OMA-TS-OpenCMAPI-V1_0-20111116-D
Page 124 V(129)

	[image: image1.jpg]
	

	Open Connection Manager API

	Draft Version 1.0 – 16 November 2011

	Open Mobile Alliance

	OMA-TS-OpenCMAPI-V1_0-20111116-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
8
3.
Terminology and Conventions
9
3.1
Conventions
9
3.2
Definitions
9
3.3
Abbreviations
10
4.
Introduction
12
4.1
Version 1.0
12
5.
CMAPI-1
13
5.1
Design convention
13
5.2
Data Type Definition
13
5.2.1
Radio Type
13
5.2.2
WLAN Network Security
13
5.2.3
WLAN Network
14
5.2.4
Located WLAN Network
14
5.2.5
WLAN Radio State
15
5.2.6
WLAN Connected Parameters
15
5.3
API Management
15
5.3.1
CMAPI_Api_Open()
16
5.3.2
CMAPI_Api_Close()
16
5.4
Device Discovery APIs
17
5.4.1
CMAPI_DeviceDiscovery_DetectDevices()
17
5.4.2
CMAPI_Callback_DetectDevicesComplete()
17
5.4.3
CMAPI_DeviceDiscovery_GetDevice()
18
5.4.4
CMAPI_DeviceDiscovery_OpenDevice()
19
5.4.5
CMAPI_DeviceDiscovery_CloseDevice()
20
5.5
Cellular Network Management APIs
20
5.5.1
CMAPI_NetMng_GetRfInfo()
20
5.5.2
CMAPI_NetMng_GetHomeNetworkInformation ()
21
5.5.3
CMAPI_NetMng_GetServingNetworkInformation ()
21
5.6
Mobile IP APIs
22
5.6.1
CMAPI_MobileIP_SetMobileIPState()
22
5.6.2
CMAPI_MobileIP_GetMobileIPState()
23
5.6.3
CMAPI_MobileIP_SetActiveMobileIPProfile()
23
5.6.4
CMAPI_MobileIP_GetActiveMobileIPProfile()
24
5.6.5
CMAPI_MobileIP_SetMobileIPProfile()
24
5.6.6
CMAPI_MobileIP_GetMobileIPProfile()
25
5.6.7
CMAPI_MobileIP_SetMobileIPParameters()
26
5.6.8
CMAPI_MobileIP_GetMobileIPParameters()
27
5.6.9
CMAPI_MobileIP_GetLastMobileIPError()
28
5.7
Device Service APIs
28
5.7.1
CMAPI_DevSrv_GetManufacturerName ()
28
5.7.2
CMAPI_DevSrv_GetManufacturerModel ()
29
5.7.3
CMAPI_DevSrv_GetDeviceName()
29
5.7.4
CMAPI_DevSrv_GetHardwareVersion()
30
5.7.5
CMAPI_DevSrv_ GetProductType()
31
5.7.6
CMAPI_DevSrv_ GetImsi ()
31
5.7.7
CMAPI_DevSrv_ GetMDN ()
32
5.7.8
CMAPI_DevSrv_ GetImei ()
32
5.7.9
CMAPI_DevSrv_ GetEsn ()
33
5.7.10
CMAPI_DevSrv_ GetDevStatus ()
33
5.7.11
CMAPI_DevSrv_ GetFwVersion()
34
5.7.12
CMAPI_DevSrv_ GetOwnVersion()
35
5.7.13
CMAPI_DevSrv_ GetPrlversion ()
35
5.7.14
CMAPI_DevSrv_ GetRFSwitch()
36
5.8
PINs/PUKs Management APIs
37
5.8.1
CMAPI_DevSrv_GetNAAavailable()
37
5.8.2
CMAPI_DevSrv_EnablePin()
38
5.8.3
CMAPI_DevSrv_DisablePin()
39
5.8.4
CMAPI_DevSrv_VerifyPin()
41
5.8.5
CMAPI_DevSrv_UnblockPin()
43
5.8.6
CMAPI_DevSrv_ChangePin()
45
5.9
WLAN APIs
47
5.9.1
CMAPI_WLAN_IsSupported()
47
5.9.2
CMAPI_WLAN_GetRadioState()
48
5.9.3
CMAPI_WLAN_SetRadioState()
48
5.9.4
CMAPI_WLAN_AddKnownNetwork()
49
5.9.5
CMAPI_WLAN_UpdateKnownNetwork()
49
5.9.6
CMAPI_WLAN_DeleteKnownNetwork()
50
5.9.7
CMAPI_WLAN_GetKnownNetwork()
51
5.9.8
CMAPI_WLAN_GetScanResults()
51
5.9.9
CMAPI_WLAN_Scan()
52
5.9.10
CMAPI_WLAN_Connect()
52
5.9.11
CMAPI_WLAN_ConnectKnownNetwork()
53
5.9.12
CMAPI_WLAN_Disconnect()
54
5.9.13
CMAPI_WLAN_GetConnectionMode()
54
5.9.14
CMAPI_WLAN_SetConnectionMode()
55
5.9.15
CMAPI_WLAN_ResetDevice()
55
5.9.16
CMAPI_WLAN_GetConnectedParameters()
56
5.9.17
CMAPI_WLAN_SetConnectedParameters()
56
5.9.18
CMAPI_WLAN_CancelOperation()
57
5.10
Statistics APIs
57
5.10.1
CMAPI_NetStatistic_GetConnectionStatistics()
57
5.11
Information Status APIs
58
5.11.1
CMAPI_Information_GetPinStatus()
58
5.11.2
CMAPI_Information_GetPLMNName()
60
5.11.3
CMAPI_Information_GetNetworkSelectionMode()
60
5.11.4
CMAPI_Information_GetSignalStrength()
61
5.11.5
CMAPI_Information_GetCSNetworkRegistration()
62
5.11.6
CMAPI_Information_GetPSNetworkRegistration()
62
5.11.7
CMAPI_Information_GetApn()
63
5.11.8
CMAPI_Information_GetIPAddress()
64
5.11.9
CMAPI_Information_GetRoamingStatus()
64
5.11.10
CMAPI_Information_GetDriverVersion()
65
5.11.11
CMAPI_Information_GetSessionState()
66
5.11.12
CMAPI_Information_GetRATType()
66
5.11.13
CMAPI_Information_GetQOS()
67
5.11.14
CMAPI_Information_GetWLANConnection()
70
6.
CMAPI-2
71
6.1
Convention
71
6.2
Radio Type Definition
71
6.3
QOS Structure Definition
71
6.4
Callback APIs
73
6.4.1
CMAPI_Callback_SessionStateChange()
73
6.4.2
CMAPI_Callback_BearerStatusChange()
74
6.4.3
CMAPI_Callback_TrafficChannelDormancy()
75
6.4.4
CMAPI_Callback_CDMA2000ActivationState()
76
6.4.5
CMAPI_Callback_OnChangedDevice()
76
6.4.6
CMAPI_Callback_PowerState()
77
6.4.7
CMAPI_Callback_Roaming()
78
6.4.8
CMAPI_Callback_SignalStrength()
78
6.4.9
CMAPI_Callback_GPS()
79
6.4.10
CMAPI_Callback_SmsReceived()
80
6.4.11
CMAPI_Callback_ByteCount
80
6.4.12
CMAPI_Callback_IncomingCall()
81
6.4.13
CMAPI_Callback_UssdMessage()
82
6.4.14
CMAPI_Callback_CATProactiveCommand()
82
6.4.15
CMAPI_Callback_QosChange()
83
6.4.16
CMAPI_Callback_RfInformationChange()
83
6.4.17
CMAPI_Callback_PinPukStatus()
84
6.4.18
CMAPI_Callback_ScanComplete()
86
6.4.19
CMAPI_Callback_WLANNewAvailableNetwork()
86
6.4.20
CMAPI_Callback_WLANNetworkDisconnected()
87
6.4.21
CMAPI_Callback_WLANConnectProgress()
87
6.5
Registration APIs
88
6.5.1
CMAPI_Callback_Register()
88
6.5.2
CMAPI_Callback_Register()
89
6.5.3
CMAPI_Callback_Unregister()
90
Appendix A.
Change History (Informative)
92
A.1
Approved Version History
92
A.2
Draft/Candidate Version <current version> History
92
Appendix B.
Static Conformance Requirements (Normative)
93
B.1
SCR for XYZ Client
93
B.2
SCR for XYZ Server
93
Appendix C.
Typical scenario for use of OpenCMAPI in Mobile Broadband (Laptop context)
94
C.1
Typical Scenario in laptop environment
94
C.2
Example with multiple devices
94

Figures

9Figure 1: Example Figure

Tables

9Table 1: Example Table

1. Scope

<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

2. References
2.1 Normative References

	[3GPP TR 21.905]
	“TR 21.905 Technical Specification Group Services and System Aspects; Vocabulary for 3GPP Specifications”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/21_series/21.905/

	[3GPP TS 22.011]
	“TS 22.011 Technical Specification Group Services and System Aspects; Service accessibility”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/22_series/22.011/

	[3GPP TS 22.022]
	“TS 22.022 Technical Specification Group Services and System Aspects; Personalisation of Mobile Equipment (ME), Mobile functionality specification”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/22_series/22.022/

	[3GPP TS 22.030]
	“TS 22.030 Technical Specification Group Services and System Aspects; Man-Machine Interface (MMI) of the User Equipment (UE)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/22_series/22.030/

	[3GPP TS 24.090]
	“TS 24.090 Technical Specification Group Core Network and Terminals; Unstructured Supplementary Service Data (USSD)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/24_series/24.090/

	[3GPP TS 31.101]
	“TS 31.101 Technical Specification Group Core Network and Terminals; UICC-terminal interface; Physical and logical characteristics, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.101/

	[3GPP TS 31.111]
	“TS 31.111 Technical Specification Group Core Network and Terminals; Universal Subscriber Identity Module (USIM), Application Toolkit (USAT)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.111/

	[3GPP TS 31.102]
	“TS 31.102 Technical Specification Smart Cards; Characteristics of the Universal Subscriber Identity Module (USIM) application”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.102/

	[3GPP TS 31.103]
	“TS 31.103 Technical Specification Group Core Network and Terminals; Characteristics of the IP Multimedia Services Identity Module (ISIM) application”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.103/

	[3GPP TS 31.111]
	“TS 31.111 Technical Specification Group Core Network and Terminals; Universal Subscriber Identity Module (USIM), Application Toolkit (USAT)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/31_series/31.111/

	[3GPP TS 51.011]
	“TS 51.011 Technical Specification Group Terminals; Specification of the Subscriber Identity Module-Mobile Equipment (SIM - ME) interface”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/51_series/51.011/

	[3GPP TS 51.014]
	“TS 51.014 Technical Specification Group Terminals; Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface (Release 4)”, 3rd Generation Partnership Project (3GPP),
URL: http://www.3gpp.org/ftp/Specs/archive/51_series/51.014/

	[3GPP2 C.S0023]
	“Removable User Identity Module for Spread Spectrum Systems”, 3rd Generation Partnership Project 2 (3GPP2), Technical Specification 3GPP2 C.S0023,
URL: http://www.3gpp2.org/

	[3GPP2 C.S0035]
	“CDMA Card Application Toolkit (CCAT)”, 3rd Generation Partnership Project 2 (3GPP2), Technical Specification 3GPP2 C.S0035,
URL: http://www.3gpp2.org/

	[3GPP2 C.S0065]
	“Cdma2000 Application on UICC for Spread Spectrum Systems”, 3rd Generation Partnership Project 2 (3GPP2), Technical Specification 3GPP2 C.S0065,
URL: http://www.3gpp2.org/

	[3GPP2 C.S0068]
	“ME Personalization for cdma2000 Spread Spectrum Systems”, 3rd Generation Partnership Project 2 (3GPP2), Technical Specification 3GPP2 C.S0068,
URL: http://www.3gpp2.org/

	[DMClientAPIFw v1.0]
	“Enabler Release for OMA Device Management Client API framework”, OMA-ER-DMClientAPIfw-V1_0, Open Mobile Alliance™,
URL: http://www.openmobilealliance.org/

	[ETSI TR 102 216]
	“TR 102 216 Technical Report Smart Cards; Vocabulary for Smart Card Platform specifications”, v3.0.0, European Telecommunications Standards Institute (ETSI),
URL: http://www.etsi.org

	[ETSI TS 102 221]
	“TS 102 221 Technical Specification, Smart Cards; UICC-Terminal interface; Physical and logical characteristics”, European Telecommunications Standards Institute (ETSI),
URL: http://www.etsi.org

	[ETSI TS 102 223]
	“TS 102 223 Technical Specification, Smart Cards; Card Application Toolkit (CAT)”, European Telecommunications Standards Institute (ETSI),
URL: http://www.etsi.org

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	AID
	Application IDentifier as defined in [ETSI TR 102 216] and specified in [ETSI TS 102 221].

	Cloud Device
	Device that needs to be connected and using online services to be fully functional.

	Connection Manager
	An entity or application that manages different network connections based on user profiles associated with these connections.

	CSIM
	A CDMA2000 Subscriber Identity Module is an application defined in [3GPP2 C.S0065] residing on the UICC to register services provided by 3GPP2 mobile networks with the appropriate security.

	Device
	. A device in the context of OpenCMAPI is defined as a hardware unit which is exposed through a proprietary driver and containing at least one radio for the purpose of two way communication. A device could contain more than one radio and in this case is referred to as a multi-function device. Example: 3GPP2 and also Wi-Fi

	Dormant
	Connection still active but no traffic on tx and rx. In 3GPP context, PDP context is established but no traffic.

	ISIM
	An IP Multimedia Services Identity Module is an application defined in [3GPP TS 31.103] residing in the memory of the UICC, providing IP service identification, authentication and ability to set up Multimedia IP Services.

	NAA
	Network Access Application as defined in [ETSI TR 102 216]. Examples of NAA on UICC: CSIM, ISIM, USIM.

	Network Identifier
	Network Identifier as specified in [3GPP TS 23 003].

	Operator Identifier
	Operator Identifier as specified in [3GPP TS 23 003].

	Profile/User Profile/Connection Profile
	The term Profile or User Profile or Connection Profile will be used to identify the information needed to establish a connection. There are two types of Connection Profiles: cellular profiles for connection to cellular and Wi-Fi profiles for connection to Wi-Fi.

	Push Service
	A service utilizing PUSH delivery mechanism that enables the mobile device to receive data traffic initiated by a dedicated server.

	QNC
	Quick Net Connect is a 2G data technology for circuit-switched 2G wireless networks

	R-UIM
	A Removable User Identity Module is a standalone module defined in [3GPP2 C.S0023] to register services provided by 3GPP2 mobile networks with the appropriate security.

	SIM
	A Subscriber Identity Module is a standalone module defined in [3GPP TS 51.011] to register services provided by 2G mobile networks with the appropriate security.

	UICC
	As defined in [OMA-DICT] and whose interface is specified in [3GPP TS 31.101].

	UIM
	A User Identity Module is a module defined in [3GPP2 C.S0023] to register services provided by 3GPP2 mobile networks with the appropriate security. The UIM can either be a removable UIM (R-UIM) or a non-removable UIM.

	USIM
	A Universal Subscriber Identity Module is an application defined in [3GPP TS 31.102] residing in the memory of the UICC to register services provided by 3GPP mobile networks with the appropriate security.

