTTP Long Polling” [RFC6202].
When a callback fires a notification is sent to the Web application, i.e. a CMAPI-2 message included in the HTTP message body within the HTTP response to the pending HTTP Long Polling request.

HTTP Transport Error Handling
The error handling mechanism SHALL be able to handle those generic errors defined in [JSON-RPC] and CMAPI-specific errors defined in section 5.3.
When there is no CMAPI message to send in response to an request, CMAPI SHALL send a 204 No Content response. Other allowed status codes, reflecting the outcome of the HTTP POST request, are defined in [RFC2616].
Security Considerations
Management of connections is a sensitive operation which can involve secrets and confidential data (i.e. password), so it is recommended to perform CMAPI operations in a secure and authenticated context. CMAPI specifications do not provide the full security features for the secure management operations, provided that underlying layer mechanisms can be employed.
Appendix A. Change History
(Informative)

Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version

Draft/Candidate Version 1.1 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-OpenCMAPI_Web_V1_1
	4 Jun 2013
	All
	First baseline document

	
	04 Sept 2013
	All
	Incorporated the following CRs:
OMA-CD-OpenCMAPI-2013-0074R02-CR_TS_WebAPI

	
	01 Jan 2014
	All
	Incorporated the following CRs:
OMA-CD-OpenCMAPI-2013-0085-CR_JSON_API_Management
OMA-CD-OpenCMAPI-2013-0103-CR_JSON_Device_Discovery
OMA-CD-OpenCMAPI-2013-0104-CR_JSON_Cellular_Network_Management

OMA-CD-OpenCMAPI-2013-0105-CR_JSON_Connection_Management OMA-CD- OMA-CD-OpenCMAPI-2013-0106-CR_JSON_Network_Management

OMA-CD-OpenCMAPI-2013-0107-CR_JSON_CDMA2000

OMA-CD-OpenCMAPI-2013-0108-CR_JSON_Device_Service

OMA-CD-OpenCMAPI-2013-0109-CR_JSON__Device_Extended_Service

OMA-CD-OpenCMAPI-2013-0110-CR_JSON_PIN_PUK

OMA-CD-OpenCMAPI-2013-0111-CR_JSON_UICC

OMA-CD-OpenCMAPI-2013-0113-CR_JSON_Statistics

OMA-CD-OpenCMAPI-2013-0114-CR_JSON_Information_Status

OMA-CD-OpenCMAPI-2013-0115-CR_JSON_SMS

OMA-CD-OpenCMAPI-2013-0116-CR_JSON_USSD

OMA-CD-OpenCMAPI-2013-0117-CR_JSON_GNSS

OMA-CD-OpenCMAPI-2013-0118-CR_JSON_Data_Push_Service

OMA-CD-OpenCMAPI-2013-0119-CR_JSON_Contact_Management

OMA-CD-OpenCMAPI-2013-0120-CR_JSON_P2P

OMA-CD-OpenCMAPI-2013-0121-CR_JSON_Router_Management

OMA-CD-OpenCMAPI-2013-0162-CR_CR_JSON_Callback

OMA-CD-OpenCMAPI-2013-0163-CR_CMAPI_WebBinding_Reference

OMA-CD-OpenCMAPI-2013-0166R01-CR_CMAPI_WebBinding_Introduction

OMA-CD-OpenCMAPI-2013-0167-CR_WebBinding_WebSocket

OMA-CD-OpenCMAPI-2013-0168R01-CR_WebBinding_JSONRPC

OMA-CD-OpenCMAPI-2013-0169R01-CR_WebBinding_Appendix_D

OMA-CD-OpenCMAPI-2013-0171-CR_JSON_CB_Registration

	
	30 Jan 2014
	B
	Incorporated CR:

 OMA-CD-OpenCMAPI-2014-0010-CR_WebTS_SCR

Editorial changes

	
	31 Jan 2014
	All
	Editorial changes including changes in accordance with actions:

OpenCMAPI-2014-A001

OpenCMAPI-2014-A002

OpenCMAPI-2014-A003

OpenCMAPI-2014-A005

	
	18 Feb 2014
	All
	Changes according to CONRR comments resolution in OMA-CONRR-OpenCMAPI-V1_1-20140221-D

	
	1 Apr 2014
	All
	Incorporated:

OMA-CD-OpenCMAPI-2014-0017-CR_WebTS_errorcodes

OMA-CD-OpenCMAPI-2014-0020-CR_WebTS_move_JSD_to_SUP

OMA-CD-OpenCMAPI-2014-0021-CR_WebTS_References_Section

	
	22 Apr 2014
	All
	Incorporated:

OMA-CD-OpenCMAPI-2014-0027R01-CR_Resolution_for_some_CONR_comments_to_WebTS

	
	5 May 2014
	5.2, 5.3,
	Incorporated:

OMA-CD-OpenCMAPI-2014-0032R01-CR_Next_WebTS_CONR_comments_resolutions

	
	16 Sep 2014
	All
	Incorporated:

OMA-CD-OpenCMAPI-2014-0092-CR_WebTS_Editorial_Update

	
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].
Every API function calls need to be supported by the implementation of the OpenCMAPI. It shall at least support the call of the function and the dedicated generic return value.
But if one the functions is listed as mandatory in one of the following tables the full feature needs to be implemented in the API for the targeted device type.
And if one the functions is listed as Optional in one of the following tables, when implemented then the full feature needs to be implemented in the API for the targeted device type.
SCR for Mobile Broadband Device

	Item
	Function
	Reference
	Requirement

	OpenCMAPI-MBD-001-M
	Support API Management
	7.2
	

	OpenCMAPI-MBD-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-MBD-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-MBD-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-MBD-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-MBD-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-MBD-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-MBD-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-MBD-009-O
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-MBD-010-O
	Support WLAN APIs
	7.12
	

	OpenCMAPI-MBD-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-MBD-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-MBD-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-MBD-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-MBD-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-MBD-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-MBD-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-MBD-018-O
	Support Device Extended Service APIs
	7.9
	

	OpenCMAPI-MBD-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-MBD-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-MBD-021-O
	Support Wireless Router APIs
	7.21
	

	OpenCMAPI-MBD-022-O
	Support IP Multimedia Services APIs
	7.22
	

	OpenCMAPI-MBD-023-O
	Support M2M/IoT APIs
	7.23
	

SCR for laptop

	Item
	Function
	Reference
	Requirement

	OpenCMAPI-LAP-001-M
	Support API Management
	7.2
	

	OpenCMAPI-LAP-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-LAP-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-LAP-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-LAP-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-LAP-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-LAP-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-LAP-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-LAP-009-O
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-LAP-010-M
	Support WLAN APIs
	7.12
	

	OpenCMAPI-LAP-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-LAP-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-LAP-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-LAP-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-LAP-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-LAP-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-LAP-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-LAP-018-O
	Support Device Extended Service APIs
	7.9
	

	OpenCMAPI-LAP-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-LAP-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-LAP-021-O
	Support Wireless Router APIs
	7.21
	

	OpenCMAPI-LAP-022-O
	Support IP Multimedia Services APIs
	7.22
	

	OpenCMAPI-LAP-023-O
	Support M2M/IoT APIs
	7.23
	

SCR for wireless router

	Item
	Function
	Reference
	Requirement

	OpenCMAPI-WIR-001-M
	Support API Management
	7.2
	

	OpenCMAPI-WIR-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-WIR-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-WIR-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-WIR-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-WIR-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-WIR-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-WIR-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-WIR-009-O
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-WIR-010-O
	Support WLAN APIs
	7.12
	

	OpenCMAPI-WIR-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-WIR-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-WIR-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-WIR-014-O
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-WIR-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-WIR-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-WIR-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-WIR-018-O
	Support Device Extended Service APIs
	7.9
	

	OpenCMAPI-WIR-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-WIR-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-WIR-021-M
	Support Wireless Router APIs
	7.21
	

	OpenCMAPI-WIR-022-O
	Support IP Multimedia Services APIs
	7.22
	

	OpenCMAPI-WIR-023-O
	Support M2M/IoT APIs
	7.23
	

SCR for M2M device
General M2M device
	Item
	Function
	Reference
	Requirement

	OpenCMAPI-M2M-001-M
	Support API Management
	7.2
	

	OpenCMAPI-M2M-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-M2M-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-M2M-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-M2M-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-M2M-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-M2M-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-M2M-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-M2M-009-O
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-M2M-010-O
	Support WLAN APIs
	7.12
	

	OpenCMAPI-M2M-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-M2M-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-M2M-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-M2M-014-O
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-M2M-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-M2M-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-M2M-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-M2M-018-O
	Support Device Extended Service APIs
	7.9
	

	OpenCMAPI-M2M-019-O
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-M2M-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-M2M-021-O
	Support Wireless Router APIs
	7.21
	

	OpenCMAPI-M2M-022-O
	Support IP Multimedia Services APIs
	7.22
	

	OpenCMAPI-M2M-023-O
	Support M2M/IoT APIs
	7.23
	

Basic M2M device

Basic M2M device is a subset of M2M device representing devices that are able to perform only basic functions such as a sensor or a meter. These basic M2M devices are also referred as IoT (Internet of Things) devices.

Therefore, for each group of requirements, only some functions will be supported by Basic M2M devices (only the Mandatory functions are listed here – Any function not mentioned below is considered as Optional for Basic M2M).

	Item
	Function
	Reference
	Requirement

	OpenCMAPI-IoT-001-M
	CMAPI_API_Open()
	7.2
	

	OpenCMAPI-IoT-002-M
	CMAPI_API_Close()
	7.2
	

	OpenCMAPI-IoT-003-M
	CMAPI_API_GetOpenCMAPIVersion()
	7.2
	

	OpenCMAPI-IoT-004-M
	CMAPI_API_GetFunctionsSupported()
	7.2
	

	OpenCMAPI-IoT-005-M
	CMAPI_Discovery_OpenDevice()
	7.3
	

	OpenCMAPI-IoT-006-M
	CMAPI_Discovery_CloseDevice()
	7.3
	

	OpenCMAPI-IoT-007-M
	CMAPI_Network_GetRFInfo()
	7.4
	

	OpenCMAPI-IoT-008-M
	CMAPI_NetCon_GetConnectionStatus()
	7.6
	

	OpenCMAPI-IoT-009-M
	CMAPI_NetCon_SetAutoConnectMode()
	7.6
	

	OpenCMAPI-IoT-010-M
	CMAPI_NetCon_GetAutoConnectMode()
	7.6
	

	OpenCMAPI-IoT-011-M
	CMAPI_NetCon_SetPermittedBearers()
	7.6
	

	OpenCMAPI-IoT-012-M
	CMAPI_NetCon_GetPermittedBearers()
	7.6
	

	OpenCMAPI-IoT-013-M
	CMAPI_DevSrv_GetIMSI()
	7.8
	

	OpenCMAPI-IoT-014-M
	CMAPI_DevSrv_GetDeviceStatus()
	7.8
	

	OpenCMAPI-IoT-015-M
	CMAPI_DevSrv_GetFirmwareVersion()
	7.8
	

	OpenCMAPI-IoT-016-M
	CMAPI_DevSrv_GetRFSwitch()
	7.8
	

	OpenCMAPI-IoT-017-M
	CMAPI_DevSrv_SetRadioState()
	7.8
	

	OpenCMAPI-IoT-018-M
	CMAPI_Information_GetNetworkSelectionMode()
	7.14
	

	OpenCMAPI-IoT-019-M
	CMAPI_Information_GetSignalStrength()
	7.14
	

	OpenCMAPI-IoT-020-M
	CMAPI_Information_GetRoamingStatus()
	7.14
	

	OpenCMAPI-IoT-021-M
	CMAPI_Information_GetRATType()
	7.14
	

	OpenCMAPI-IoT-022-M
	CMAPI_Information_GetRadioState()
	7.14
	

	OpenCMAPI-IoT-023-M
	CMAPI_Information_GetBatteryStatus()
	7.14
	

	OpenCMAPI-IoT-024-M
	CMAPI_SMS_Send()
	7.15
	

	OpenCMAPI-IoT-025-O
	CMAPI_IoT_IMSI_Attach()
	7.23
	Optional function but recommended for this type of device

	OpenCMAPI-IoT-026-O
	CMAPI_IoT_GPRS_Register()
	7.23
	Optional function but recommended for this type of device

	OpenCMAPI-IoT-027-O
	CMAPI_IoT_Set_PDPContext()
	7.23
	Optional function but recommended for this type of device

	OpenCMAPI-IoT-028-O
	CMAPI_IoT_GetPDPContextList()
	7.23
	Optional function but recommended for this type of device

	OpenCMAPI-IoT-029-O
	CMAPI_IoT_GetPDPContextIPaddress()
	7.23
	Optional function but recommended for this type of device

	OpenCMAPI-IoT-030-O
	CMAPI_IoT_Activate_PDPContext()
	7.23
	Optional function but recommended for this type of device