3.3
Abbreviations

	3GPP
	3rd Generation Partnership Project

	3GPP2
	3rd Generation Partnership Project 2

	AID
	Application Identifier

	AKA
	Authentication and Key Agreement

	API
	Application Programming Interface

	APN
	Access Point Name

	CDMA
	Code Division Multiple Access

	CHAP
	Challenge Handshake Authentication Protocol

	CM
	Connection Manager

	CSIM
	CDMA2000 Subscriber Identity Module

	DM
	Device Management

	DNS
	Domain Name System

	EAP
	Extensible Authentication Protocol

	EDGE
	Enhanced Data rates for GSM Evolution

	ETSI
	European Telecommunications Standards Institute

	e-UTRAN
	evolved Universal Terrestrial Radio Access Network

	GAN
	Generic Access Network

	GERAN
	GSM EDGE Radio Access Network

	GPRS
	General Packet Radio Service

	GPS
	Global Positioning System

	GSM
	Global System for Mobile communications

	HSPA
	High Speed Packet Access

	ISIM
	IP Multimedia Services Identity Module

	LTE
	Long Term Evolution

	MAC
	Media Access Control

	MMS
	Multimedia Messaging Service

	NAA
	Network Access Application

	NDIS
	Network Driver Interface Specification

	NMEA
	National Marine Electronics Association

	ODM
	Original Device Manufacturer

	OEM
	Original Equipment Manufacturer

	OMA
	Open Mobile Alliance

	OpenCMAPI
	Open Connection Manager (CM) Application Programming Interface (API)

	PAP
	Password Authentication Protocol

	PDN
	Public Data Network

	PIN
	Personal Identification Number

	PLMN
	Public Land Mobile Network

	PRL
	Preferred Roaming List

	PSK
	PreShared Key

	PUK
	Personal Unlocking Key also called UNBLOCK PIN.

	QoS
	Quality of Service

	RAS
	Remote Access Service

	RAT
	Radio Access Technologies

	RFC
	Request For Comments

	RSSI
	Received Signal Strength Indicator

	R-UIM
	Removable User Identity Module

	SIM
	Subscriber Identity Module

	SMS
	Short Message Service

	SMS-C
	Short Message Service Center

	SSID
	Service Set Identifier

	UI
	User Interface

	UICC
	Universal Integrated Circuit card

	UIM
	User Identity Module

	UMA
	Unlicensed Mobile Access

	UMTS
	Universal Mobile Telecommunications System

	USIM
	Universal Subscriber Identity Module

	USSD
	Unstructured Supplementary Service Data

	UTRAN
	Universal Terrestrial Radio Access Network

	VPN
	Virtual Private Network

	WEP
	Wired Equivalent Privacy

	Wi-Fi
	Wireless Fidelity

	WiMAX
	Worldwide Interoperability for Microwave Access

	WISPr
	Wireless Internet Service Provider roaming

	WLAN
	Wireless Local Area Network

	WPA2
	Wi-Fi Protected Access Version 2

	WPS
	Wireless Protected Setup

	WWAN
	Wireless Wide Area Network

4. Introduction

<< From a market perspective...

· What can you do with this specification?

· What problem does this solve?

· How can this specification be applied?

· Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>
4.1 Version 1.0

This section provides a high level, concise and informative description of the main functionality supported in the initial version of the specification. The description should be brief, target length should be a few paragraphs. When the enabler or reference release is finished, this description should be aligned with the final functionality.

DELETE THIS COMMENT

5. CMAPI-1
5.1 Introduction

The CMAPI-1 interface is mainly a Synchronous Interface with maximum timeout and possibility of cancellation.

However, for long operations (typically more than 7 seconds before the result is available), Asynchronous versions of the API functions are specified in completion of their Synchronous version.

5.2 Design convention

Throughout the document the following terms will be used to denote absolute sizes of memory. Byte will be used to denote 8 bit data values, word will be used to denote 2 byte values, dword will be used to denote 2 word values and qword will be used to denote 2 dword values. String will be used to represent a sequence of bytes with null terminating character.

Editor Note: to review the data types definition and the consistency between the usage of bytes, char or string data types

5.3 Data Type Definition

5.3.1 Radio Type

	Definition

	This prototype defines an enumeration of radio types. The following enumeration will be used throughout this document to define which radio a function operates on.

	Radio Type
	
	 The following radio types are supported:

· 0x00: WCDMA/UMTS

· 0x01: CDMA

· 0x02: TD_SCDMA

· 0x03: LTE

·
·
· 0x04: WLAN

Editor Note: to review the Radio Type

5.3.2 WLAN Network Security

	Definition WLAN Network Security

	This prototype defines an enumeration of security types for WLAN.

	Security Type
	
	 The following security types are supported:

· 0x00000001: Open (no security)

· 0x00000002: WEP

· 0x00000004: WPA

· 0x00000008: WPA2

· 0x00000010: WPA_ENTERPRISE

· 0x00000020: WPA2_ENTERPRISE

5.3.3 WLAN Network

	Definition WLAN Network

This prototype defines a structure which describes a WLAN network

	Field Name
	Type
	Description

	pSSID
	String*
	 The service set identifier

	pBSSID
	String*
	The basic service set identifier

	pFriendlyName
	String*
	A name used to identify this network.

	security
	dword
	The type(s) of security used for this network. See WLAN Network Security.

	mode
	dword
	Specifies if the network can be automatically connected if located.

· 0x00000000: Manual

· 0x00000001: Automatic

	hidden
	dword
	Specifies if the SSID is being actively broadcast

· 0x00000000: SSID is broadcast

· 0x00000001: SSID is hidden

	pKey
	String*
	Optional – This is only needed for items requiring a static key like WEP and PSK.

	eapType
	dword
	Optional - The type of EAP used by the network.

	pEap
	byte*
	Optional - The EAP definition. This could be a proprietary format implementation of the Buffer (to be checked)

	pEapSize
	dword
	Contains the length in bytes of the EAP configuration. If not used should be set to “0”.

5.3.4 Located WLAN Network

	Definition Located WLAN Network

This prototype defines a structure which describes a WLAN network

	Field Name
	Type
	Description

	pNetwork
	WLAN Network*
	 Please see WLAN Network

	rssi
	dword
	The signal strength in dBm

	known
	dword
	Identifies if this is a known network

· 0x00000000: Unknown

· 0x00000001: Known

5.3.5 WLAN Radio State
	Definition WLAN Radio State

	This prototype defines an enumeration of radio states.

	Radio State
	
	 The following radio states are supported:

· 0x00000001: Radio On (Full Power)

· 0x00000002: Radio On (Power Saving)- Optional

· 0x00000003: Radio Off (device still powered on)

· 0x00000004: Radio Off (Device Off including hardware switch)

5.3.6 WLAN Connected Parameters

	Definition Located WLAN Network

This prototype defines a structure which describes an existing WLAN network connection

	Field Name
	Type
	Description

	pIPAddress
	string*
	 The IP Address

	pSubnetMask
	string*
	The subnet mask

	pHttpProxy
	string*
	The Http proxy.

EAP Types

	Definition EAP Types

	This prototype defines an enumeration of security types for EAP.

	Security Type
	
	 The following security types are supported:

· 0x00000000: Not used.

· 0x00000004: MD5-Challenge

· 0x00000006: Generic Token Card (GTC)

· 0x00000013: EAP-TLS

· 0x00000017: LEAP

· 0x00000018: EAP SIM

· 0x00000021: EAP TTLS

· 0x00000023: EAP AKA

· 0x00000025: PEAP

· 0x00000026: EAP MS-CHAP-V2

· 0x00000043: EAP-FAST

(Editor Note: to find the right reference & explanation about order of methods)

Editor Note: to review the data types definition – some may be missing

5.4 API Management

5.4.1

	

	

	

	
	
	

	
	
	

	

	
	

	
	

	
	

5.4.2

	

	

	

	
	
	

	
	
	

	

	
	

	
	

	
	

	
	

CMAPI_Api_Open()

The CMAPI_Api_Open() function is used to initialize the OpenCMAPI and also initialize the security context. The security request and response arguments are intentionally unspecified. This allows the OpenCMAPI implementations an opportunity to implement innovative and value added security models.
	Prototype

	dword CMAPI_Api_Open (dword accessLevel, byte* pSecurityRequest, dword requestSize, byte* pSecurityContext, dword* pSecurityContextSize)

	Parameters

	Field Name
	Mode
	Description

	accessLevel
	Input
	The access level requested:

· 0x00000001 – Connection Manager

· 0x00000002 – Non Connection Manager

· 0xF??????? – Reserved for proprietary access level implementation.

	pSecurityRequest
	Input
	 The represents a proprietary means of identification and credential

presentation to the OpenCMAPI implementation. Each OpenCMAPI vendor is able to customize the type and amount of data to be submitted.

	requestSize
	Input
	The size for the buffer in bytes of the security request structure.

	pSecurityContext
	Output
	This is a buffer that the OpenCMAPI implementation returns in order to authenticate itself in future requests.

	pSecurityContextSize
	Input/Output
	Contains the size in bytes of the security response buffer.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded and the caller as been successfully authenticated.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The SecurityContext buffer is not large enough. pSecurityContextSize contains the number of bytes required.

	0x00000003
	The authentication has been denied. Please seek proper credentials for your access level.

	0x00000004
	The security request was malformed. Please consult vendor materials and/or output log.

CMAPI_Api_Close()
The CMAPI_Api_Close() function is used to deallocate any internal API structures and also the security context.
	Prototype

	dword CMAPI_Api_Close (byte* pSecurityContext, dword securityContextSize)

	Parameters

	Field Name
	Mode
	Description

	pSecurityContext
	Input
	 This is populated from the Api_Open function

	securityContextSize
	Input
	The size in bytes of the security context.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

Editor Note: to review how to address the fact that the API is not open either by adding a specific return value or in the logger. If return value, it should apply for all functions
5.5 Device Discovery APIs
5.5.1 CMAPI_DeviceDiscovery_DetectDevices()

The CMAPI_DeviceDiscovery_DetectDevices() function is used to direct the OpenCMAPI to actively search for new devices and to check for removal of devices. This is a manually triggered operation. The OpenCMAPI implementation is likely able to alert the application as to a device addition/removal if the application registers for the “Device Detection callback” using the CMAPI_Callback_Register method.

	Prototype

	dword CMAPI_DeviceDiscovery_DetectDevices (Callback method)

	Parameters

	Field Name
	Mode
	Description

	method
	Input
	 The method to invoke when the detect devices is finished.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.5.2 CMAPI_Callback_DetectDevicesComplete()

The CMAPI_Callback_DetectDevicesComplete() function is used to communicate that a search and validation of the devices in the system is complete. This is a callback method which the OpenCMAPI invokes.

	Prototype

	dword CMAPI_Callback_DetectDevicesComplete (dword devicesPresent, byte *pUniqueIdentifierArray)

	Parameters

	Field Name
	Mode
	Description

	devicesPresent
	Input
	The number of the devices currently present

	pUniqueIdentifierArray
	Input
	An array of ‘devicesPresent’ strings, each of which uniquely identifies a detected device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID. Each array element consists of two fields:

· Const string *pUniqueIdentifier: Character string containing the unique device ID

· dword *pUniqueIdentifierLength: the length of the device ID

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.5.3 CMAPI_DeviceDiscovery_GetDevice()

The CMAPI_DeviceDiscovery_GetDevice() function is used to discover information about the devices within the system.

The opaque handle is used to eliminate any possible confusion resulting from one device appearing and another disappearing in a short timespan. The opaque handle is supplied to the technology specific API calls in order to obtain more detailed information related to the device.

	Prototype

	dword CMAPI_DeviceDiscovery_GetDevice (dword* pHandle, dword* pType, dword* pconnectionType, dword* pdeviceType, string* pDescription, dword* pDescriptionLength,string* pUniqueIdentifier, dword* pUniqueIdentifierLength)

	Parameters

	Field Name
	Mode
	Description

	
	
	

	pHandle
	Input
	An opaque handle which is used to reference this device in other OpenCMAPI calls. The opaque handle to the device MUST not be allowed to change unless the hosting device is rebooted and all applications are restarted.

	pType
	Output
	The type of the device. May contain multiple values if device is multifunction.

· 0x00000001: 3GPP

· 0x00000002: 3GPP2

· 0x00000004: Wi-Fi

· 0x00000010: GPS

	pconnectionType
	output
	The type of the device connection.

· 0x00000001: USB

· 0x00000002: IRDA

· 0x00000003: Bluetooth

· 0x00000004: Internal Bus

	pdeviceType
	output
	The type of device this message refers to.

· 0x00000001: Embedded modem

· 0x00000002: USB modem

· 0x00000003: Mobile phone acting as modem

	pDescription
	Output
	A string that describes the device. Intended to be descriptive and displayed by an application.

	pDescriptionLength
	Input,Output
	On input contains the length of the buffer in bytes of description. If buffer is insufficient, will contain the minimum length required to hold the description string.

	pUniqueIdentifier
	Output
	A string that uniquely identifies this specific device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID.

	pUniqueIdentifierLength
	Input, Output
	The length of the unique identifier buffer in bytes.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The index references a non-existent device

	0x00000003
	The description buffer needs to be larger; the description length is set to the minimum number of bytes required.

	0x00000004
	The unique identifier buffer needs to be larger; the unique identifier length is set to the minimum number of bytes required.

Editor Note: to decide if we keep all device capabilities in one parameter like it is mentioned (pType) or to separate into 2 parameters/layers (Layer 1: Network related capabilities e.g. 3GPP, 3GPP2…. Layer 2: other devices capabilities e.g. GPS…)

Editor Note: pType already used in other context and with different meaning

5.5.4 CMAPI_DeviceDiscovery_OpenDevice()

The CMAPI_DeviceDiscovery_OpenDevice() function is used to “open” a device within the system. The device is identified by the UniqueIdentifier obtained in earlier call to CMAPI_DeviceDiscovery_DetectDevices(). The function returns an opaque handle which is used to eliminate any possible confusion resulting from one device appearing and another disappearing in a short timespan. The opaque handle is supplied to the technology specific API calls in order to obtain more detailed information related to the device.

	Prototype

	dword CMAPI_DeviceDiscovery_OpenDevice (dword* pHandle , string pUniqueIdentifier)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Output
	An opaque handle which is used to reference this device in other OpenCMAPI calls. The opaque handle to the device MUST not be allowed to change unless the hosting device is rebooted and all applications are restarted.

	pUniqueIdentifier
	Input
	A string that uniquely identifies this specific device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The pUniqueIdentifier is referencing a non-existing device

	0x00000003
	The device is already opened.

	0x00000004
	Maximum number of device that the API can handle per client is reached (can be 1), close another open device handle.

5.5.5 CMAPI_DeviceDiscovery_CloseDevice()

The CMAPI_DeviceDiscovery_CloseDevice() function is used to “close” a device within the system. The device is identified by the opaque handle obtained in earlier call to CMAPI_DeviceDiscovery_OpenDevice().

	Prototype

	dword CMAPI_DeviceDiscovery_CloseDevice (dword pHandle)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	An opaque handle which was obtained in a call to OpenDevice. If pHandle is 0, all devices opened by the calling application will be closed.

Any outstanding operation will be terminated (e.g. Async operation)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The pHandle references a non-existing device or a device which is not open

Editor Note: To address the recovery case if the application crashes for example.

5.6 Cellular Network Management APIs
5.6.1 CMAPI_NetMng_GetRfInfo()

The CMAPI_NetMng_GetRfInfo () function is used to get information about RF (Radio access technology, band class, data rate supported and channel)
	Prototype

	
dword CMAPI_NetMng_GetRfInfo (dword* radio, dword* maxDataRate, string* channelNumber)

	Parameters

	Field Name
	Mode
	Description

	radio
	Output
	See Radio Type definition

	maxDataRate
	Output
	Maximum bit rate in bit/s

	channelNumber
	Output
	Channel number

	Return Values

	Value
	Description

	0x00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	Buffer not large enough

5.6.2 CMAPI_NetMng_GetHomeNetworkInformation ()
The CMAPI_NetMng_ GetHomeNetworkInformation () function is used to get information about home network of the subscriber
	Prototype

	
dword CMAPI_NetMng_GetHomeNetworkInformation (string* homeNetworkName, dword* length)

	Parameters

	Field Name
	Mode
	Description

	homeNetworkName
	Output
	MCC/MNC of home network

	length
	output
	Buffer length

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	Buffer not large enough

5.6.3 CMAPI_NetMng_GetServingNetworkInformation ()
The CMAPI_NetMng_GetServingNetworkInformation () function is used to get information about home network of the subscriber
	Prototype

	
 dword CMAPI_NetMng_GetServingNetworkInformation (string* servingNetworkName, dword* length)

	Parameters

	Field Name
	Mode
	Description

	servingNetworkName
	Output
	MCC/MNC of serving network

	Length
	output
	Buffer length

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	Buffer not large enough

5.7 Mobile IP APIs
5.7.1 CMAPI_MobileIP_SetMobileIPState()
The CMAPI_MobileIP_SetMobileIPState () function is used to set the current Mobile IP state of the device.