	OpenCMAPI-IoT-031-O
	CMAPI_IoT_SetNFM()
	7.23
	Optional function but recommended for this type of device

	OpenCMAPI-IoT-032-O
	CMAPI_IoT_GetNFM()
	7.23
	Optional function but recommended for this type of device

	OpenCMAPI-IoT-033-O
	CMAPI_IoT_SetBack-OffBaseInterval()
	7.23
	Optional function but recommended for this type of device

	OpenCMAPI-IoT-034-O
	CMAPI_IoT_GetBack-OffTimer()
	7.23
	Optional function but recommended for this type of device

SCR for Smart Phone

	Item
	Function
	Reference
	Requirement

	OpenCMAPI-SMA-001-M
	Support API Management
	7.2
	

	OpenCMAPI-SMA-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-SMA-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-SMA-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-SMA-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-SMA-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-SMA-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-SMA-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-SMA-009-M
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-SMA-010-M
	Support WLAN APIs
	7.12
	

	OpenCMAPI-SMA-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-SMA-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-SMA-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-SMA-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-SMA-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-SMA-016-M
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-SMA-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-SMA-018-O
	Support Device Extended Service APIs
	7.9
	

	OpenCMAPI-SMA-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-SMA-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-SMA-021-O
	Support Wireless Router APIs
	7.21
	

	OpenCMAPI-SMA-022-O
	Support IP Multimedia Services APIs
	7.22
	

	OpenCMAPI-SMA-023-O
	Support M2M/IoT APIs
	7.23
	

SCR for Tablets

	Item
	Function
	Reference
	Requirement

	OpenCMAPI-TAB-001-M
	Support API Management
	7.2
	

	OpenCMAPI-TAB-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-TAB-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-TAB-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-TAB-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-TAB-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-TAB-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-TAB-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-TAB-009-M
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-TAB-010-M
	Support WLAN APIs
	7.12
	

	OpenCMAPI-TAB-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-TAB-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-TAB-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-TAB-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-TAB-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-TAB-016-M
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-TAB-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-TAB-018-O
	Support Device Extended Service APIs
	7.9
	

	OpenCMAPI-TAB-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-TAB-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-TAB-021-O
	Support Wireless Router APIs
	7.21
	

	OpenCMAPI-TAB-022-O
	Support IP Multimedia Services APIs
	7.22
	

	OpenCMAPI-TAB-023-O
	Support M2M/IoT APIs
	7.23
	

SCR for Cloud Devices

	Item
	Function
	Reference
	Requirement

	OpenCMAPI-CLD-001-M
	Support API Management
	7.2
	

	OpenCMAPI-CLD-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-CLD-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-CLD-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-CLD-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-CLD-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-CLD-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-CLD-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-CLD-009-M
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-CLD-010-M
	Support WLAN APIs
	7.12
	

	OpenCMAPI-CLD-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-CLD-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-CLD-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-CLD-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-CLD-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-CLD-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-CLD-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-CLD-018-O
	Support Device Extended Service APIs
	7.9
	

	OpenCMAPI-CLD-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-CLD-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-CLD-021-O
	Support Wireless Router APIs
	7.21
	

	OpenCMAPI-CLD-022-O
	Support IP Multimedia Services APIs
	7.22
	

	OpenCMAPI-CLD-023-O
	Support M2M/IoT APIs
	7.23
	

Appendix C. Description of OpenCMAPI functions
(Informative)

This appendix provides a list of all OpenCMAPI Functions as well as a short description and in which version (from [OpenCMAPI-TS]) they have been created.

CMAPI-1 Functions

	CMAPI-1
	
	

	Function
	Description
	Vers.

	API MANAGEMENT
	
	

	CMAPI_API_Open()
	initialize the OpenCMAPI
	1.0

	CMAPI_API_Close()
	deallocate any internal API structures including the security context
	1.0

	CMAPI_API_GetOpenCMAPIVersion()
	retrieve the version number of the OpenCMAPI used
	1.0

	CMAPI_API_GetFunctionsSupported()
	retrieve the OpenCMAPI groups of functions supported by the enabler
	1.1

	DEVICE DISCOVERY APIs
	
	

	CMAPI_Discovery_DetectDevices()
	search for devices
	1.0

	CMAPI_Discovery_GetDevice()
	discover information about the devices within the system
	1.0

	CMAPI_Discovery_OpenDevice()
	“open” a device within the system
	1.0

	CMAPI_Discovery_CloseDevice()
	 “close” a device within the system
	1.0

	CELLULAR NETWORK MANAGEMENT APIs
	
	

	CMAPI_Network_GetRFInfo()
	get information about RF (Radio access technology, band class, data rate supported and channel)
	1.0

	CMAPI_Network_GetHomeInformation()
	get information about home network of the subscriber for a dedicated System
	1.0

	CMAPI_Network_GetServingInformation()
	get information about serving network of the subscriber
	1.0

	CONNECTION MANAGEMENT APIs
	
	

	CMAPI_NetConnectSrv_MgrCellularProfile()
	manage cellular profiles, including add/delete/update a profile information
	1.0

	CMAPI_NetConnectSrv_GetCellularProfile()
	get the details of a specific Cellular Profile
	1.0

	CMAPI_NetConnectSrv_GetCellularProfileList()
	get a list of all Cellular Profile names
	1.0

	CMAPI_NetConnectSrv_SelectNetwork()
	select the current network mode and PLMN for a given System
	1.0

	CMAPI_NetConnectSrv_GetNetworkList_Sync()
	search and compile a list of available Networks
	1.0

	CMAPI_NetConnectSrv_GetNetworkList_Async()
	initiate the search of the Network list
	1.0

	CMAPI_NetConnectSrv_GetCurrentConnType()
	get the current connection type
	1.0

	CMAPI_NetConnectSrv_Connect_Async()
	connect to a network
	1.0

	CMAPI_NetConnectSrv_Disconnect_Async()
	disconnect from the network
	1.0

	CMAPI_NetConnectSrv_CancelConnect_Async()
	cancel of connect operation (as a result of a call to CMAPI_NetConnectSrv_Connect_Async)
	1.0

	CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async()
	connect to a network
	1.0

	CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async()
	disconnect from the network
	1.0

	CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async()
	cancel of connect operation (as a result of a call to CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async)
	1.0

	NETWORK MANAGEMENT APIs
	
	

	CMAPI_NetCon_GetConnectionStatus()
	obtain information about the connection status
	1.0

	CMAPI_NetCon_SetAutoConnectMode()
	set/disable “autoconnect” mode
	1.0

	CMAPI_NetCon_GetAutoConnectMode()
	return the current “autoconnect” mode
	1.0

	CMAPI_NetCon_SetDefaultProfile()
	 identify the profile that shall be used when the device is in auto connect mode
	1.0

	CMAPI_NetCon_SetPermittedBearers()
	restrict the permitted mobile bearer when connecting to the selected network
	1.0

	CMAPI_NetCon_GetPermittedBearers()
	get the current permitted bearers
	1.0

	CMAPI_NetCon_SetNoDataProfile()
	set up (enable or disable) the nodataprofile
	1.0

	CMAPI_NetCon_GetNoDataProfile()
	return the current state of the nodata profile (enabled or disabled)
	1.0

	CDMA2000 APIs
	
	

	CMAPI_CDMA2000_SetACCOLC()
	set the Access Overload Class (ACCOLC) for CDMA2000 devices
	1.0

	CMAPI_CDMA2000_GetACCOLC()
	retrieve the current value of the Access Overload Class (ACCOLC) for CDMA2000 devices
	1.0

	CMAPI_CDMA2000_SetCDMANetworkParameters()
	set the values of certain CDMA2000-specific network parameters
	1.0

	CMAPI_CDMA2000_GetCDMANetworkParameters()
	retrieve the values of certain CDMA2000-specific network parameters
	1.0

	CMAPI_CDMA2000_GetANAAAAAuthenticationStatus()
	retrieve the value of the most recent ANA AAA authentication attempt status for CDMA2000 devices
	1.0

	CMAPI_CDMA2000_GetPRLVersion()
	retrieve the value of the Preferred Roaming List (PRL) version in use for CDMA2000 devices
	1.0

	CMAPI_CDMA2000_GetERIFile()
	retrieve the contents of the Enhanced Roaming Indicator (ERI) file in use for CDMA2000 devices
	1.0

	CMAPI_CDMA2000_ActivateAutomatic()
	command the device to perform automatic activation using a specified activation code
	1.0

	CMAPI_CDMA2000_ActivateManual()
	command the device to perform manual activation using the specified parameters
	1.0

	CMAPI_CDMA2000_ValidateSPC()
	command the device to validate a Service Programming Code (SPC)
	1.0

	CMAPI_OMADM_StartSession()
	start an OMA DM session to configure the values of various CDMA2000 network information as specified by the session type in its input parameter
	1.0

	CMAPI_OMADM_CancelSession()
	cancel an ongoing OMA DM session
	1.0

	CMAPI_OMADM_GetSessionInfo()
	return information about the currently active OMA DM session (or the most recent session if none is active)
	1.0

	CMAPI_OMADM_GetPendingNIA()
	return information about a Network-Initiated Alert (NIA) that is commanding the device to establish a DM session with a DM server to perform the requested configuration operation
	1.0

	CMAPI_OMADM_SendSelection()
	return the response from the device to a Network-Initiated Alert (NIA) that is commanding the device to establish a DM session
	1.0

	CMAPI_OMADM_GetFeatureSettings()
	return information about the settings of OMA DM features, indicating for each one whether OMA DM can be currently used for the specified configuration operation
	1.0

	CMAPI_OMADM_SetProvisioningFeature()
	enable and disable the OMA DM device service provisioning update feature
	1.0

	CMAPI_OMADM_SetPRLUpdateFeature()
	enable and disable the OMA DM PRL update feature
	1.0

	CMAPI_OMADM_SetFirmwareUpdateFeature() (Optional)
	enable and disable the OMA DM Firmware update feature
	1.0

	CMAPI_OMADM_ResetToFactoryDefaults()
	reset the device to factory default
	1.0

	CMAPI_OMADM_InitiateOTASP()
	activate the device using OTA activation
	1.0

	CMAPI_OMADM_SetPRL()
	update PRL/PLMN by uploading a PRL file
	1.0

	CMAPI_MobileIP_SetState()
	set the current Mobile IP state of the device
	1.0

	CMAPI_MobileIP_GetState()
	retrieve the current Mobile IP state of the device
	1.0

	CMAPI_MobileIP_SetActiveProfile()
	set the index of the Mobile IP profile that the device will use
	1.0

	CMAPI_MobileIP_GetActiveProfile()
	retrieve the index of the Mobile IP profile that the device is currently using
	1.0

	CMAPI_MobileIP_SetProfile()
	configure the contents of a Mobile IP profile on the device
	1.0

	CMAPI_MobileIP_GetProfile()
	retrieve the contents of a Mobile IP profile on the device
	1.0

	CMAPI_MobileIP_SetParameters()
	set various parameters that configure the behaviour of the device’s Mobile IP client
	1.0

	CMAPI_MobileIP_GetParameters()
	retrieve the current values of the parameters that configure the behaviour of the device’s Mobile IP client
	1.0

	CMAPI_MobileIP_GetLastError()
	retrieve the last Mobile IP error that occurred (refer to RFC3344 for a list of error codes)
	1.0

	DEVICE SERVICE APIs
	
	

	CMAPI_DevSrv_GetManufacturerName()
	retrieve the name of the manufacturer of the device
	1.0

	CMAPI_DevSrv_GetManufacturerModel()
	retrieve the product model ID of the device
	1.0

	CMAPI_DevSrv_GetDeviceName()
	retrieve the commercial name of the device
	1.0

	CMAPI_DevSrv_GetHardwareVersion()
	retrieve the hardware version of the device
	1.0

	CMAPI_DevSrv_GetProductType()
	retrieve the product type of the device
	1.0

	CMAPI_DevSrv_GetIMSI()
	retrieve the active IMSI(s) from SIM/R-UIM/NAA on UICC
	1.0

	CMAPI_DevSrv_GetMDN()
	retrieve the MDN (only applicable to 3GPP2 systems)
	1.0

	CMAPI_DevSrv_GetIMEI()
	retrieve the IMEI (only applicable to 3GPP systems)
	1.0

	CMAPI_DevSrv_GetESN()
	retrieve the ESN (only applicable to 3GPP2 systems)
	1.0

	CMAPI_DevSrv_GetMEID()
	retrieve the MEID (only applicable to 3GPP2 systems)
	1.0

	CMAPI_DevSrv_GetMSISDN()
	retrieve the MSISDN from the active NAA in the SIM/UICC (only applicable to 3GPP systems)
	1.0

	CMAPI_DevSrv_GetDeviceStatus()
	retrieve the device status
	1.0

	CMAPI_DevSrv_GetFirmwareVersion()
	retrieve the firmware version of the device
	1.0

	CMAPI_DevSrv_GetRFSwitch()
	retrieve the radio switch status (Radio On / Off)
	1.0