	Prototype

	dword CMAPI_MobileIP_SetMobileIPState (dword mode)

	Parameters

	Field Name
	Mode
	Description

	mode
	Input
	 The new setting of the device’s Mobile IP mode:

	
	
	· 0x00000000: Mobile IP off (simple IP only)

	
	
	· 0x00000001: Mobile IP preferred

	
	
	· 0x00000002: Mobile IP only

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.7.2 CMAPI_MobileIP_GetMobileIPState()
The CMAPI_MobileIP_GetMobileIPState () function is used to retrieve the current Mobile IP state of the device.

	Prototype

	dword CMAPI_ CMAPI_MobileIP_GetMobileIPState (dword *pMode)

	Parameters

	Field Name
	Mode
	Description

	*pMode
	Output
	 Pointer to the current setting of the device’s Mobile IP mode:
0x00000000: Mobile IP off (simple IP only)
0x00000001: Mobile IP preferred
· 0x00000002: Mobile IP only

	·
	·

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.7.3 CMAPI_MobileIP_SetActiveMobileIPProfile()
The CMAPI_MobileIP_SetActiveMobileIPProfile () function is used to set the index of the Mobile IP profile that the device will use. There can be several Mobile IP profiles configured on the device, each of which is identified by a unique index.

	Prototype

	dword CMAPI_MobileIP_SetActiveMobileIPProfile (string *pSPC, byte index)

	Parameters

	Field Name
	Mode
	Description

	*pSPC
	Input
	 Pointer to a string containing the Service Programming Code (SPC).

	index
	Input
	Index of the mobile IP profile that will be made the active one.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.7.4 CMAPI_MobileIP_GetActiveMobileIPProfile()
The CMAPI_MobileIP_GetActiveMobileIPProfile () function is used to retrieve the index of the Mobile IP profile that the device is currently using.

	Prototype

	dword CMAPI_MobileIP_GetActiveMobileIPProfile (byte *pIndex)

	Parameters

	Field Name
	Mode
	Description

	*pIndex
	Output
	Pointer to the index of the currently active mobile IP profile.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.7.5 CMAPI_MobileIP_SetMobileIPProfile()
The CMAPI_MobileIP_SetMobileIPProfile () function is used to configure the contents of a Mobile IP profile on the device. The function takes as arguments the index of the Mobile IP profile that will be modified and the profile values that will be set by the function.

	Prototype

	dword CMAPI_MobileIP_SetMobileIPProfile (string *pSPC, byte index, byte *pEnabled, dword *pAddress, dword *pPriHA, dword *pSecHA, byte *pRevTunn, string *pNAI, dword *pHASPI, dword *pAAASPI, string *pMNHA, string *pMNAAA)

	Parameters

	Field Name
	Mode
	Description

	*pSPC
	Input
	 Pointer to a string containing the Service Programming Code (SPC).

	index
	Input
	Index of the mobile IP profile that is being set with this function.

	*pEnabled
	Input
	(Optional) Enable profile: 0x00: No (disable), any other value: Yes (enable)

	*pAddress
	Input
	(Optional) Home IPv4 address

	*pPriHA
	Input
	(Optional) Primary Home Agent IPv4 address

	*pSecHA
	Input
	(Optional) Secondary Home Agent IPv4 address

	*pRevTunn
	Input
	(Optional) Reverse tunneling mode: 0x00: No (Disabled), any other value: Enabled

	*pNAI
	Input
	(Optional) Network Access Identifier string

	*pHASPI
	Input
	(Optional) Home Agent Security Parameter Index

	*pAAASPI
	Input
	(Optional) AAA server Security Parameter Index

	*pMNHA
	Input
	(Optional) MN-HA key string

	*pMNAAA
	Input
	(Optional) AAA key string

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.7.6 CMAPI_MobileIP_GetMobileIPProfile()
The CMAPI_MobileIP_GetMobileIPProfile () function is used to retrieve the contents of a Mobile IP profile on the device. The function takes as arguments the index of the Mobile IP profile that will be retrieved and the profile values that will be returned by the function.

	Prototype

	dword CMAPI_MobileIP_GetMobileIPProfile (byte index, byte *pEnabled, dword *pAddress, dword *pPriHA, dword *pSecHA, byte *pRevTunn, byte naiSize, string *pNAI, dword *pHASPI, dword *pAAASPI, dword *pHAState, dword *pAAAState)

	Parameters

	Field Name
	Mode
	Description

	index
	Input
	Index of the mobile IP profile that is being set with this function.

	*pEnabled
	Output
	Profile status: 0x00: Disabled; 0x01: Enabled; 0xFF: Unknown

	*pAddress
	Output
	Home IPv4 address (0xFFFFFFFF: Unknown)

	*pPriHA
	Output
	Primary Home Agent IPv4 address (0xFFFFFFFF: Unknown)

	*pSecHA
	Output
	Secondary Home Agent IPv4 address (0xFFFFFFFF: Unknown)

	*pRevTunn
	Output
	Reverse tunneling status: 0x00: Disabled; 0x01: Enabled; 0xFF: Unknown

	naiSize
	Input
	Maximum number of characters in the NAI string

	*pNAI
	Output
	Network Access Identifier string

	*pHASPI
	Output
	Home Agent Security Parameter Index (0xFFFFFFFF: Unknown)

	*pAAASPI
	Output
	AAA server Security Parameter Index (0xFFFFFFFF: Unknown)

	*pHAState
	Output
	Home Agent Key state:

	
	
	· 0x00000000: Unset

	
	
	· 0x00000001: Set, default value

	
	
	· 0x00000002: Set, non-default value

	
	
	· 0xFFFFFFFF: Unknown

	*pAAAState
	Output
	AAA Key state:

	
	
	· 0x00000000: Unset

	
	
	· 0x00000001: Set, default value

	
	
	· 0x00000002: Set, non-default value

	
	
	· 0xFFFFFFFF: Unknown

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.7.7 CMAPI_MobileIP_SetMobileIPParameters()
The CMAPI_MobileIP_SetMobileIPParameters () function is used to set various parameters that configure the behavior of the device’s Mobile IP client.

	Prototype

	dword CMAPI_MobileIP_SetMobileIPParameters (string *pSPC, dword *pMode, byte *pRetryLimit, byte *pRetryInterval, byte *pReRegPeriod, byte *pReRegTraffic, byte *pHAAuthenticator, byte *pHA2002bis)

	Parameters

	Field Name
	Mode
	Description

	*pSPC
	Input
	Service Programming Code (SPC)

	*pMode
	Input
	(Optional) Mobile IP mode:
· 0x00000000: Mobile IP off (simple IP only)
· 0x00000001: Mobile IP preferred
· 0x00000002: Mobile IP only

	*pRetryLimit
	Input
	(Optional) Mobile IP registration attempt retry limit

	*pRetryInterval
	Input
	(Optional) Mobile IP registration attempt retry interval (i.e. time between registration attempts) in minutes

	*pReRegPeriod
	Input
	(Optional) Mobile IP re-registration period (time after which current registration expires) in minutes

	*pReRegTraffic
	Input
	(Optional) Determines whether to re-register only if there has been data traffic since last registration (0x00: Disabled; any other value: Enabled)

	*pHAAuthenticator
	Input
	(Optional) State of MH-HA authenticator calculator (0x00: Disabled; any other value: Enabled)

	*pHA2002bis
	Input
	(Optional) Determines whether to use RFC2002bis authentication instead of RFC2002 (0x00: RFC2002; any other value: RFC2002bis)

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.7.8 CMAPI_MobileIP_GetMobileIPParameters()
The CMAPI_MobileIP_GetMobileIPParameters () function is used to retrieve the current values of the parameters that configure the behavior of the device’s Mobile IP client.

	Prototype

	dword CMAPI_MobileIP_GetMobileIPParameters (dword *pMode, byte *pRetryLimit, byte *pRetryInterval, byte *pReRegPeriod, byte *pReRegTraffic, byte *pHAAuthenticator, byte *pHA2002bis)

	Parameters

	Field Name
	Mode
	Description

	*pMode
	Output
	Mobile IP mode:

	
	
	· 0x00000000: Mobile IP off (simple IP only)

	
	
	· 0x00000001: Mobile IP preferred

	
	
	· 0x00000002: Mobile IP only

· 0xFFFFFFFF: Unknown

	*pRetryLimit
	Output
	Mobile IP registration attempt retry limit (0xFF if unknown)

	*pRetryInterval
	Output
	Mobile IP registration attempt retry interval (i.e. time between registration attempts) in minutes (0xFF if unknown)

	*pReRegPeriod
	Output
	Mobile IP re-registration period (time after which current registration expires) in minutes (0xFF if unknown)

	*pReRegTraffic
	Output
	Determines whether to re-register only if there has been data traffic since last registration (0x00: Disabled; 0x01: Enabled; 0xFF: Unknown)

	*pHAAuthenticator
	Output
	State of MH-HA authenticator calculator (0x00: Disabled; 0x01: Enabled; 0xFF: Unknown)

	*pHA2002bis
	Output
	(Optional) Determines whether to use RFC2002bis authentication instead of RFC2002 (0x00: Disabled; 0x01: Enabled; 0xFF: Unknown)

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.7.9 CMAPI_MobileIP_GetLastMobileIPError()
The CMAPI_MobileIP_GetLastMobileIPError () function is used to retrieve the last Mobile IP error that occurred (refer to RFC3344 for a list of error codes).

	Prototype

	dword CMAPI_ CMAPI_MobileIP_GetLastMobileIPError (dword *pError)

	Parameters

	Field Name
	Mode
	Description

	*pError
	Output
	 Pointer to the most recent Mobile IP error code:

	
	
	· 0x00000000: Success

	
	
	· Any other value: Error code as defined in [RFC3344]

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.8 Device Service APIs

5.8.1 CMAPI_DevSrv_GetManufacturerName ()

The CMAPI_DevSrv_ GetManufacturerName () function retrieves the name of the manufacturer of the device.
	Prototype

	dword CMAPI_DevSrv_GetManufacturerName (dword* pHandle, string * pszManufacturerName, byte btSize)

	Parameters

	Field Name
	 Mode
	Description

	pHandle
	Input
	The device targeted

	pszManufacturerName
	Output
	Character string containing the name of the device manufacturer

	btSize
	Input
	The size in byte of pszManufacturerName buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

5.8.2 CMAPI_DevSrv_GetManufacturerModel ()
The CMAPI_DevSrv_GetManufacturerModel () function retrieves the product model ID of the device.
	Prototype

	dword CMAPI_DevSrv_GetManufacturerModel (dword* pHandle, string * pszModel , byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszModel
	Output
	Character string containing the product model ID of the device

	btSize
	Input
	The size in byte of pszModel buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	 0x02
	The pHandle references a non-existing device or a device which is not open

5.8.3 CMAPI_DevSrv_GetDeviceName()
The CMAPI_DevSrv_GetDeviceName() function retrieves the commercial name of the Device.
	Prototype

	dword CMAPI_DevSrv_GetDeviceName (dword* pHandle, string * pszDeviceName, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszDeviceName
	Output
	Character string containing the commercial name of the Device

	btSize
	Input
	The size in byte of pszDeviceName buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	 0x02
	The pHandle references a non-existing device or a device which is not open

5.8.4 CMAPI_DevSrv_GetHardwareVersion()
The CMAPI_DevSrv_GetHardwareVersion() function retrieves the hardware version of the Device.
	Prototype

	dword CMAPI_DevSrv_GetHardwareVersion (dword* pHandle, string * pszHardwareVersion, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszHardwareVersion
	Output
	Character string containing the hardware version of the Device

	btSize
	Input
	The size in byte of pszHardwareVersion buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	 0x02
	The pHandle references a non-existing device or a device which is not open

5.8.5 CMAPI_DevSrv_ GetProductType()
The CMAPI_DevSrv_ GetProductType() function retrieves the product type of the device.
	Prototype

	dword CMAPI_DevSrv_ GetProductType (dword* pHandle, int * penProductType)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	penProductType
	Output
	Pointer to get the product type in bitmap

Bit 7 | Bit 6 | Bit 5 | Bit 4 || Bit 3 | Bit 2 | Bit 1 | Bit 0

N/A | N/A | N/A | WLAN || LTE | TD_SCDMA| CDMA | WCDMA/UMTS

Device unknown: (in binary) 0 0 0 0 0 0 0 0

Device LTE and WCDMA/UMTS : 0 0 0 0 1 0 0 1

Device CDMA only : 0 0 0 0 0 0 1 0

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	 0x02
	The pHandle references a non-existing device or a device which is not open

5.8.6 CMAPI_DevSrv_ GetImsi ()
The CMAPI_DevSrv_ GetImsi () function retrieves the IMSI info from SIM card.
	Prototype

	dword CMAPI_DevSrv_GetImsi (dword* pHandle, string * pszImsi, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszImsi
	Output
	Character string containing the IMSI.

	btSize
	Input
	The size in byte of pszImsi buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	 0x02
	The pHandle references a non-existing device or a device which is not open

5.8.7 CMAPI_DevSrv_ GetMDN ()

The CMAPI_DevSrv_GetMDN () function retrieves the MDN info.

	Prototype

	dword CMAPI_DevSrv_GetMDN (dword* pHandle, string * pszMDNInfo, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszMDNInfo
	Output
	Character string containing the MDN info.

	btSize
	Input
	The size in byte of pszMDNInfo buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	 0x02
	The pHandle references a non-existing device or a device which is not open

5.8.8 CMAPI_DevSrv_ GetImei ()

The CMAPI_DevSrv_GetImei () function retrieves the IMEI info.

	Prototype

	dword CMAPI_DevSrv_GetImei (dword* pHandle, string * pszImeiInfo, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszImeiInfo
	Output
	Character string containing the IMEI info.

	btSize
	Input
	The size in byte of pszImeiInfo buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

5.8.9 CMAPI_DevSrv_ GetEsn ()

The CMAPI_DevSrv_GetEsn () function retrieves the ESN info.

	Prototype

	dword CMAPI_DevSrv_GetEsn (dword* pHandle, string * pszEsnInfo, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszEsnInfo
	Output
	Character string containing the ESN info.

	btSize
	Input
	The size in byte of pszEsnInfo buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

5.8.10 CMAPI_DevSrv_ GetDevStatus ()

The CMAPI_DevSrv_ GetDevStatus () function retrieves the device status.

	Prototype

	dword CMAPI_DevSrv_ GetDevStatus (dword* pHandle, int * penDevStatus,)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	penDevStatus
	Output
	Pointer to get the device status in bitmap

Bit 7 | Bit 6 | Bit 5 | Bit 4 || Bit 3 | Bit 2 | Bit 1 | Bit 0

N/A | N/A | N/A | N/A || N/A | N/A | device availability | device presence

Device unplugged : (in binary) 0 0 0 0 0 0 0 0 (this value can used for unplugged and for unknown status)

Device plugged but unavailable : 0 0 0 0 0 0 0 1

Device plugged and available : 0 0 0 0 0 0 1 1

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

5.8.11 CMAPI_DevSrv_ GetFwVersion()

The CMAPI_DevSrv_GetFwVersion () function retrieves the firmware version of the device.

	Prototype

	dword CMAPI_DevSrv_GetFwVersion (dword* pHandle, string * pszFwVersion, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszFwVersion
	Output
	Character string containing the firmware version of the device.

	btSize
	Input
	The size in byte of pszFwVersion buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

5.8.12 CMAPI_DevSrv_ GetOwnVersion()

The CMAPI_DevSrv_GetOwnVersion () function retrieves the version number of the OpenCMAPI used.

	Prototype

	dword CMAPI_DevSrv_GetOwnVersion (dword* pHandle, string * pszOwnVersion, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszOwnVersion
	Output
	Character string containing the version number of the OpenCMAPI used.

	btSize
	Input
	The size in byte of pszOwnVersion buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

5.8.13 CMAPI_DevSrv_ GetPrlversion ()

The CMAPI_DevSrv_GetPrlVersion () function retrieves the PRL version.