	CMAPI_DevSrv_SetRadioState()
	set the radio power state of the device
	1.0

	CMAPI_DevSrv_SetRadioState_Async()
	set the power state of a radio within a device
	1.0

	CMAPI_DevSrv_GetControlKeyStatus()
	get the specified Mobile Equipment (device) de-personalization control key status
	1.0

	CMAPI_DevSrv_DeactivateControlKey()
	deactivate the specified Mobile Equipment (device) de-personalization control key
	1.0

	CMAPI_DevSrv_UnblockControlKey() (Optional)
	unblock the specified Mobile Equipment (device) de-personalization control key
	1.0

	CMAPI_DevSrv_DevAttributes()
	provide to application information regarding device attributes (e.g. screen, keypad, camera, microphone, loudspeaker)
	1.1

	DEVICE EXTENDED SERVICE APIs
	
	

	CMAPI_ExtDevSrv_NFC()
	provide to application information regarding NFC functionalities available in the device
	1.1

	CMAPI_ExtDevSrv_SE()
	provide to application information regarding SE (Secure Element) functionalities and services available in the device
	1.1

	PINS/PUKS MANAGEMENT APIs
	
	

	CMAPI_DevSrv_GetNAAavailable()
	get all the available NAAs and the corresponding Application labels
	1.0

	CMAPI_DevSrv_EnablePIN()
	enable PIN protection
	1.0

	CMAPI_DevSrv_DisablePIN()
	disable PIN protection
	1.0

	CMAPI_DevSrv_VerifyPIN()
	verify a PIN
	1.0

	CMAPI_DevSrv_UnblockPIN()
	unblock a PIN
	1.0

	CMAPI_DevSrv_ChangePIN()
	change a PIN
	1.0

	UICC MANAGEMENT APIs
	
	

	CMAPI_UICC_GetTerminalProfile()
	get the last TERMINAL PROFILE sent by the device to the SIM/R-UIM/UICC
	1.0

	CMAPI_UICC_SetTerminalProfile()
	transmit to the SIM/R-UIM/UICC via the device the ToolKit functions (i.e.: the TERMINAL PROFILE) that are supported by the Connection Manager Applications
	1.0

	CMAPI_UICC_SendToolKitEnvelopeCommand()
	transmit to the SIM/R-UIM/UICC via the device any ToolKit ENVELOPE command that is supported by the Connection Manager Application and for which no overlapping was identified
	1.0

	CMAPI_UICC_SendTerminalResponse()
	send a TERMINAL RESPONSE to the SIM/R-UIM/UICC via the device answering to any ToolKit Proactive Command received via the Callback CMAPI_UICC_ToolKitProactiveCommand()
	1.0

	WLAN APIs
	
	

	CMAPI_WLAN_IsSupported()
	determine if WLAN functionality is supported
	1.0

	CMAPI_WLAN_AddKnownNetwork()
	add a network to the known network list
	1.0

	CMAPI_WLAN_UpdateKnownNetwork()
	update an existing known network record
	1.0

	CMAPI_WLAN_DeleteKnownNetwork()
	remove the entry from the known networks list at the specified index
	1.0

	CMAPI_WLAN_GetKnownNetwork()
	retrieve the known network record information
	1.0

	CMAPI_WLAN_GetScanResults()
	retrieve the list of available WLAN networks
	1.0

	CMAPI_WLAN_Scan_Async()
	initiate a scan for WLAN networks
	1.0

	CMAPI_WLAN_Connect()
	connect to a WLAN network
	1.0

	CMAPI_WLAN_ConnectKnownNetwork()
	connect to a WLAN network in the known networks list
	1.0

	CMAPI_WLAN_Disconnect()
	disconnect any connected WLAN network
	1.0

	CMAPI_WLAN_GetConnectionMode()
	determine if connectivity is being actively sought by the enabler or if manual connection requests are required
	1.0

	CMAPI_WLAN_SetConnectionMode()
	change the connectivity mode
	1.0

	CMAPI_WLAN_ResetDevice()
	reset the device
	1.0

	CMAPI_WLAN_GetConnectedParameters()
	retrieve values related to the associated network.
	1.0

	CMAPI_WLAN_SetConnectedParameters()
	set various attributes of an existing connection
	1.0

	CMAPI_WLAN_CancelOperation()
	cancel any pending operation like connect or scan
	1.0

	CMAPI_WLAN_ConnectWPS()
	initiate a connection with the WPS button push method.
	1.0

	CMAPI_WLAN_ConnectPinWPS()
	initiate a connection with the WPS pin method
	1.0

	CMAPI_WLAN_ConnectionState()
	determine if WLAN is connected
	1.0

	CMAPI_WLAN_SearchNetwork_Async()
	check the availability of a specific WLAN network
	1.0

	CMAPI_WLAN_EnableCapability()
	enable or disable the WLAN feature in the device
	1.1

	CMAPI_WLAN_AuthenticationSupported()
	determine if HS2.0 is supported by the device and what are the authentications methods supported
	1.1

	CMAPI_WLAN_ManageKnownNetwork()
	add/delete or update a network to or in the known network list.
	1.1

	CMAPI_WLAN_Get_WSIDL()
	retrieve the user preferred list and operator preferred list of WLAN specific identifier (WSID) from the SIM/R-UIM/NAA on UICC
	1.1

	CMAPI_WLAN_Get_HS2MOSubcription()
	retrieve the elements related to HS2.0 subscriptions
	1.1

	CMAPI_WLAN_Get_ANDSFMOSubcription()
	retrieve the elements related to ANDSF subscription
	1.1

	CMAPI_WLAN_GetANQP()
	get the ANQP information including HS2.0 ANQP
	1.1

	CMAPI_WLAN_Get_WLANSettings()
	retrieve the user and operator settings for WLAN.
	1.1

	CMAPI_WLAN_Set_WLANUserSettings()
	set the user settings for WLAN.
	1.1

	STATISTICS APIs
	
	

	CMAPI_NetStatistic_GetConnectionStatistics()
	obtain network traffic statistics info
	1.0

	CMAPI_NetStatistic_GetAllConnectionRecords()
	retrieve all connection records.
	1.1

	CMAPI_NetStatistic_DeleteConnectionRecord()
	delete a connection record.
	1.1

	INFORMATION STATUS APIs
	
	

	CMAPI_Information_GetPINStatus()
	return the status of the PINs and PUKs of all active SIM/R-UIM/NAA on UICC for a dedicated device
	1.0

	CMAPI_Information_GetNetworkSelectionMode()
	determine the network selection mode
	1.0

	CMAPI_Information_GetSignalStrength()
	obtain the current signal strength value, the percentage of signal present and the signal quality
	1.0

	CMAPI_Information_GetCSNetworkRegistration()
	determine if a circuit switched registration is present
	1.0

	CMAPI_Information_GetPSNetworkRegistration()
	determine if a packet switched attachment is present
	1.0

	CMAPI_Information_GetAPN()
	obtain the APN identifier
	1.0

	CMAPI_Information_GetIPAddress()
	retrieve the current IP address assigned to the device and the type of the address assigned
	1.0

	CMAPI_Information_GetRoamingStatus()
	retrieve the current roaming status
	1.0

	CMAPI_Information_GetDriverVersion()
	retrieve the driver version
	1.0

	CMAPI_Information_GetRATType()
	retrieve the radio access technology
	1.0

	CMAPI_Information_GetQoS()
	retrieve the QoS parameters related to the network
	1.0

	CMAPI_Information_GetWLANConnection()
	retrieve identifying data of the currently connected network.
	1.0

	CMAPI_Information_GetRadioState()
	return the power state of a radio within a device
	1.0

	CMAPI_Information_GetICCID()
	get the ICCID
	1.0

	CMAPI_Information_GetBatteryStatus()
	retrieve the current status of the battery of device if applicable
	1.1

	CMAPI_Information_SetBatteryThreshold()
	set thresholds for the battery status
	1.1

	CMAPI_Information_GetMobilityState()
	retrieve the current mobility state of the device
	1.1

	CMAPI_Information_GetMobilitytoLocation()
	evaluate if the device is moving compared to a specific location (for example, an Access Point). The result is reported in callback CMAPI_Callback_ GetMobilitytoLocation_Complete()
	1.1

	SMS MANAGEMENT APIs
	
	

	CMAPI_SMS_Send()
	send SMS
	1.0

	CMAPI_SMS_Get()
	retrieve the message
	1.0

	CMAPI_SMS_Delete()
	delete SMS
	1.0

	CMAPI_SMS_GetIDList()
	get the list of SMS stored on local device or SIM or the terminal device like PC
	1.0

	CMAPI_SMS_Update()
	update the status of the SMS
	1.0

	CMAPI_SMS_GetSMSCAddress()
	get the address of SMSC
	1.0

	CMAPI_SMS_SetSMSCAddress()
	set the address of SMSC
	1.0

	CMAPI_SMS_GetValidityPeriod()
	get the validity period setting
	1.0

	CMAPI_SMS_SetValidityPeriod()
	set the period of validity of a SMS
	1.0

	CMAPI_SMS_GetDeliveryReport()
	get the delivery report setting
	1.0

	CMAPI_SMS_SetDeliveryReport()
	set the delivery report “On” or “Off”
	1.0

	CMAPI_SMS_GetRecordCount()
	retrieve the number of SMS segments
	1.0

	CMAPI_SMS_GetUnreadRecordCount()
	retrieve the number of unread SMS records
	1.0

	CMAPI_SMS_Create()
	create a draft SMS
	1.1

	USSD MANAGEMENT APIs
	
	

	CMAPI_USSD_Request()
	build up a USSD request to the network
	1.0

	CMAPI_USSD_Release()
	release the USSD session
	1.0

	GNSS APIs
	
	

	CMAPI_GNSS_SetState()
	set the state of the GNSS functionality on the device
	1.0

	CMAPI_GNSS_GetState()
	retrieve the state of the GNSS functionality on the device
	1.0

	CMAPI_GNSS_SetTrackingParameters()
	set the values of parameters that control the operation of GNSS tracking on the device
	1.0

	CMAPI_GNSS_GetTrackingParameters()
	retrieve the values of parameters that control the operation of GNSS tracking on the device
	1.0

	CMAPI_GNSS_SetAGPSConfig()
	configure the Assisted GPS (AGPS) server IP address, port number and/or FQDN
	1.0

	CMAPI_GNSS_GetAGPSConfig()
	retrieve the values of the Assisted GPS (AGPS) server IP address, port number and FQDN
	1.0

	CMAPI_GNSS_SetAutomaticTracking()
	enable and disable automatic GNSS tracking on the device
	1.0

	CMAPI_GNSS_GetAutomaticTracking()
	retrieve the state of automatic GNSS tracking on the device
	1.0

	CMAPI_GNSS_GetDevicePosition()
	retrieve the current position of the device
	1.0

	CMAPI_GNSS_SetSystemTime()
	set the value of the system time
	1.0

	DATA PUSH SERVICE MANAGEMENT APIs
	
	

	CMAPI_Push_Enable()
	turn on PUSH option
	1.0

	CMAPI_Push_Disable()
	turn off PUSH option
	1.0

	CMAPI_Push_GetRadioType()
	get the current bearer type over which the PUSH session is established for an application
	1.0

	CONTACT MANAGEMENT APIs
	
	

	CMAPI_Contact_Create()
	create a contact
	1.1

	CMAPI_Contact_Get()
	retrieve the details of a contact
	1.1

	CMAPI_Contact_Delete()
	delete a contact
	1.1

	CMAPI_Contact_GetContactList()
	get the list of contacts stored on local device or SIM or the terminal device like PC
	1.1

	CMAPI_Contact_Update()
	update an existing contact
	1.1

	CMAPI_Contact_Search()
	search for a specific contact name in the list of contacts
	1.1

	P2P DIRECT MANAGEMENT APIs
	
	

	CMAPI_P2P_GetP2PInfo()
	detect which P2P direct connection technology(ies) is/are supported if any
	1.1

	CMAPI_P2P_EnableDirectDiscovery()
	activate the P2P Direct Discovery Feature in a P2P Direct enabled device
	1.1

	CMAPI_P2P_DisableDirectDiscovery()
	deactivate the P2P Direct Discovery feature in a P2P Direct enabled device
	1.1

	CMAPI_P2P_EnableDirectConnection()
	activate the P2P Direct Connection feature in a P2P Direct enabled device
	1.1

	CMAPI_P2P_DisableDirectConnection()
	deactivate the P2P Direct Connection feature in a P2P Direct enabled device
	1.1

	CMAPI_P2P_DiscoveryResolve()
	resolve a ServiceRecord for metadata and/or connection info
	1.1

	CMAPI_P2P_DiscoveryMonitor()
	request discovery of Remote Device(s) and the services offered
	1.1

	CMAPI_P2P_DiscoveryAnnounce()
	announce its presence and P2P Direct services supported to Remote Device(s)
	1.1

	CMAPI_P2P_EstablishConnection()
	request the Local Device to establish a connection to a Remote Device
	1.1