	Prototype

	dword CMAPI_DevSrv_GetPrlVersion (dword* pHandle, string * pszPrlVersion, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pszPrlVersion
	Output
	Character string containing the PRL version.

	btSize
	Input
	The size in byte of pszPrlVersion buffer

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

5.8.14 CMAPI_DevSrv_ GetRFSwitch()

The CMAPI_DevSrv_GetRFSwitch () function retrieves the radio switch status.

	Prototype

	dword CMAPI_DevSrv_GetRFSwitch (dword* pHandle, dword * penRFStatus)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	penRFStatus
	Output
	Pointer to get the radio switch status in bitmap:
Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0

 N/A | N/A | N/A | WLAN | LTE | TD_SCDMA| CDMA | WCDMA/UMTS

For example:

All radios are switched off: 00000000

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	 0x02
	The pHandle references a non-existing device or a device which is not open

5.9 PINs/PUKs Management APIs
5.9.1 CMAPI_DevSrv_GetNAAavailable()
The CMAPI_DevSrv_GetNAAavailable() function is used to get all the available NAAs and the corresponding Application labels.
	Prototype

	dword CMAPI_DevSrv_GetNAAavailable (dword* pHandle,
NAAnametype* pstNAAList, dword* dwNAAListsize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pstNAAList
	Output
	Struct NAAnametype

{

 string * strNAAname

 string * strApplicationLabel

}

The NAA name list

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.
Application Label (see [ETSI TS 102 221]) corresponding to the NAA or empty if SIM or R-UIM or if there is no Application Label available. It is recommended that the length does not exceed 32 bytes.

	dwNAAListsize
	Input/Output
	The number of the array pointed by the pstNAAname, if the pstNAAname is null, this will contains the number of elements in the list

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	 0x02
	The pHandle references a non-existing device or a device which is not open

	0X03
	The size for the pstNNAlist buffer is not sufficient, the dwNAAListsize will contain the number of the elements in the list.

	0Xff
	Not supported by the device (if a device does not support the feature)

5.9.2 CMAPI_DevSrv_EnablePin()
The CMAPI_DevSrv_EnablePin() function is used to enable PIN protection.
	Prototype

	dword CMAPI_DevSrv_EnablePin (dword* pHandle, byte PinType, const string * pszPinCode , const string* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	PinType
	Input
	The type of the PIN: 0—PIN, 1—PIN2

	pszPinCode
	Input
	PIN code, value '0' ~ '9', 4-8 digit length.

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated
NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

	0x03
	Wrong PIN (note: or using a specific pin_get_status function after fatal error…)

	0x04
	PIN is blocked. PUK (UNBLOCK PIN) needed (note: or using a specific pin_get_status function after fatal error…)

	0x05
	Invalid parameter(s) (note: or using a specific pin_get_status function after fatal error…)

The [ETSI TS 102 221] Status Words (see the following table as an example) defined for this function shall be available for CM Application developers into the logger:
	Status words (SW1 SW2)
	Description
	ENABLE PIN

	90 00
	
Normal ending of the command
	*

	91 XX
	
Normal ending of the command, with extra information from the proactive UICC containing a command for the terminal. Length 'XX' of the response data
	*

	62 00
	
No information given, state of non volatile memory unchanged
	*

	63 CX
	
Command successful but after using an internal update retry routine 'X' times

Verification failed, 'X' retries remaining (For the VERIFY PIN command, SW1SW2 indicates that the command was successful but the PIN was not correct and there are 'X' retries left. For all other commands it indicates the number of internal retries performed by the card to complete the command.)
	*

	64 00
	
No information given, state of non-volatile memory unchanged
	*

	65 00
	
No information given, state of non-volatile memory changed
	*

	65 81
	
Memory problem
	*

	67 XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Wrong length)
	*

	68 00
	
No information given
	*

	68 81
	
Logical channel not supported
	*

	68 82
	
Secure messaging not supported
	*

	69 00
	
No information given
	*

	69 83
	
Authentication/PIN method blocked
	*

	69 84
	
Referenced data invalidated
	*

	69 89
	
Command not allowed - secure channel - security not satisfied
	*

	6A 81
	
Function not supported
	*

	6A 86
	
Incorrect parameters P1 to P2
	*

	6A 88
	
Referenced data not found
	*

	6B 00
	
Wrong parameter(s) P1-P2
	*

	6E 00
	
Class not supported
	*

	6F XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Technical problem, no precise diagnosis)
	*

5.9.3 CMAPI_DevSrv_DisablePin()
The CMAPI_DevSrv_DisablePin() function is used to disable PIN protection.
	Prototype

	dword CMAPI_DevSrv_DisablePin (dword* pHandle, byte PinType, const string * pszPinCode, byte * pbtRetry, const string* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	PinType
	Input
	The type of PIN: 0—PIN, 1—PIN2

	pszPinCode
	Input
	PIN code, value '0' ~ '9', 4-8 digit length.

	pbtRetry
	Output
	Number of attempts left

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

	0x03
	Wrong PIN (note: or using a specific pin_get_status function after fatal error…)

	0x04
	PIN is blocked. PUK (UNBLOCK PIN) needed (note: or using a specific pin_get_status function after fatal error…)

The [ETSI TS 102 221] Status Words (see the following table as an example) defined for this function shall be available for CM Application developers into the logger:

	Status words (SW1 SW2)
	Description
	DISABLE PIN

	90 00
	
Normal ending of the command
	*

	91 XX
	
Normal ending of the command, with extra information from the proactive UICC containing a command for the terminal. Length 'XX' of the response data
	*

	62 00
	
No information given, state of non volatile memory unchanged
	*

	63 CX
	
Command successful but after using an internal update retry routine 'X' times

Verification failed, 'X' retries remaining (For the VERIFY PIN command, SW1SW2 indicates that the command was successful but the PIN was not correct and there are 'X' retries left. For all other commands it indicates the number of internal retries performed by the card to complete the command.)
	*

	64 00
	
No information given, state of non-volatile memory unchanged
	*

	65 00
	
No information given, state of non-volatile memory changed
	*

	65 81
	
Memory problem
	*

	67 XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Wrong length)
	*

	68 00
	
No information given
	*

	68 81
	
Logical channel not supported
	*

	68 82
	
Secure messaging not supported
	*

	69 00
	
No information given
	*

	69 83
	
Authentication/PIN method blocked
	*

	69 84
	
Referenced data invalidated
	*

	69 89
	
Command not allowed - secure channel - security not satisfied
	*

	6A 81
	
Function not supported
	*

	6A 86
	
Incorrect parameters P1 to P2
	*

	6A 88
	
Referenced data not found
	*

	6B 00
	
Wrong parameter(s) P1-P2
	*

	6E 00
	
Class not supported
	*

	6F XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Technical problem, no precise diagnosis)
	*

5.9.4 CMAPI_DevSrv_VerifyPin()
The CMAPI_DevSrv_VerifyPin() function is used to verify a PIN.
	Prototype

	dword CMAPI_DevSrv_VerifyPin (dword* pHandle, byte PinType, const string * pszPinCode, byte * pbtRetry,const string* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	PinType
	Input
	The type of PIN: 0—PIN, 1—PIN2

	pszPinCode
	Input
	PIN code, value '0' ~ '9', 4-8 digit length.

	pbtRetry
	Output
	Number of attempts left

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

	0x03
	Wrong PIN (note: or using a specific pin_get_status function after fatal error…)

	0x04
	PIN is blocked. PUK (UNBLOCK PIN) needed (note: or using a specific pin_get_status function after fatal error…)

The [ETSI TS 102 221] Status Words (see the following table as an example) defined for this function shall be available for CM Application developers into the logger:

	Status words (SW1 SW2)
	Description
	VERIFY PIN

	90 00
	
Normal ending of the command
	*

	91 XX
	
Normal ending of the command, with extra information from the proactive UICC containing a command for the terminal. Length 'XX' of the response data
	*

	62 00
	
No information given, state of non volatile memory unchanged
	*

	63 CX
	
Command successful but after using an internal update retry routine 'X' times

Verification failed, 'X' retries remaining (For the VERIFY PIN command, SW1SW2 indicates that the command was successful but the PIN was not correct and there are 'X' retries left. For all other commands it indicates the number of internal retries performed by the card to complete the command.)
	*

	64 00
	
No information given, state of non-volatile memory unchanged
	*

	65 00
	
No information given, state of non-volatile memory changed
	*

	65 81
	
Memory problem
	*

	67 XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Wrong length)
	*

	68 00
	
No information given
	*

	68 81
	
Logical channel not supported
	*

	68 82
	
Secure messaging not supported
	*

	69 00
	
No information given
	*

	69 83
	
Authentication/PIN method blocked
	*

	69 84
	
Referenced data invalidated
	*

	69 89
	
Command not allowed - secure channel - security not satisfied
	*

	6A 81
	
Function not supported
	*

	6A 86
	
Incorrect parameters P1 to P2
	*

	6A 88
	
Referenced data not found
	*

	6B 00
	
Wrong parameter(s) P1-P2
	*

	6E 00
	
Class not supported
	*

	6F XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Technical problem, no precise diagnosis)
	*

5.9.5 CMAPI_DevSrv_UnblockPin()
The CMAPI_DevSrv_UnblockPin() function is used to unblock a PIN.
	Prototype

	dword CMAPI_DevSrv_UnblockPin (dword* pHandle, byte PukType, const string * pszPuk, const string * pszNewPinCode, byte * pbtRetry, const string* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	PukType
	Input
	The type of PUK: 0—PUK, 1—PUK2

	pszPuk
	Input
	PUK code, value '0' ~ '9', 8 digit length.

	pszPinCode
	Input
	New PIN code, value '0' ~ '9', 4-8 digit length.

	pbtRetry
	Output
	Number of attempts left

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

	0x03
	Wrong PUK (note: or using a specific pin_get_status function after fatal error…)

	0x04
	PUK (UNBLOCK PIN) blocked.

The [ETSI TS 102 221] Status Words (see the following table as an example) defined for this function shall be available for CM Application developers into the logger:

	Status words (SW1 SW2)
	Description
	UNBLOCK PIN

	90 00
	
Normal ending of the command
	*

	91 XX
	
Normal ending of the command, with extra information from the proactive UICC containing a command for the terminal. Length 'XX' of the response data
	*

	62 00
	
No information given, state of non volatile memory unchanged
	*

	63 CX
	
Command successful but after using an internal update retry routine 'X' times

Verification failed, 'X' retries remaining (For the VERIFY PIN command, SW1SW2 indicates that the command was successful but the PIN was not correct and there are 'X' retries left. For all other commands it indicates the number of internal retries performed by the card to complete the command.)
	*

	64 00
	
No information given, state of non-volatile memory unchanged
	*

	65 00
	
No information given, state of non-volatile memory changed
	*

	65 81
	
Memory problem
	*

	67 XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Wrong length)
	*

	68 00
	
No information given
	*

	68 81
	
Logical channel not supported
	*

	68 82
	
Secure messaging not supported
	*

	69 00
	
No information given
	*

	69 83
	
Authentication/PIN method blocked
	*

	69 84
	
Referenced data invalidated
	*

	69 89
	
Command not allowed - secure channel - security not satisfied
	*

	6A 81
	
Function not supported
	*

	6A 86
	
Incorrect parameters P1 to P2
	*

	6A 88
	
Referenced data not found
	*

	6B 00
	
Wrong parameter(s) P1-P2
	*

	6E 00
	
Class not supported
	*

	6F XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (Technical problem, no precise diagnosis)
	*

5.9.6 CMAPI_DevSrv_ChangePin()
The CMAPI_DevSrv_ChangePin() function is used to change a PIN.
	Prototype

	dword CMAPI_DevSrv_ChangePin (dword* pHandle, byte PinType, const string * pszOldPinCode, const string * pszNewPinCode, byte * pbtRetry, const string* pszNAAname)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	PinType
	Input
	The type of PIN: 0—PIN, 1—PIN2

	pszOldPinCode
	Input
	Old PIN code, value '0' ~ '9', 4-8 digit length.

	pszNewPinCode
	Input
	New PIN code, value '0' ~ '9', 4-8 digit length.

	pbtRetry
	Output
	Number of attempts left

	pszNAAname
	Input
	NAA name to indicate which PIN will be operated

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pHandle references a non-existing device or a device which is not open

	0x03
	Wrong Old PIN (note: or using a specific pin_get_status function after fatal error…)

	0x04
	Old PIN is blocked. PUK (UNBLOCK PIN) needed (note: or using a specific pin_get_status function after fatal error…)

The [ETSI TS 102 221] Status Words (see the following table as an example) defined for this function shall be available for CM Application developers into the logger:

	Status words (SW1 SW2)
	Description
	CHANGE PIN

	90 00
	
Normal ending of the command
	*

	91 XX
	
Normal ending of the command, with extra information from the proactive UICC containing a command for the terminal. Length 'XX' of the response data
	*

	62 00
	
No information given, state of non volatile memory unchanged
	*

	63 CX
	
Command successful but after using an internal update retry routine 'X' times

Verification failed, 'X' retries remaining (For the VERIFY PIN command, SW1SW2 indicates that the command was successful but the PIN was not correct and there are 'X' retries left. For all other commands it indicates the number of internal retries performed by the card to complete the command.)
	*

	64 00
	
No information given, state of non-volatile memory unchanged
	*

	65 00
	
No information given, state of non-volatile memory changed
	*

	65 81
	
Memory problem
	*

	67 XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (67 00: Wrong length)
	*

	68 00
	
No information given
	*

	68 81
	
Logical channel not supported
	*

	68 82
	
Secure messaging not supported
	*

	69 00
	
No information given
	*

	69 83
	
Authentication/PIN method blocked
	*

	69 84
	
Referenced data invalidated
	*

	69 89
	
Command not allowed - secure channel - security not satisfied
	*

	6A 81
	
Function not supported
	*

	6A 86
	
Incorrect parameters P1 to P2
	*

	6A 88
	
Referenced data not found
	*

	6B 00
	
Wrong parameter(s) P1-P2
	*

	6E 00
	
Class not supported
	*

	6F XX
	
The interpretation of this status word is command dependent, except for SW2 = '00' (6F 00: Technical problem, no precise diagnosis)
	*

5.10 WLAN APIs
5.10.1 CMAPI_WLAN_IsSupported()

The CMAPI_WLAN_IsSupported() function is used to determine if WLAN functionality is supported
	Prototype

	dword CMAPI_WLAN_IsSupported (dword handle, dword* pWlanSupport)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	Identifies the device

	pWlanSupport
	Output
	 Indicates WLAN support

0x00000001: WLAN Supported

0x00000002: WLAN NOT supported (Device do not support WLAN capability)

0x00000003: WLAN NOT supported (other reason)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.10.2 CMAPI_WLAN_GetRadioState()

The CMAPI_WLAN_GetRadioState() function is used to retrieve WLAN radio state.
	Prototype

	dword CMAPI_WLAN_GetRadioState (dword* pHandle, WLAN Radio State* pState)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	 The device targeted

	pState
	output
	See WLAN Radio State

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.10.3 CMAPI_WLAN_SetRadioState()

The CMAPI_WLAN_SetRadioState() function is used to set the WLAN radio state.
	Prototype

	dword CMAPI_WLAN_SetRadioState (dword* pHandle, dword state)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	 The device targeted

	state
	input
	See WLAN Radio State

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Requested state is not supported.

5.10.4 CMAPI_WLAN_AddKnownNetwork()

The CMAPI_WLAN_AddKnownNetwork() function is used to add a network to the known network list.
	Prototype

	dword CMAPI_WLAN_AddKnownNetwork (dword index, WLANNetwork* pNetwork)

	Parameters

	Field Name
	Mode
	Description

	index
	input
	 The zero based index which describes the position of the network in the known

networks list. Any existing subsequent entry will have their previous index adjusted to be one larger.

	pNetwork
	Input
	The network to add to the known networks list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The specified index is to large and would leave a gap in the known networks list

	0x00000003
	Index is not valid for user defined networks. Please try a higher index.

5.10.5 CMAPI_WLAN_UpdateKnownNetwork()

The CMAPI_WLAN_UpdateKnownNetwork() function is used to update an existing known network record.
	Prototype

	dword CMAPI_WLAN_UpdateKnownNetwork (dword index, WLANNetwork* pNetwork)

	Parameters

	Field Name
	Mode
	Description

	index
	Input
	The zero based index which describes the position of the network in the known

networks list.

	pNetwork
	Input
	The updated network info to reside at the index in the known networks list.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	No record exists at the specified index.

	0x00000003
	Predefined networks are not able to be modified.

5.10.6 CMAPI_WLAN_DeleteKnownNetwork()

The CMAPI_WLAN_DeleteKnownNetwork() function is used to remove the entry from the known networks list at the specified index.
	Prototype

	dword CMAPI_WLAN_DeleteKnownNetwork (dword index)

	Parameters

	Field Name
	Mode
	Description

	index
	input
	 The index of the record to remove from the known networks list. Any

subsequent records will have their index decremented.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	No network exists at the specified index.

	0x00000003
	Predefined networks are not able to be modified

5.10.7 CMAPI_WLAN_GetKnownNetwork()

The CMAPI_WLAN_GetKnownNetwork() function is used to retrieve the known network record information
	Prototype

	dword CMAPI_WLAN_GetKnownNetwork (dword index, WLANNetwork* pNetwork, dword* pSize)

	Parameters

	Field Name
	Mode
	Description

	index
	Input
	 The index of the known network to retrieve.

	pNetwork
	Output
	The known network record.

	pSize
	Input/output
	The size of the structure WLAN network structure

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	No network exists at the specified index.

	0x00000003
	The size of the network structure is not large enough pSize contains the minimum size required.

5.10.8 CMAPI_WLAN_GetScanResults()

The CMAPI_WLAN_GetScanResults() function is used to retrieve the list of available WLAN networks. Invoking this call does not force an operation on the device like scanning; it simply retrieves the most recent scan list.
	Prototype

	dword CMAPI_WLAN_GetScanResults (dword* pHandle,WLANNetwork* pScanList, dword* pSize, dword* pNetworks)

	Parameters

	Field Name
	Mode
	Description

	pScanList
	Output
	 The buffer to hold the scan list entry

	pHandle
	input
	The device targeted

	pSize
	Input/Output
	Contains the number of bytes of the network buffer on input. If buffer size is not sufficient, this will contain the number of bytes needed in the structure on return.

	pNetworks
	Output
	The number of entries in the scan list

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The buffer is insufficient. pSize contains the minimum number of bytes necessary to hold the scan list.

	0x00000003
	The scan list buffer is not large enough, pSize contains the minimum size required.

5.10.9
5.10.10 CMAPI_WLAN_Scan_Async()

The CMAPI_WLAN_Scan_Async() function is used to initiate a scan for WLAN networks. This initiates an asynchronous process to discover networks. This operation occurs asynchronously.
	Prototype

	dword CMAPI_WLAN_Scan_Async (dword* pHandle)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	 The device targeted

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	

	

	

	
	
	

	
	
	

	

	
	

	
	

	
	

5.10.11 CMAPI_WLAN_Connect()

The CMAPI_WLAN_Connect() function is used to connect to a WLAN network. This operation occurs asynchronously.
	Prototype

	dword CMAPI_WLAN_Connect (dword* pHandle,WLANNetwork* pNetwork, dword associationTimeout, dword grantTimeout,)

	Parameters

	Field Name
	Mode
	Description

	pNetwork
	Input
	 Specifies the network to connect.

	pHandle
	input
	 The device targeted

	associationTimeout
	Input
	Specifies the number of milliseconds to allow an association to the network to be setup before reporting failure.

	grantTimeout
	Input
	Specifies the number of milliseconds to allow a DHCP operation to proceed before reporting failure.

	
	
	

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.10.12 CMAPI_WLAN_ConnectKnownNetwork()

The CMAPI_WLAN_ConnectKnownNetwork() function is used to connect to a WLAN network in the known networks list. This operation occurs asynchronously.
	Prototype

	dword CMAPI_WLAN_ConnectKnownNetwork (dword pHandle,dword index, dword associationTimeout, dword grantTimeout,)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	 The device targeted

	index
	input
	 The index of the network in the known networks list

	associationTimeout
	Input
	Specifies the number of milliseconds to allow an association to the network to be setup before reporting failure.

	grantTimeout
	Input
	Specifies the number of milliseconds to allow a DHCP operation to proceed before reporting failure.

	
	
	

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The index does not reference a valid known network.

5.10.13 CMAPI_WLAN_Disconnect()

The CMAPI_WLAN_Disconnect() function is used to disconnect any connected WLAN network.
	Prototype

	dword CMAPI_WLAN_Disconnect (dword* pHandle)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	 The device targeted

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	There is no existing WLAN connection

5.10.14 CMAPI_WLAN_GetConnectionMode()

The CMAPI_WLAN_GetConnectionMode() function is used to determine if connectivity is being actively sought by the enabler or if manual connection requests are required.
	Prototype

	dword CMAPI_WLAN_GetConnectionMode (dword pHandle,dword* pMode)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	 The device targeted

	pMode
	output
	 Indicates connectivity mode.

0x00000001: Auto connect to known networks

0x00000002: Manual connect (known and unknown networks)

0x00000003: Manual connect (only to known networks – subject to some policies)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.10.15 CMAPI_WLAN_SetConnectionMode()

The CMAPI_WLAN_SetConnectionMode() function is used to change the connectivity mode. Changing connectivity mode will not affect any established connection.
	Prototype

	dword CMAPI_WLAN_SetConnectionMode (dword pHandle,dword mode)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	 The device targeted

	mode
	input
	 Indicates connectivity mode.

0x00000001: Auto connect to known networks

0x00000002: Manual connect
0x00000003: Manual connect (only to known networks)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Security mode does not allow connectivity to unknown networks.

5.10.16 CMAPI_WLAN_ResetDevice()

The CMAPI_WLAN_ResetDevice() function is used to reset the device. This causes the device to be power cycled.
	Prototype

	dword CMAPI_WLAN_ResetDevice (dword* pHandle)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	 The device targeted

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.10.17 CMAPI_WLAN_GetConnectedParameters()

The CMAPI_WLAN_GetConnectedParameters() function is used to retrieve values related to the associated network.
	Prototype

	dword CMAPI_WLAN_GetConnectedParameters (dword* pHandle,WLANConnectedParameters* pParameters, dword* pParametersSize, string* pMacAddress, dword* pMacAddressSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	The device targeted

	pParameters
	Output
	 The ip address, mask, proxy information

	pParametersSize
	Input/Output
	The size of the pParameters buffer in bytes

	pMacAddress
	Output
	The physical address of the access point

	pMacAddressSize
	Input/Output
	The size of the pMacAddress buffer in bytes

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The pParameters buffer is not large enough. pParametersSize contains the minimum buffer length required.

	0x00000003
	The pMacAddress buffer is not large enough. pMacAddressSize contains the minimum buffer length required.

5.10.18 CMAPI_WLAN_SetConnectedParameters()

The CMAPI_WLAN_SetConnectedParameters() function is used to set various attributes of an existing connection.

	Prototype

	dword CMAPI_WLAN_ SetConnectedParameters (dword pHandle,WLANConnectedParameters* pParameters)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	The device targeted

	pParameters
	Input
	The parameters to set.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Operation is prohibited by security policy.

5.10.19 CMAPI_WLAN_CancelOperation()

The CMAPI_WLAN_ CancelOperation () function is used to cancel any pending operation like connect or scan.

	Prototype

	dword CMAPI_WLAN_ CancelOperation (dword* pHandle)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	The device targeted

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	No pending operation.

5.10.20 CMAPI_WLAN_ConnectWPS()
The CMAPI_WLAN_ConnectWPS() function is used to initiate a connection with the WPS button push method.
	Prototype

	dword CMAPI_WLAN_ConnectWPS (dword* pHandle)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.10.21 CMAPI_WLAN_ConnectPinWPS()
The CMAPI_WLAN_ConnectPinWPS() function is used to initiate a connection with the WPS pin method.
	Prototype

	dword CMAPI_WLAN_ConnectPinWPS (dword pHandle, byte* pPin, dword length,)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted.

	pPin
	Input
	 The pin entered by the user in hexadecimal.

	length
	Input
	The length of the pin provided in bytes.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0x02
	The pin was malformed or incorrect size

CMAPI_WLAN_ConnectionState()
The CMAPI_WLAN_ConnectionState() function is used to determine if WLAN is connected.
	Prototype

	dword CMAPI_WLAN_ConnectionState (dword handle, dword* pStatus)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	Indicates the device to check for WLAN connection.

	pStatus
	Output
	 Indicates WLAN connectivity.

0x00000001: WLAN Connected

0x00000002: WLAN Connecting

0x00000003: WLAN Disconnected

0x00000004: WLAN Disconnecting

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

Editor note: Add return code or add in the Logger for connect to say device power is off. This may need to be applied globally for all API which take device id

CMAPI_WLAN_ScanNetwork()
The CMAPI_WLAN_ScanNetwork() function is used to check the availability of a specific network.
	Prototype

	dword CMAPI_WLAN_ScanNetwork (dword handle, WLANNetwork* pNetwork)

	Parameters

	Field Name
	Mode
	Description

	Handle
	Input
	 The device identifier

	pNetwork
	Input
	The network to search for

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

CMAPI_Callback_ScanNetworkComplete()
The CMAPI_Callback_ScanNetworkComplete() function is used to that a scan for WLAN network has completed.
	Prototype

	dword CMAPI_Callback_ScanNetworkComplete (dword handle, WLANNetwork* pNetwork, dword present)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	Indicates the device which the scan network occurred on.

	pNetwork
	Input
	The network identification.

	present
	Input
	The presence status of the Wlan network

· 0x00000000: Not present

· 0x00000001: Present

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.11 Statistics APIs
5.11.1 CMAPI_NetStatistic_GetConnectionStatistics()
The CMAPI_NetStatistic_GetConnectionStatistics() function is used to obtain network traffic statistics info
	Prototype

	
 word CMAPI_NetStatistic_GetConnectionStatistics (RadioType radio, qword* TX, qword* RX, qword* averageTX, qword* averageRX, qword* maxTX, qword* maxRX, dword overflow)

	Parameters

	Field Name
	Mode
	Description

	radio
	input
	See Radio Type definition

	TX
	output
	Bytes sent for a given connection

	RX
	output
	Bytes received for a given connection

	averageTX
	output
	Average upload speed in Bit/s for a given connection

	averageRX
	output
	Average download speed in Bit/s for a given connection

	maxTX
	output
	Maximum upload speed in Bit/s for a given connection

	maxRX
	output
	Maximum download speed in Bit/s for a given connection

	overflow
	output
	Bytewise parameter to signal overflow argument

0X01: TX overflow

0X02: RX overflow

Editor Note: What’s about Return Values?

5.12 Information Status APIs
5.12.1 CMAPI_Information_GetPinStatus()

The CMAPI_ Information_ GetPinStatus () function is used to return the status of the PINs and PUKs of all active SIM/R-UIM/NAA on UICC for a dedicated device.
.
	Prototype

	dword CMAPI_Information_GetPinStatus (dword* pHandle, PinPukStatustype * PinPukStatusList)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	PinPukStatusList
	Output
	Struct PinPukStatustype
{

string * pNAAname

byte * pStatus

byte * pPIN 1 retry attempts left.

byte * pPUK 1 retry attempts left.

byte * pPIN 2 retry attempts left.

byte * pPUK 2 retry attempts left.

}
NAA name of an active SIM/R-UIM/NAA on UICC.

Possible NAA name values: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the above list to be associated to any active SIM/R-UIM/NAA on UICC, then the AID value (see [ETSI TS 102 221]) shall be put in this field.

pStatus: The status of the PINs/PUKs. The field is a binary bitmask and MAY indicate multiple values.

· Bit 8 to Bit 1

· XXXXXXX0: PIN 1 not verified (PIN 1 lock feature disabled)

· XXXXXXX1: PIN 1 verified (PIN 1 lock feature enabled)

· XXXXXX0X: PIN 1 disabled

· XXXXXX1X: PIN 1 enabled

· XXXXX0XX: PIN 1 blocked

· XXXXX1XX: PIN 1 unblocked

· XXXX0XXX: PUK 1 blocked

· XXXX1XXX: PUK 1 unblocked

· XXX0XXXX: PIN 2 not verified (PIN 2 lock feature disabled)

· XXX1XXXX: PIN 2 verified (PIN 2 lock feature enabled)

· XX0XXXXX: PIN 2 disabled

· XX1XXXXX: PIN 2 enabled

· X0XXXXXX: PIN 2 blocked

· X1XXXXXX: PIN 2 unblocked

· 0XXXXXXX: PUK 2 blocked

· 1XXXXXXX: PUK 2 unblocked

byte * PIN 1 retry attempts left (in decimal format).

byte * PUK 1 retry attempts left (in decimal format).

byte * PIN 2 retry attempts left (in decimal format).

 byte * PUK 2 retry attempts left (in decimal format).

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The pHandle references a non-existing device or a device which is not open

	0x00000003
	 Device (i.e.: WiFi only device that does not support NAA on UICC for authentication) does not support the requested function.

5.12.2 CMAPI_Information_GetPLMNName()

The CMAPI_ Information_ GetPLMNName () function is used to obtain the PLMN name as defined in 3GPP TS 22.101.
	Prototype

	dword CMAPI_Information_ GetPLMNName (RadioType radio, byte type, byte* pData, dword* pSize)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	type
	Input
	 The type of data desired.

· 0x00: Text

· 0x01: Graphic

	pData
	Output
	The data which represents the PLMN name.

	pSize
	Input, Output
	The size of the data.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The type of data requested is not present

	0x00000003
	The buffer is not large enough to hold the required data. pSize is set to the minimum required size in bytes.

	0x00000004
	 The radio references a radio which the device does not support.

5.12.3 CMAPI_Information_GetNetworkSelectionMode()

The CMAPI_ Information_ GetNetworkSelectionMode () function is used to determine the network selection mode.
	Prototype

	dword CMAPI_Information_GetNetworkSelectionMode (RadioType radio, dword* pState)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See radio type definition

	pState
	Output
	 The state of the network selection mode:

·
· 0x00000000: Automatic (Manual operator selection permitted)

· 0x00000001: Manual (manual operator selection active, may return to automatic)

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	 The radio references a radio which the device does not support.

5.12.4 CMAPI_Information_GetSignalStrength()

The CMAPI_ Information_ GetSignalStrength () function is used obtain the current signal strength value and also the percentage of signal present.
	Prototype

	dword CMAPI_Information_GetSignalStrength (RadioType radio, dword* pValue, dword * pPercent)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	pValue
	Output
	 The signal strength value in dBm.

	pPercent
	Output
	The signal strength as a percentage. SHOULD be adjusted to device capabilities.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Remote system not present

	0x00000003
	 The radio references a radio which the device does not support.

5.12.5 CMAPI_Information_GetCSNetworkRegistration()

The CMAPI_ Information_ GetCSNetworkRegistration () function is used to determine if a circuit switched attachment is present.
	Prototype

	dword CMAPI_Information_GetCSNetworkRegistration (RadioType radio, byte* pState)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	pState
	Output
	 Indicates if a circuit switched attachment is present

· 0x00: Not attached

· 0x01: Attached

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	 The radio references a radio which the device does not support.

5.12.6 CMAPI_Information_GetPSNetworkRegistration()

The CMAPI_ Information_ GetPSNetworkRegistration () function is used to determine if a packet switched attachment is present.
	Prototype

	dword CMAPI_Information_GetPSNetworkRegistration (RadioType radio, byte* pState)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	pState
	Output
	 Indicates if a packet switched attachment is present

· 0x00: Not attached

· 0x01: Attached

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	 The radio references a radio which the device does not support.

5.12.7 CMAPI_Information_GetApn()

The CMAPI_ Information_ GetApn () function is to obtain the apn identifier.