	CMAPI_P2P_RejectConnection()
	reject an incoming connection request
	1.1

	CMAPI_P2P_AcceptConnection()
	accept an incoming connection request from a Remote Device
	1.1

	CMAPI_P2P_CloseConnection()
	request the Local Device to close an existing connection to a Remote Device
	1.1

	CMAPI_P2P_GetConnectionStatus()
	retrieve the status of the P2P Direct connection
	1.1

	CMAPI_P2P_EnableRelay()
	request the Local Device to act as a relay to share its data connection with Remote Device members of the group (i.e. enable concurrent operations)
	1.1

	CMAPI_P2P_DisableRelay()
	request the Local Device to stop acting as a relay to share its data connection with Remote Device members of the group
	1.1

	CMAPI_P2P_CreateGroup()
	create a new P2P Direct group with one or several Remote Device (s)
	1.1

	CMAPI_P2P_RemoveGroup()
	remove a P2P group, previously created by the Local Device
	1.1

	CMAPI_P2P_EnableMembershipInSeveralGroups()
	enable a Local Device to be a member of several groups simultaneously
	1.1

	CMAPI_P2P_DisableMembershipInSeveralGroups()
	disable a Local Device to be a member of several groups simultaneously
	1.1

	CMAPI_P2P_RemoveDeviceFromGroup()
	remove a Remote Device from an existing group the Local Device owns
	1.1

	CMAPI_P2P_AcceptInvitationToGroup()
	accept an group join invitation on the receiver side
	1.1

	CMAPI_P2P_JoinGroup()
	invite a Remote Device to join an existing group
	1.1

	CMAPI_P2P_RejectInvitationToGroup()
	reject an invitation to join an existing group
	1.1

	CMAPI_P2P_RejectJoiningGroup()
	reject a Remote Device from joining to an existing group
	1.1

	CMAPI_P2P_RequestToJoinGroup()
	send a request for joining an existing group to the group owner
	1.1

	CMAPI_P2P_RestrictFromGroup()
	instruct the Local Device to be restricted from an existing group owned by a Remote Device
	1.1

	CMAPI_P2P_GetGroupInfo()
	retrieve from the Local Device which P2P Direct enabled device(s) are in an existing group to which the Local Device is a member of
	1.1

	CMAPI_P2P_AllowSimultaneousConnection()
	allow the device to have a P2P connection simultaneously to a normal data connection using the same radio technology.
	1.1

	CMAPI_P2P_DisallowSimultaneousConnection()
	disallow the device to have a P2P connection simultaneously to a normal data connection using the same radio technology.
	1.1

	WIRELESS ROUTER APIs
	
	

	CMAPI_Router_GetConfigurations()
	read the configuration values of a router (ssid, users, security, etc) of all defined routers of a physical router device
	1.1

	CMAPI_Router_SetConfiguration()
	write the configuration values of a router (ssid, users, security, etc)
	1.1

	CMAPI_Router_DeleteConfiguration()
	delete a router and its configuration
	1.1

	CMAPI_Router_GetConnectedDevices()
	retrieve a list of Connected Devices connected to a router
	1.1

	CMAPI_Router_GetPolicies()
	retrieve a list of policies within a router
	1.1

	CMAPI_Router_SetPolicy()
	add or update a policy to a router’s policies
	1.1

	CMAPI_Router_DeletePolicy()
	delete a Connected Device policy from a router’s policies
	1.1

	CMAPI_Router_GetRestrictions()
	retrieve a list of Connected Device restrictions within a route
	1.1

	CMAPI_Router_SetRestriction()
	add or update a Connected Device restriction to a router
	1.1

	CMAPI_Router_DeleteRestriction()
	remove a Connected Device restriction
	1.1

	CMAPI_Router_SetAdminPassword()
	update a router administrator password
	1.1

	CMAPI_Router_VerifyAdminPassword()
	verify a router administrator password and to report the number of failed access attempts
	1.1

	CMAPI_Router_ResetToDefaults()
	return a router to factory default settings
	1.1

	IP Multimedia Services APIs
	
	

	CMAPI_IMS_GetISIMinfo()
	retrieve if there is an ISIM in the UICC for a specific radio system (either 3GPP or 3GPP2) and provide the IMPU, IMPI & Home Domain Name (relevant for IMS context) related.
	1.1

	CMAPI_IMS_GetIARIinfo()
	retrieve the IARI information from the ISIM for a dedicated radio system (either 3GPP or 3GPP2) on the UICC.
	1.1

	M2M/IoT APIs
	
	

	CMAPI_IoT_IMSI_Attach()
	request an IMSI attach or detach.
	1.1

	CMAPI_IoT_GPRS_Register()
	request an GPRS attach or detach.
	1.1

	CMAPI_IoT_Set_PDPContext()
	define a PDP context.
	1.1

	CMAPI_IoT_GetPDPContextList()
	get the list of currently defined PDP Contexts.
	1.1

	CMAPI_IoT_GetPDPContextIPaddress()
	retrieve the IP address of the PDP context concerned.
	1.1

	CMAPI_IoT_Activate_PDPContext()
	activate or deactivate a PDP context.
	1.1

	CMAPI_IoT_SetNFM()
	set up (enable or disable) the Network Friendly Mode of the modem if supported
	1.1

	CMAPI_IoT_GetNFM()
	return the current state of the Network Friendly Mode of the modem (enabled or disabled)
	1.1

	CMAPI_IoT_SetBack-OffBaseInterval()
	configure the Back-off Base Intervals of the modem (time between re-attempts of whatever action previously failed)
	1.1

	CMAPI_IoT_GetBack-OffTimer()
	retrieve the time left of the back-off Timer.
	1.1

Table 11: List CMAPI-1 Functions

CMAPI-2 Functions

	CMAPI-2
	
	

	Function
	Description
	Vers.