To iterate through the supplied APNs, the caller would start at the 0 index and monotonically increment the index until the error code indicates there are no more records available.
The APN is defined in [3GPP TS 23 003] as of consisting of a mandatory Network Identifier and an optional Operator Identifier.
	Prototype

	define CURRENT_APN (-1)

dword CMAPI_Information_GetApn (RadioType radio, dword index, string* pNetworkIdentifier, dword* pNetworkIdentifierSize, string* pOperatorIdentifier, dword* pOperatorIdentifierSize)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	index
	Input
	 The index of the entry to return (-1 returns the current APN in use)

	pNetworkIdentifier
	Output
	The network identifier

	pNetworkIdentifierSize
	Input, Output
	The size of the network identifier buffer

	pOperatorIdentifier
	Output
	The operator identifier

	pOperatorIdentifierSize
	Input, Output
	The size of the operator identifier buffer

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The supplied index identifies a record which does not exist.

	0x00000003
	Current APN cannot be retrieved because there is no connection.

	0x00000004
	The network identifier buffer is not large enough, pNetworkIdentifierSize holds the minimum necessary size in bytes

	0x00000005
	The operator identifier buffer is not large enough, pOperatorIdentifierSize holds the minimum necessary size in bytes.

	0x00000006
	 The radio references a radio which the device does not support.

5.12.8 CMAPI_Information_GetIPAddress()

The CMAPI_ Information_ GetIPAddress () function is used to retrieve the current IP address assigned to the device and the type of the address assigned.
	Prototype

	dword CMAPI_Information_GetIPAddress (RadioType radio, string* pAddress, dword* pAddressSize, byte* pType)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	pAddress
	Output
	 The IP address for the current connection

	pAddressSize
	Input, Output
	The address size

	pType
	Output
	 The type of IP Address provided

· 0x00: IPv4

· 0x01: IPv6

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Not connected

	0x00000003
	IP Address is not currently assigned (advisable to retry call)

	0x00000004
	Authentication failure

	0x00000005
	The address buffer is not large enough, pAddressSize contains the minimum required size in bytes.

	0x00000006
	 The radio references a radio which the device does not support.

5.12.9 CMAPI_Information_GetRoamingStatus()

The CMAPI_ Information_ GetRoamingStatus () function is used to retrieve the current roaming status.
	Prototype

	dword CMAPI_Information_GetRoamingStatus (RadioType radio, byte* pState)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	pState
	Output
	 Indication of the roaming state

· 0x00: Home

· 0x01: Roaming

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Remote system is not present.

	0x00000003
	 The radio references a radio which the device does not support.

5.12.10 CMAPI_Information_GetDriverVersion()

The CMAPI_ Information_ GetDriverVersion() function is used to retrieve the driver version.
	Prototype

	dword CMAPI_Information_GetDriverVersion (string* pVersion, dword* pSize)

	Parameters

	Field Name
	Mode
	Description

	pVersion
	Output
	 Indicates the driver version number

	pSize
	Input, Output
	Ththe hfhf The size of the data

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Version buffer is not large enough, pSize contains the required size in bytes.

5.12.11 CMAPI_Information_GetSessionState()

The CMAPI_ Information_ GetSessionState () function is used to determine what connectivity state the radio currently has.
	Prototype

	dword CMAPI_Information_GetSessionState (RadioType radio, dword* pState)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	pState
	Output
	The state of the connection of the device

· 0x00000000: Connected

· 0x00000001: Disconnected (Used also for no remote system)

· 0x00000002: Connecting

· 0x00000003: Disconnecting

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	 The radio references a radio which the device does not support.

5.12.12 CMAPI_Information_GetRATType()

The CMAPI_ Information_ GetRATType () function is used to retrieve the radio access technology.
	Prototype

	dword CMAPI_Information_GetRATType (RadioType radio, dword* pTypes)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	pTypes
	Output
	 Indication of the radio access technology currently in use.

 In the case of a device with multiple radios, there MAY be multiple settings

 returned.

· 0x00000010: GSM service

· 0x00000020: GPRS service

· 0x00000040: EDGE service

· 0x00000100: CDMA service

· 0x00000200: QNC service

· 0x00000400: 1X-RTT service

· 0x00000800: EV-DO service

· 0x00001000: EV-DV service

· 0x00002000: IOTA service

· 0x00004000: IOTA REVA service

· 0x01000000: UMTS service

· 0x02000000: HSDPA service (Included for legacy purpose, not all operators use HSDPA+)

· 0x04000000: HSUPA service

· 0x08000000: HSPA Plus service

· 0x10000000: PHS service

· 0x20000000: FOMA service

· 0x40000000: LTE service

· 0x80000000: Wi-Fi service

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Remote system is not present

	0x00000003
	 The radio references a radio which the device does not support.

5.12.13 CMAPI_Information_GetQOS()

The CMAPI_ Information_ GetQOS () function is used to retrieve the QOS parameters related to the network as defined in 3GPP TS 23.107.
	Prototype

	dword CMAPI_Information_GetQOS (RadioType radio, dword* pFeaturesValid, byte* pTrafficClass, dword* pMaximumBitrate, dword* pGuaranteedBitrate, byte* pDeliveryOrder, dword* pMaximumSDUSize, byte* pSDUFormatInformation, dword* pSDUErrorRatio, dword* pResidualBitErrorRatio, byte* pDeliveryOfErroneousSDUs, dword* pTransferDelay, dword* pTrafficHandlingPriority, dword* pAllocationRetentionPriority, byte* pSourceStatisticsDescriptor, byte* pSignallingIndication, dword* pPriorityLevel, byte* pPreemptionCapability, byte* pPreemptionVulnerability)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	 See Radio Type definition

	pFeaturesValid
	Output
	Based on the different traffic classes various features in this method are valid/invalid. This parameter describes which values are valid. If the defined bit is not set it means the corresponding parameter is not used and should not be used for any purpose by the application.

· 0x00000001: Traffic Class

· 0x00000002: Maximum Bitrate

· 0x00000004: Guaranteed Bitrate

· 0x00000008: Delivery Order

· 0x00000010: Maximum SDU Size

· 0x00000020: SDU Format Information

· 0x00000040: SDU Error Ratio

· 0x00000080: Residual Bit Error Ratio

· 0x00000010: Delivery of Erroneous SDUs

· 0x00000020: Transfer Delay

· 0x00000040: Traffic Handling Priority

· 0x00000080: Allocation Retention Priority

· 0x00000100: Source Statistics Descriptor

· 0x00000200: Signaling Indication

· 0x00000400: Priority Level

· 0x00000800: Pre-emption Capability

· 0x00001000: Pre-emption Vulnerability

	pTrafficClass
	Output
	The traffic class defines the type of application for which the bearer service is optimized.

· 0x00: Conversational

· 0x01: Streaming

· 0x02 Interactive

· 0x03 Background

	pMaximumBitrate
	Output
	Maximum bitrate in kbps.

	pGuaranteedBitrate
	Output
	Guaranteed bitrate in kbps.

	pDeliveryOrder
	Output
	Indicates if in-sequence delivery is provided

· 0x00: Not provided

· 0x01: Provided

	pMaximumSDUSize
	Output
	The maximum SDU size for which the network will satisfy the negotiated QOS. In Octets.

	pSDUFormatInformation
	Output
	The list of possible exact sized of SDUs supported

· 0x01:

· 0x02:

	pSDUErrorRatio
	Output
	Indicates the fraction of SDUs lost or detected as erroneous.

	pResidualBitErrorRatio
	Output
	Indicates the undetected bit error ratio in the delivered SDUs

	pDeliveryOfErroneousSDUs
	Output
	Indicates whether SDUs detected as erroneous shall be delivered or discarded.

· 0x00: Yes

· 0x01: No

· 0x02: Detection is not used

	pTransferDelay
	Output
	Indicates maximum delay for 95th percentile of the distribution of delay for all delivered SDUs during the lifetime of a bearer service. reported in milliseconds.

	pTrafficHandlingPriority
	Output
	Defines the relative importance for handling of all SDUs belonging to the bearer compared to the SDUs of other bearers

	pAllocationRetentionPriority
	Output
	Defines the relative importance compared to other bearers for allocation and retention of the bearer.

	pSourceStatisticsDescriptor
	Output
	Defines the characteristics of the source of submitted SDUs

· 0x00: Speech

· 0x01: Unknown

	pSignallingIndication
	Output
	Defines the signaling nature of the submitted SDUs.

· 0x00: Yes

· 0x01: No

	pPriorityLevel
	Output
	The Evolved Allocation/Retention Priority Level

	pPreemptionCapability
	Output
	The Evolved Allocation/Retention Pre-emption Capability

· 0x00: Yes

· 0x01: No

	pPreemptionVulnerability
	Output
	The Evolved Allocation/Retention Pre-emption Vulnerability

· 0x00: Yes

· 0x01: No

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Remote system not present

	0x00000003
	QOS unsupported

	0x00000004
	 The radio references a radio which the device does not support.

5.12.14 CMAPI_Information_GetWLANConnection()

The CMAPI_ Information_ GetWLANConnection () function is used to retrieve identifying data of the currently connected network.
	Prototype

	dword CMAPI_Information_GetWLANConnection (string* pSSID, dword* pSSIDSize, byte * pBSSID, dword* pBSSIDSize)

	Parameters

	Field Name
	Mode
	Description

	pSSID
	Output
	 The SSID of the current connection

	pSSIDSize
	Input, Output
	The size of the SSID buffer in bytes.

	pBSSID
	Output
	The BSSID of the current connection

	pBSSIDSize
	Input, Output
	The size of the BSSID buffer in bytes.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Not connected

	0x00000003
	The SSID buffer is not large enough. pSSIDSize contains the minimum required buffer size in bytes.

	0x00000004
	The BSSID buffer is not large enough. pBSSIDSize contains the minimum required buffer size in bytes.

5.12.15 CMAPI_Information_GetPowerState()

The CMAPI_ Information_ GetPowerState () function is used to return the power state of a radio within a device.
.
	Prototype

	dword CMAPI_Information_GetPowerState (dword handle, RadioType radio, RadioState* pState)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	radio
	Input
	Please see the definition of RadioType

	pState
	Output
	Please see the definition of RadioState

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The handle references a non-existing device or a device which is not open.

	0x00000003
	 The radio references a radio which the device does not support.

5.12.16 CMAPI_DevSrv_SetPowerState()

The CMAPI_ DevSrv_SetPowerState () function is used to set the power state of a radio within a device. NOTE: Shutting the power of the device completely off may result in an additional callback which indicates a device removal..
	Prototype

	dword CMAPI_DevSrv_SetPowerState (dword handle, RadioType radio, RadioState state)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	radio
	Input
	Please see the definition of RadioType

	state
	Input
	Please see the definition of RadioState

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	The handle references a non-existing device or a device which is not open.

	0x00000003
	 The radio references a radio which the device does not support.

	0x00000004
	The device does not support the indicated power state. (ex power saving)

5.13 Connection Management APIs
5.13.1 CellularProfileType

	Prototype

	Struct CellularProfileType
 {

string * strCellularProfileName;

 string * strDeviceName;

 string * strUserName;

 string * strPassword;

 string * strPhoneNum;

 string * strAPN;

 string * strIP;

 string * strPrimaryDNS;

 string * strSecondaryDNS

 dword dwAuthType; 0x00: CHAP only 0x01: PAP only 0x02: Automatic

 dword dwIPAddrType; 0x00: ipv4 0x01: ipv6 0x02: ipv4v6

 dword dwCellularProfileType;

 dword dwTimeoutSeconds;

}

5.13.2 CMAPI_NetConnectSrv_MgrCellularProfile()

The CMAPI_NetConnectSrv_MgrCellularProfile() function is used to manage cellular profiles, including add/delete/update a profile information.

	Prototype

	dword CMAPI_NetConnectSrv_MgrCellularProfile (dword pHandle, const string * pstrCellularProfileName, CellularProfileType * pstCellularProfile , dword dwOperation)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pstrCellularProfileName
	Input
	Cellular Profile Name, the unique identity for a profile

	pstCellularProfile
	Input
	The details information about the profile.

	dwOperation
	Input
	The operation type to operate the profile, including Add, Delete, Update:
0x01: Add a profile

0x02: Delete a profile

0x03: Update a profile

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	The profile name is already existing, only happen when creating a profile with a existing name

	0X03
	The profile name is not existing

	0X04
	The profile can not be updated while currently in use (connected)

5.13.3 CMAPI_NetConnectSrv_GetCellularProfile()

The CMAPI_NetConnectSrv_GetCellularProfile () function is used to manage cellular profiles, to get the details of a specific Cellular Profile.
	Prototype

	dword CMAPI_NetConnectSrv_GetCellularProfile (dword pHandle, string * pCellularProfileName, CellularProfileType *pstCellularProfile)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pCellularProfileName
	Input
	The profile name for the Get operation

	pstCellularProfile
	Output
	 The details for the profile information

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	The profile name is not existing

5.13.4 CMAPI_ NetConnectSrv_SelectNetwork ()

The CMAPI_ NetConnectSrv_SelectNetwork () function is used to select the current network mode and PLMN.

	Prototype

	dword CMAPI_NetConnectSrv_SelectNetwork (dword pHandle, byte byMode, const string * stPLMN, dword* Radio)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	byMode
	Input
	The mode to select network mode:
0X00:automatic network selection

0X01:manual network selection

	stPLMN
	Input
	PLMN ID; If byMode value is automatic :0, then this PLMN ID will be ignored

	Radio
	Input
	 Which Radio technology is used = cf. radio type definition

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.13.5 CMAPI_ NetConnectSrv_GetNetworkListSync()
The CMAPI_ NetConnectSrv_GetNetworkListSync() is used to get the Network list searched by the device. The calling thread will be blocked for a long time if iTimeStamp is set to 0.
	Prototype

	dword CMAPI_NetConnectSrv_ GetNetworkListSync (dword* pHandle, NetworkInfoType* pstNetworkInfo, dw * dwNetworkElementCount, int *iTimestamp)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	pstNetworkInfo
	Output
	The List of the NetworkInfo

NetworkInfoType

{

string * strPlmnName

dword dwPlmnNameLength

dword dwNetworkStatus (0x00: Registered 0x01: Available 0x02: Forbidden)

dowrd dwType (0X00 : the network is in the preferred plmn list

0X02: the network is not in the preferred plmn list)
}

	dwNetworkElementCount
	Output
	The number of entries in the Array for pstNetworkInfo

	iNetworkListSize
	Output
	The number of entries in the Array for pstNetworkInfo ?

	stSystem
	Input
	Which system is used (3GPP or 3GPP2)

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	The structure is not sufficient to hold the data, the dwNetworkListBufferSize will contain the minimize size of the buffer in bytes

CMAPI_ NetConnectSrv_GetNetworkList_Async ()
The CMAPI_ NetConnectSrv_GetNetworkList_Async () is used to initiate the search of the Network list. The calling thread returns immediately. The result is reported in callback CMAPI_Callback_GetNetworkList_Async_Ready().
	Prototype

	dword CMAPI_NetConnectSrv_ GetNetworkList_Async (dword* pHandle)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

Callback_GetNetworkList_Async_Ready()

The CMApi calls this callback as a result of call to CMAPI_ NetConnectSrv_GetNetworkList_Async(). To get the result the CM must call CMAPI_NetConnectSrv_ GetNetworkListSync() with parameter iTimeStamp set to 1 (iTimeStamp must not be set to 0 in the callback)
	Prototype

	dword CMAPI_Callback_GetNetworkList_Async_Ready ()

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.13.6 CMAPI_ NetConnectSrv_Connect ()

The CMAPI_ NetConnectSrv_Connect () function is used to connect to the network.

	Prototype

	dword CMAPI_ NetConnectSrv_Connect (dword pHandle, dword dwConnType, CellularProfileType * pstCellularProfile, byte* pSecurityContext, dword securityContextSize)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	dwConnType
	Input
	The connection type: DIAL UP(RAS), NDIS

0x00: DIAL_UP(RAS)

0x01: NDIS

	pstCellularProfile
	Input
	The cellular profile information for connection

	pSecurityContext
	Input
	 This is populated from the Api_Open function response.

	securityContextSize
	Input
	The size in bytes of the security context.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	The authentication is failed

	0X03
	The security context does not provide privilege to utilize this functionality

	0X04
	The requested operation cannot currently be completed because another application is currently performing the same operation.