	REGISTRATION APIs
	
	

	CMAPI_Callback_Register()
	register for the callbacks which are expected to be received
	1.0

	CMAPI_Callback_Unregister()
	turn off all callbacks or just some
	1.0

	CALLBACK APIs
	
	

	CMAPI_Callback_DetectDevicesComplete()
	communicate that a search and validation of the devices in the system is complete
	1.0

	CMAPI_Callback_DeviceChanged()
	communicate whenever there is a change in a given device state in particular indicate that a device has become present or been removed
	1.0

	CMAPI_Callback_GetNetworkList_Async_Complete()
	 result of a previous call made to CMAPI_NetConnectSrv_GetNetworkList_Async().
	1.0

	CMAPI_Callback_Connect_Async_Complete()
	result of a previous call to CMAPI_NetConnectSrv_Connect_Async()
	1.0

	CMAPI_Callback_Disconnect_Async_Complete()
	result of a previous call to CMAPI_NetConnectSrv_Disconnect()
	1.0

	CMAPI_Callback_CancelConnect_Async_Complete()
	result of a previous call to CMAPI_NetConnectSrv_CancelConnect_Async()
	1.0

	CMAPI_Callback_SessionStateChange()
	communicate the session state change
	1.0

	CMAPI_Callback_BearerStatusChange()
	communicate a bearer status change
	1.0

	CMAPI_Callback_TrafficChannelDormancy()
	communicate the changes in the traffic level
	1.0

	CMAPI_Callback_CDMA2000ActivationState()
	communicate the changes in the CDMA 2000 Activation state
	1.0

	CMAPI_Callback_SearchWLANNetworkComplete()
	result of a previous call to CMAPI_WLAN_SearchNetwork_Async()
	1.0

	CMAPI_Callback_RadioState()
	communicate changes in the radio power state
	1.0

	CMAPI_Callback_SetRadioState_Async_Complete()
	result of a previous call to CMAPI_DevSrv_SetRadioState_Async()
	1.0

	CMAPI_Callback_Roaming()
	indicate changes in Roaming status
	1.0

	CMAPI_Callback_SignalStrength()
	return the current signal strength value, the percentage of signal present and the signal quality
	1.0

	CMAPI_Callback_GNSS()
	indicate a change in the GNSS state
	1.0

	CMAPI_Callback_SMS()
	indicate that a new SMS message has been received and the number of segments in the mailbox
	1.0

	CMAPI_Callback_SMS_Message()
	provide to application the new received message while not only a notice that a new message is received
	1.0

	CMAPI_Callback_ByteCount
	indicate the current byte count
	1.0

	CMAPI_Callback_USSD()
	communicate a USSD message
	1.0

	CMAPI_Callback_QoSChange()
	communicate a change in QoS
	1.0

	CMAPI_Callback_RFInformationChange()
	communicate a change related to RF
	1.0

	CMAPI_Callback_PINPUKStatus()
	return the status of the PINs/PUKs for all active NAAs
	1.0

	CMAPI_Callback_ScanWLANComplete()
	notify that a scan for WLAN networks has been completed.

result of a previous call to CMAPI_WLAN_Scan_Async()
	1.0

	CMAPI_Callback_WLANNewAvailableNetwork()
	notify that a new network has been discovered
	1.0

	CMAPI_Callback_WLANConnectionStatus()
	receive WLAN connection Status
	1.0

	CMAPI_Callback_PUSHReceived()
	notify an application when a new PUSH message has been received
	1.0

	CMAPI_Callback_OMADMStatus()
	indicate any OMA-DM operation Progress or Status in-between
	1.0

	CMAPI_Callback_UICC_ToolKitProactiveCommand()
	receive the ToolKit Proactive Commands sent by the SIM/R-UIM/UICC
	1.0

	CMAPI_Callback_UICC_DeviceTerminalProfile()
	receive the TERMINAL PROFILE sent by the device to the SIM/R-UIM/UICC
	1.0

	CMAPI_Callback_VerifyPIN()
	signal that a PIN should be collected from the user and supplied to the API through the CMAPI_DevSrv_VerifyPIN() method
	1.0

	CMAPI_Callback_PermittedBearersChange()
	notify that a change occurred in the PermittedBearers for the device
	1.0

	CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Connect_Async_Complete()
	result of a previous call to CMAPI_NetConnectSrv_SecondaryPDPContext_Connect_Async()
	1.0

	CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_Disconnect_Async_Complete()
	result of a previous call to CMAPI_NetConnectSrv_SecondaryPDPContext_Disconnect_Async()
	1.0

	CMAPI_Callback_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async_Complete()
	result of a previous call to CMAPI_NetConnectSrv_SecondaryPDPContext_CancelConnect_Async()
	1.0

	CMAPI_Callback_WLANSettingsChanged()
	notify that a WLAN operator setting has been changed.
	1.1

	CMAPI_Callback_WLANNewMO()
	notify that a new or an updated WLAN MO has been provided to the Terminal.
	1.1

	CMAPI_Callback_Incoming_Voice_Call()
	provide to application information regarding a voice call state (incoming, established...)
	1.1

	CMAPI_Callback_SEServicesChange()
	communicate changes regarding the availability of services
	1.1

	CMAPI_Callback_BatteryStatusChanged()
	communicate whenever there is a change in the battery status
	1.1

	CMAPI_Callback_BatteryThresholdReached()
	communicate whenever the battery level of the device is reaching a threshold set by the function CMAPI_Information_SetBatteryThreshold()
	1.1

	CMAPI_Callback_P2P_DiscoveryMatch()
	alert the Local Device of a DeviceID/ServiceID/ServiceRecord discovery match as indicated in CMAPI_P2P_Monitor()
	1.1

	CMAPI_Callback_P2P_Connection()
	result of call made to CMAPI _P2P_EstablishConnection()
	1.1

	CMAPI_Callback_P2P_GroupNotification()
	result of a previous call to CMAPI_P2P_JoinGroup()
	1.1

	CMAPI_Callback_ GetMobilitytoLocation_Complete()
	result of a previous call to CMAPI_Information_GetMobilitytoLocation()
	1.1

Table 12: List CMAPI-2 Functions

Appendix D. Web IDL Definitions
(Informative)
For the definitions of the WebIDL for the CMAPI WebAPI please refer to [OpenCMAPI-SUP-WIDL].

Appendix E. JavaScript Library of WebSocket API Binding
(Informative)
This appendix describes how the JavaScript Library implements the Web API Binding using the methods and event handlers of corresponding Web API, and the details of the JSON-RPC data structure of request and response messages as the Application Data within the underlying Web protocol.
A JavaScript Library implements the Web Socket API Binding using the following algorithm:
· Establishing one and only one persistent “WebSocket” object for a Web application
· Keep the Web Socket connection open unless error happens
· Maintain the list of registered CMAPI-2 “callbackIds” and corresponding callback function “cbs”
· Maintain the list of transaction “ids” and corresponding callback functions “cbs” for outstanding CMAPI-1 function calls
· The validity period of an outstanding CMAPI-1 function call is defined according to operator’s policy in order to handle the possible situation of multiple sequential response messages of the same CMAPI-1 function call. For example, 30 minutes. If it is expired, the transaction “id” and corresponding callback function “cb” shall be removed from the list.
· Handle errors according to section 5.4.1.4.
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20130101-I]
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20130101-I]