5.13.7 CMAPI_ NetConnectSrv_Disconnect ()
The CMAPI_ NetConnectSrv_Disconnect () function is used to disconnect from the network.

	Prototype

	dword CMAPI_ NetConnectSrv_Disconnect (dword pHandle, enum enConnType, CellularProfileType * pstCellularProfile)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	enConnType
	Input
	The connection type: DIAL UP (RAS), NDIS

0x00: DIAL_UP(RAS)

0x02: NDIS

	pstCellularProfile
	Input
	The profile information for disconnection

	pSecurityContext
	Input
	 This is populated from the Api_Open function response.

	securityContextSize
	Input
	The size in bytes of the security context.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	There is no connection to disconnect from

	0X03
	The security context does not provide privilege to utilize this functionality

	0X04
	The requested operation cannot currently be completed because another application is currently performing the same operation.

5.13.8 CMAPI_ NetConnectSrv_CancelConnect ()
The CMAPI_ NetConnectSrv_CancelConnect () function is used to cancel the ongoing Connecting (cf. previous function connect)

	Prototype

	dword CMAPI_ NetConnectSrv_CancelConnect (dword pHandle, string* strCellularProfileName)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	strCellularProfileName
	Input
	To Indicate which connecting operation will be cancelled

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

	0X02
	There is no connecting session for cancellation

5.14 Network Management APIs
5.14.1 CMAPI_NetCon_GetConnectionStatus()
The CMAPI_NetCon_GetConnectionStatus() is used to obtain information about the connection state
	Prototype

	
 dword CMAPI_NetCon_GetConnectionStatus(dword pHandle, dword* connectionState, dword* act, string* ipAddress, qword* dataRate, qword* txPackets, qword* rxPackets, qword* txBytes, qword* rxBytes, dword* duration)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	connectionState
	Output
	Values:

0x00000000: Connected

0x00000001: Disconnected (it may be possible to distinguish between passive and active disconnection)

0x00000002: Connecting

0x00000003: Disconnecting

0x00000004: Connection failed

0x00000005: Disconnection failed

0x00000006: Already connected from the bearer wanted by new connection

0x00000007: Already connected from another bearer

0x00000008: Connection cancelled

0x00000009: Scanning

0x00000010: Unknown state

	pTypes
	Output
	Access technology used – cf pTypes definition as defined in GetRATType() function

	ipAddres
	Output
	IPaddress on interface

	dataRate
	output
	Connection Data Rate in kbit/s

	txPackets
	output
	Number of packets transmitted since connection establishment

	rxPackets
	output
	Number of packets transmitted since connection establishment

	txBytes
	output
	Number of bytes transmitted since connection establishment

	rxBytes
	output
	Number of bytes received since connection establishment

	duration
	output
	Number of seconds elapsed since connection establishment

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.14.2 CMAPI_NetCon_SetAutoConnectMode()
The CMAPI_NetCon_SetAutoConnectMode() function is used to set/disable “autoconnect” mode.
	Prototype

	
 dword CMAPI_NetCon_SetAutoConnectMode (dword pHandle, enum mode, string* pinCode)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	mode
	Input
	Enable-home: Enable for home network

Enable-all: Enable for home and roaming network

Disable: Disable autoconnect

	pinCode
	Input
	PIN-code (if PIN protection is enabled)

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.14.3 CMAPI_NetCon_SetDefaultProfile()
The CMAPI_NetCon_SetDefaultProfile() function is used to identify the profile that shall be used when connecting to the selected network.
	Prototype

	
 dword CMAPI_NetCon_SetDefaultProfile (dword pHandle, dword profileId)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	profileId
	Input
	New default profile to be used when connecting

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.14.4 CMAPI_NetCon_SetPermittedBearers()
The CMAPI_NetCon_SetPermittedBearers() function is used to restricted the permitted mobile bearer when connecingt to the selected network.
	Prototype

	
 dword CMAPI_NetCon_SetPermittedBearers (dword pHandle, dword bearers)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	bearers
	Input
	0x0 = Automatic
0x1 = 2G
0x2 = 3G
0x4 = 4G

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

5.14.5 CMAPI_NetCon_GetPermittedBearers()
The CMAPI_NetCon_GetPermittedBearers() function is used to get the current permitted bearers.
	Prototype

	
 dword CMAPI_NetCon_GetPermittedBearers(dword pHandle, dword* bearers)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	bearers
	output
	0x0 = Automatic
0x1 = 2G
0x2 = 3G
0x4 = 4G

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

Teghering APIs
CMAPI_Callback_DeviceChanged()
The CMAPI_Callback_DeviceChanged() function is used to signal that a device has become present or been removed
	Prototype

	dword CMAPI_Callback_DeviceChanged (dword handle, dword state, dword Type, dword connectionType, dword deviceType, string* pDescription, string* pUniqueIdentifier)

	Parameters

	Field Name
	Mode
	Description

	Handle
	Input
	An opaque handle which is used to reference this device in other OpenCMAPI calls. The opaque handle to the device MUST not be allowed to change unless the hosting device is rebooted and all applications are restarted.

	State
	Input
	The new state of the device.

· 0x00000001: Unplugged

· 0x00000002: Unavailable

· 0x00000003: Available

	Type
	Input
	The capabilities of the device. May contain multiple values if device is multifunction.

· 0x00000001: 3GPP

· 0x00000002: 3GPP2

· 0x00000004: Wi-Fi

· 0x00000010: GPS

	connectionType
	Input
	The type of the device connection.

· 0x00000001: USB

· 0x00000002: IRDA

· 0x00000003: Bluetooth

· 0x00000004: Internal Bus

	deviceType
	Input
	The type of device this message refers to.

· 0x00000001: Embedded modem

· 0x00000002: USB modem

· 0x00000003: Mobile phone acting as modem

	pDescription
	Input
	A string that describes the device. Intended to be descriptive and displayed by an application.

	pUniqueIdentifier
	Input
	A string that uniquely identifies this specific device. The syntax may change from platform to platform, but the unique identifier is guaranteed to be unique to this device on the platform. It MUST not change due to hosting device restart. Example: Windows device GUID.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

Data Push Service Management APIs
5.14.6 CMAPI_Push_EnablePUSH ()

The CMAPI_Push_EnablePUSH() function is used to turn on PUSH option to make applications using the OpenCMAPI Enabler able to receive PUSH messages. This function may be used when the PUSH service is based on different bearer type which will be turned on/off individually.

	Prototype

	dword CMAPI_Push_EnablePUSH (dword handle, RadioType radio)

	Parameters

	Field Name
	Mode
	Description

	handle
	input
	The device concerned

	radio
	Input
	Please see radio type definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	 The radio references a radio which the device does not support.

5.14.7 CMAPI_Push_DisablePUSH()

The CMAPI_Push_DisablePUSH() function is used to turn off PUSH option to make applications using the OpenCMAPI Enabler unable to receive PUSH messages. This function may be used when the PUSH service is based on different bearer type which will be turned on/off individually.

	Prototype

	dword CMAPI_Push_DisablePUSH (dword handle, RadioType radio)

	Parameters

	Field Name
	Mode
	Description

	handle
	input
	The device concerned

	radio
	Input
	Please see radio type definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000003
	 The radio references a radio which the device does not support.

5.14.8 CMAPI_Push_Enable All PUSH ()

The CMAPI_Push_EnablePUSH() function is used to turn on PUSH option to make applications using the OpenCMAPI Enabler able to receive PUSH messages.

	Prototype

	dword CMAPI_Push_EnablePUSH (dword handle)

	Parameters

	Field Name
	Mode
	Description

	handle
	input
	The device concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.14.9 CMAPI_Push_Disable All PUSH()

The CMAPI_Push_DisablePUSH() function is used to turn off PUSH option to make applications using the OpenCMAPI Enabler unable to receive PUSH messages.

	Prototype

	dword CMAPI_Push_DisablePUSH (dword handle)

	Parameters

	Field Name
	Mode
	Description

	handle
	input
	The device concerned

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

5.14.10 CMAPI_Push_GetRadioType()

The CMAPI_Push_GetRadioType() function is used to get the current bearer type over which the PUSH session is established for an application.
	Prototype

	dword CMAPI_Push_GetRadioType (dword handle, RadioType* pRadio)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device concerned

	pRadio
	Output
	Please see radio type definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

SMS Management APIs
SMSRecord
	Prototype

	Struct SMSRecord

{

 dword
 msgID;
 /*!< message ID */

dword isRead;
 /*!< a flag indicates if the message has been read or not. 0: read; 1: unread */

dword position;
 /*!< the current position of the message; 0: inbox; 1: sentbox; 2: draft box; 3: sendbox; */

dword result; /*!< 0: failed to send message; 1: succeeded to send message */

dword msgType;
 /*!< 0: normal message; 1: message report; 2: mms alert; 3:voice mail; 4: cell broadcast */

dword totalPack;

 /*!<total package number */

dword currentPack;
 /*!<current package sequence number */
 dword msgLocation /*!< To indicate where the SMS is stored, 0: in the SIM card; 1: in tte local device; 2: in the terminal device, like PC*/

string time; /*!< the time when the message was received in the inbox or was sent in the sendbox*/

[Editor Note] the format about the time, we need to define the reference for the specific format

string * pPhoneNumber; /*!< the targeted phone number, each number length < 24, more than one number could be included, each of them is separated by ',', and "\0\0" indicates end of the send numbers, dynamic memory allocation */

string * pMsgContent; /*!< message contents, length < 2048, "\0\0" indicates end of message, dynamic memory allocation */
}

[Editor Note] to check if we need to specify the coding type of the SMS

CMAPI_SMSSrv_SendSMS()
The CMAPI_SMSSrv_SendSMS() function is used to send SMS.

	Prototype

	dword CMAPI_SMSSrv_SendSMS(dword handle, SMSRecord * pRecord)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	pRecord
	Input
	The message needs to be sent

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

CMAPI_SMSSrv_GetSMS()

The CMAPI_SMSSrv_GetSMS() () function is used to retrieve the message.

	Prototype

	dword CMAPI_SMSSrv_GetSMS(dword handle, SMSRecord * pRecord, dword iFrom)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	pRecord
	Input/Output
	The SMS record

	iFrom
	Input
	To indicate where the SMS record is

 0: from SIM card

 1: from local device

2: from the terminal device, like PC

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

CMAPI_SMSSrv_DeleteSMS()
The CMAPI_SMSSrv_DeleteSMS() function is used to delete SMS.

	Prototype

	dword CMAPI_SMSSrv_DeleteSMS(dword handle, dword msgID, dword iFrom)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	msgID
	Input
	The message ID

	iFrom
	Input
	 To indicate where the SMS record is

 0: from SIM card

 1: from local device

2: from the terminal device, like PC

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

CMAPI_SMSSrv_ GetSmsIdList ()
The CMAPI_ NetConnectSrv_ GetSmsIdList () function is used to get the list of SMS stored on local device or SIM or the terminal device like PC.

	Prototype

	dword CMAPI_SMSSrv_GetSmsIdList (dword handle, dword * plIDList, dword * plCount, dword iFrom)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	plIDList
	Input/Output
	Return the address of the pointer to SMS id list

	plCount
	Output
	The number of the SMS id in the list.

	iFrom
	Input
	 To indicate where the SMS record is

 0: from SIM card

 1: from local device

2: from the terminal device, like PC

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

CMAPI_SMSSrv_UpdateSMS ()
The CMAPI_SMSSrv_UpdateSMS () is used to update the status of the SMS.

e

	Prototype

	dword CMAPI_SMSSrv_UpdateSMS(dword handle, SMSRecord * pRecord)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	pRecord
	Input
	The SMS needs to be updated.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

CMAPI_SMSSrv_GetSMSCAddress ()
The CMAPI_SMSSrv_GetSMSCAddress () function is used to get the address of SMSC.

	Prototype

	dword CMAPI_SMSSrv_GetSMSCAddress (dword handle,string * pszValue, byte btSize)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	pszValue
	Output
	The address of SMSC.

	btSize
	Input
	The size in byte of pszValue buffer.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

CMAPI_SMSSrv_SetSMSCAddress ()
The CMAPI_SMSSrv_SetSMSCAddress () function is used to set the address of SMSC.

	Prototype

	dword CMAPI_SMSSrv_SetSMSCAddress (dword handle, const string * pszValue)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	pszValue
	Input
	The address of the SMSC.

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

CMAPI_SMSSrv_SetSMSValidityPeriod ()

The CMAPI_SMSSrv_SetSMSValidityPeriod () function is used to set the period of validity of a SMS.

	Prototype

	dword CMAPI_SMSSrv_SetSMSValidityPeriod (dword handle, dword period)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device targeted.

	period
	Input
	The duration in days for SMS kept in the inbox

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

6. CMAPI-2
6.1 Convention
Throughout the document the following terms will be used to denote absolute sizes of memory. Byte will be used to denote 8 bit data values, word will be used to denote 2 byte values, dword will be used to denote 2 word values and qword will be used to denote 2 dword values.
Editor Note: Repetition of convention from CMAPI-1

6.2 Radio Type Definition

	Definition Radio Type

	This prototype defines an enumeration of radio types. The following enumeration will be used throughout this document to define which radio a function operates on.

	Radio Type
	
	 The following radio types are supported:

· 0x00: WCDMA/UMTS

· 0x01: CDMA

· 0x02: TD_SCDMA

· 0x03: LTE

· 0x04: 3GPP

· 0x05: 3GPP2

· 0x06: WLAN

Editor Note: to review the Radio Type

6.3 QOS Structure Definition

	Definition QOS Structure

	This defines the structure used to communicate QOS event information.

	validFeatures
	
	Based on the different traffic classes various features in this method are valid/invalid. This parameter describes which values are valid. If the defined bit is not set it means the corresponding parameter is not used and should not be used for any purpose by the application.

· 0x00000001: Traffic Class

· 0x00000002: Maximum Bitrate

· 0x00000004: Guaranteed Bitrate

· 0x00000008: Delivery Order

· 0x00000010: Maximum SDU Size

· 0x00000020: SDU Format Information

· 0x00000040: SDU Error Ratio

· 0x00000080: Residual Bit Error Ratio

· 0x00000010: Delivery of Erroneous SDUs

· 0x00000020: Transfer Delay

· 0x00000040: Traffic Handling Priority

· 0x00000080: Allocation Retention Priority

· 0x00000100: Source Statistics Descriptor

· 0x00000200: Signaling Indication

· 0x00000400: Priority Level

· 0x00000800: Pre-emption Capability

· 0x00001000: Pre-emption Vulnerability

	trafficClass
	
	The traffic class defines the type of application for which the bearer service is optimized.

· 0x00: Conversational

· 0x01: Streaming

· 0x02 Interactive

· 0x03 Background

	maximumBitRate
	
	Maximum bitrate in kbps.

	guaranteedBitrate
	
	Guaranteed bitrate in kbps.

	deliveryOrder
	
	Indicates if in-sequence delivery is provided

· 0x00: Not provided

· 0x01: Provided

	maximumSDUSize
	
	The maximum SDU size for which the network will satisfy the negotiated QOS. In Octets.

	SDUFormatInformation
	
	The list of possible exact sized of SDUs supported

· 0x01:

· 0x02:

	SDUErrorRatio
	
	Indicates the fraction of SDUs lost or detected as erroneous.

	residualBitErrorRatio
	
	Indicates the undetected bit error ratio in the delivered SDUs

	deliveryOfErroneousSDUs
	
	Indicates whether SDUs detected as erroneous shall be delivered or discarded.

· 0x00: Yes

· 0x01: No

· 0x02: Detection is not used

	transferDelay
	
	Indicates maximum delay for 95th percentile of the distribution of delay for all delivered SDUs during the lifetime of a bearer service. reported in milliseconds.

	trafficHandlingPriority
	
	Defines the relative importance for handling of all SDUs belonging to the bearer compared to the SDUs of other bearers

	allocationRetentionPriority
	
	Defines the relative importance compared to other bearers for allocation and retention of the bearer.

	sourceStatisticsDescriptor
	
	Defines the characteristics of the source of submitted SDUs

· 0x00: Speech

· 0x01: Unknown

	signallingIndication
	
	Defines the signaling nature of the submitted SDUs.

· 0x00: Yes

· 0x01: No

	priorityLevel
	
	The Evolved Allocation/Retention Priority Level

	preemptionCapability
	
	The Evolved Allocation/Retention Pre-emption Capability

· 0x00: Yes

· 0x01: No

	preemptionVulnerability
	
	The Evolved Allocation/Retention Pre-emption Vulnerability

· 0x00: Yes

· 0x01: No

6.4 Callback APIs

These callbacks are exposed by the application.

6.4.1 CMAPI_Callback_SessionStateChange()

The CMAPI_Callback_SessionStateChange() function is used to communicate the session state change
	Prototype

	dword CMAPI_Callback_SessionStateChange (RadioType radio, dword state)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	Please see radio type definition

	state
	Input
	 The new state of the connection of the device

· 0x00000000: Connected (PDP context established in 3GPP context)

· 0x00000001: Disconnected

· 0x00000002: Connecting

· 0x00000003: Disconnecting

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.2 CMAPI_Callback_BearerStatusChange()

The CMAPI_Callback_BearerStatusChange() function is use

	Prototype

	dword CMAPI_Callback_BearerStatusChange (RadioType radio, dword bearer)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	Please see the radio type definition

	bearer
	Input
	 Indication of the bearer

· 0x00000001: No Service

· 0x00000002: Any packet oriented service

· 0x00000004: Any circuit switched service

· 0x00000010: GSM service

· 0x00000020: GPRS service

· 0x00000040: EDGE service

· 0x00000100: CDMA service

· 0x00000200: QNC service

· 0x00000400: 1X-RTT service

· 0x00000800: EV-DO service

· 0x00001000: EV-DV service

· 0x00002000: IOTA service

· 0x00004000: IOTA REVA service

· 0x01000000: UMTS service

· 0x02000000: HSDPA service (Included for legacy purpose, not all operators use HSDPA+)

· 0x04000000: HSUPA service

· 0x08000000: HSPA Plus service

· 0x10000000: PHS service

· 0x20000000: FOMA service

· 0x40000000: LTE service

· 0x80000000: WiFi service

0x800

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.3 CMAPI_Callback_TrafficChannelDormancy()

The CMAPI_Callback_ TrafficChannelDormancy () function is used to communicate the changes in the traffic level.
	Prototype

	dword CMAPI_Callback_TrafficChannelDormancy (RadioType radio, dword state)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	Please see radio type definition

	state
	Input
	 The new traffic channel dormancy state

· 0x00000000: Dormant. See definitions section. Marked dormant after 10 seconds of no use.

· 0x00000001: Traffic channel in use.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.4 CMAPI_Callback_CDMA2000ActivationState()

The CMAPI_Callback_ CDMA2000ActivationState () function is used to communicate the changes in the CDMA 2000 Activation state
	Prototype

	dword CMAPI_Callback_CDMA2000ActivationState (dword state)

	Parameters

	Field Name
	Mode
	Description

	state
	Input
	 The new activation state

· 0x00000000: Service not activated

· 0x00000001: Service activated

· 0x00000002: Activation connecting

· 0x00000003: Activation connected

· 0x00000004: OTASP security authenticated

· 0x00000005: OTASP NAM downloaded

· 0x00000006: OTASP MDN downloaded

· 0x00000007: OTASP IMSI downloaded

· 0x00000008: OTASP PRL downloaded

· 0x00000009: OTASP SPC downloaded

· 0x00000010: OTASP settings committed

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.5 CMAPI_Callback_OnChangedDevice()

The CMAPI_Callback_OnChangedDevice() function is used to communicate whenever there is a change in a given device state and to notify all applications that have registered for this callback.
	Prototype

	dword CMAPI_Callback_OnChangedDevice (dword* pHandle, dword devicestate)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	Input
	The device targeted

	devicestate
	Input
	 The new state of the device:

· 0x00000000: Unplugged

· 0x00000001: Unavailable

· 0x00000002: Plugged & Available

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.6 CMAPI_Callback_PowerState()

The CMAPI_Callback_PowerState() function is used to communicate changes in power level.
	Prototype

	dword CMAPI_Callback_PowerState (dword handle, RadioType radio, RadioState state)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device whose radio has changed power state.

	radio
	Input
	Please see radio type definition
·
·
·
·

	state
	Input
	 Please see radio state definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.7 CMAPI_Callback_Roaming()

The CMAPI_Callback_Roaming() function is used indicate changes in Roaming status
	Prototype

	dword CMAPI_Callback_Roaming (Radio Type radio, dword state)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	Please see radio type definition

	state
	Input
	 Indication of the roaming state

· 0x00000000: Home PLMN (not roaming)

· 0x00000001: Roaming

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.8 CMAPI_Callback_SignalStrength()

The CMAPI_Callback_SignalStrength() function is used to return the current signal strength and percentage.
	Prototype

	dword CMAPI_Callback_SignalStrength (RadioType radio, dword value, dword percent)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	Please see radio type definition

	value
	Input
	 The signal strength value.

	percent
	Input
	The percentage of the maximum signal expected

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.9 CMAPI_Callback_GPS()

The CMAPI_Callback_GPS () function is used to indicate a change in the GPS state.
	Prototype

	dword CMAPI_Callback_GPS (dword state, dword fix, float latitude, float longitude, float altitude, float direction, float speed)

	Parameters

	Field Name
	Mode
	Description

	state

	Input

	 Indication of the gps state

· 0x00000000: GPS off

· 0x00000001: GPS on

	fix
	Input
	 Indication if the gps has a fix

· 0x00000000: No fix

· 0x00000001: Fix

	latitude
	Input
	 The current latitude in decimal degrees

	longitude
	Input
	The current longitude in decimal degrees

	altitude
	Input
	 The current altitude in meters

	direction
	Input
	The current direction in degrees

	speed
	Input
	 The speed in meters per second

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.10 CMAPI_Callback_SmsReceived()

The CMAPI_Callback_ SmsReceived () function is used to indicate that a new SMS message has been received and the number of messages in the mailbox.
	Prototype

	dword CMAPI_Callback_SmsReceived (dword mailbox, dword totalMessages, dword newMessages)

	Parameters

	Field Name
	Mode
	Description

	Mailbox
	Input
	 Indication of the mailbox

· 0x00000000: Stored on SIM

· 0x00000001: Stored in phone memory

	totalMessages
	Input
	The total number of messages in the mailbox

	newMessages
	Input
	The current number of new messages in the mailbox

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.11 CMAPI_Callback_ByteCount
The CMAPI_Callback_ByteCount() function is used to indicate change in byte count. This is a periodic notification. This callback SHALL be made immediately when the application registers for this message. The callback SHALL also occur at a maximum of every 15 seconds when the connection is not dormant. The OpenCMAPI implementation is free to make this callback sooner if deemed useful, in any event the callback MAY NOT occur with greater frequency than once a second. The byte count accumulates between the last connection and either a manual disconnect or some other event that causes the radio to be in disconnected state. This callback must not occur while in the disconnected state.
	Prototype

	dword CMAPI_Callback_ByteCount (RadioType radio, qword tx, qword rx, dword wrapped)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	Please see radio type definition

	tx
	Input
	 The current count of tx bytes.

	rx
	Input
	The current count of rx bytes

	wrapped
	Input
	This is used to denote when tx and/or rx counters have overflowed. Counting will continue like normal and the indication will be set once for each overflow. The following definition is a bitwise combination and allows for tx and/or rx to be set at the same time.

· 0x00000000: No Overflow

· 0x00000001: Tx overflow

· 0x00000002: Rx overflow

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.12 CMAPI_Callback_IncomingCall()

The CMAPI_Callback_IncomingCall() function is used to indicate an incoming voice call. In the case of additional calls on the same technology, conferencing or otherwise, this method will be called an additional time with updated number and caller id information.
	Prototype

	dword CMAPI_Callback_IncomingCall (RadioType radio, string* pNumber, string * pCallerId)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	Please see radio type definition

	pNumber
	Input
	 The number the call is coming from.

	pCallerId
	Input
	The caller id if present.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.13 CMAPI_Callback_UssdMessage()

The CMAPI_Callback_UssdMessage() function is used to communicate a USSD message.
	Prototype

	dword CMAPI_Callback_UssdMessage (RadioType radio, dword status, const byte * pData, dword length, byte coding)

	Parameters

	Field Name
	Mode
	Description

	Radio
	Input
	Please see radio type definition

	Status
	Input
	 The status

· 0x00000000: Done

· 0x00000001: Action Required

· 0x00000002: Cancelled

· 0x00000003: Other client responded

· 0x00000004: Network Timeout

	pData
	Input
	The contents of the message in binary form.

	Length
	Input
	The length of the data in bytes.

	Coding
	Input
	The CBS Data Coding Scheme as defined in 3GPP TS 23.038

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.14 CMAPI_Callback_CATProactiveCommand()

The CMAPI_Callback_CATProactiveCommand() function is used to communicate that a proactive command has been issued.
	Prototype

	dword CMAPI_Callback_CATProactiveCommand (RadioType radio, string* pCommand, dword length)

	Parameters

	Field Name
	Mode
	Description

	Radio
	Input
	Please see radio type definition

	pCommand
	Input
	A textual representation of the command which has been issued

	Length
	Input
	The length of the command in bytes.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.15 CMAPI_Callback_QosChange()

The CMAPI_Callback_QosChange() function is used to communicate a change in QOS as defined in 3GPP TS 23.107.
	Prototype

	dword CMAPI_Callback_QosChange (RadioType radio, QosStructure* pQOS)

	Parameters

	Field Name
	Mode
	Description

	Radio
	Input
	See Radio Type definition

	pQOS
	Input
	See QOS Structure definition

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.16 CMAPI_Callback_RfInformationChange()

The CMAPI_Callback_RfInformationChange() function is used to communicate a change related to RF.
	Prototype

	dword CMAPI_Callback_RfInformationChange (RadioType radio, string* pRadioTechnology, dword radioTechnologySize, string* pBandClass, dword bandClassSize, string* pChannel, dword channelSize)

	Parameters

	Field Name
	Mode
	Description

	Radio
	Input
	Please see radio type definition

	pRadioTechnology
	Input
	Name of the technology in use

	radioTechnologySize
	Input
	Length of the technology string

	pBandClass
	Input
	Name of the band class in use

	bandClassSize
	Input
	Length of the band class string

	pChannel
	Input
	Name of the channel in use

	channelSize
	Input
	Length of the channel string

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.17 CMAPI_Callback_PinPukStatus()

The CMAPI_Callback_PinPukStatus() function is used to return the status of the PINs/PUKs for all active NAAs as soon as the status changes by any OpenCMAPI applications or any other applications.
	Prototype

	qword CMAPI_Callback_PinPukStatus (PinPukStatustype * PinPukStatusList)

	Parameters

	Field Name
	Mode
	Description

	PinPukStatusList
	Input
	Struct PinPukStatustype
{

string * pNAAname

byte * pStatus

byte * pPIN 1 retry attempts left.

byte * pPUK 1 retry attempts left.

byte * pPIN 2 retry attempts left.

byte * pPUK 2 retry attempts left.

}

NAA name of an active NAA.

NAA name can be: SIM, R-UIM, USIM_1, USIM_2, ..., USIM_N, CSIM_1, CSIM_2, ..., CSIM_N, ISIM_1, ISIM_2, ..., ISIM_N.

If there is no NAA name from the previous list to be associated to one or several AID values available into the UICC (see [ETSI TS 102 221]), then the AID value shall be put in this field.

	
	Input
	pStatus: The status of the PINs/PUKs. The field is a binary bitmask and MAY indicate multiple values.

· Bit 8 to Bit 1

· XXXXXXX0: PIN 1 not verified (PIN 1 lock feature disabled)

· XXXXXXX1: PIN 1 verified (PIN 1 lock feature enabled)

· XXXXXX0X: PIN 1 disabled

· XXXXXX1X: PIN 1 enabled

· XXXXX0XX: PIN 1 blocked

· XXXXX1XX: PIN 1 unblocked

· XXXX0XXX: PUK 1 blocked

· XXXX1XXX: PUK 1 unblocked

· XXX0XXXX: PIN 2 not verified (PIN 2 lock feature disabled)

· XXX1XXXX: PIN 2 verified (PIN 2 lock feature enabled)

· XX0XXXXX: PIN 2 disabled

· XX1XXXXX: PIN 2 enabled

· X0XXXXXX: PIN 2 blocked

· X1XXXXXX: PIN 2 unblocked

· 0XXXXXXX: PUK 2 blocked

· 1XXXXXXX: PUK 2 unblocked

byte * PIN 1 retry attempts left (in decimal format).

byte * PUK 1 retry attempts left (in decimal format).

byte * PIN 2 retry attempts left (in decimal format).

byte * PUK 2 retry attempts left (in decimal format).

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.18 CMAPI_Callback_ScanComplete()

The CMAPI_Callback_ScanComplete() function is used to notify that a scan for WLAN networks has been completed.
	Prototype

	dword CMAPI_Callback_ScanComplete (dword pHandle,dword networks)

	Parameters

	Field Name
	Mode
	Description

	networks
	Input
	The number of networks in the current scan list.

	pHandle
	Input
	The device affected

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

6.4.19 CMAPI_Callback_WLANNewAvailableNetwork()

The CMAPI_Callback_WLANNewAvailableNetwork() function is used to notify that a new network has been discovered.
	Prototype

	dword CMAPI_Callback_WLANNewAvailableNetwork (dword pHandle, WLANNetwork* pNetwork)

	Parameters

	Field Name
	Mode
	Description

	pNetwork
	Input
	The new network which has been located. Please see WLANNetwork

	
	
	

	pHandle
	Input
	The device affected

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

6.4.20

	

	

	

	
	
	

	
	
	

	

	
	

	
	

	
	

6.4.21

	

	

	

	
	
	

	
	
	

	
	
	

	

	
	

	
	

	
	

6.4.22 CMAPI_Callback_PushReceived()

The CMAPI_Callback_PushReceived() function is used to notify an application when a new PUSH message has been received.
	Prototype

	dword CMAPI_Callback_PushReceived (dword handle, string* pContentType, string* pApplicationId, byte * pData, dword length)

	Parameters

	Field Name
	Mode
	Description

	handle
	Input
	The device concerned

	pContentType
	Input
	 The content type carried in the PUSH message

	pApplicationId
	Input
	The application id carried in the PUSH message (application ID in this context is the ID of the PUSH application)

	pData
	Input
	The contents of the PUSH message in binary form.

	length
	Input
	The length of the data in bytes.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.4.23 CMAPI_Callback_WLANConnectionStatus ()

The CMAPI_Callback_WLANNotification() function is used to receive WLAN connection Status.
	Prototype

	dword CMAPI_Callback_WLANConnectionStatus (dword pHandle, dword status)

	Parameters

	Field Name
	Mode
	Description

	pHandle
	input
	The device affected

	Status
	Input
	WLAN event:

0x00000000: Connection attempt starting

0x00000001: Attempting association

0x00000002: Association failed

0x00000003: Attempting authentication

0x00000004: Authentication failed

0x00000005: Requesting IP address

0x00000006: IP grant failed

0x00000010: Connection complete
0x00000020: Disconnecting

0x00000021: Disconnected

	Return Values

	Value
	Description

	0X00
	The function succeeded.

	0X01
	A fatal error has occurred. Consult the logger for details.

6.5 Registration APIs
This API is exposed by the OpenCMAPI layer.

6.5.1 CMAPI_Callback_Register()

The CMAPI_Callback_Register() function is used for the application to register for the callbacks which are expected to be received.

	Prototype

	dword CMAPI_Callback_Register (RadioType radio, dword function, callback method)

	Parameters

	Field Name
	Mode
	Description

	radio
	Input
	Please see radio type definition

	function
	Input
	 The function to register a callback for

· 0x00000000: Session State Change

· 0x00000001: Bearer Status Change

· 0x00000002: Traffic Channel Dormancy

· 0x00000003: CDMA 2000 Activation State

· 0x00000004: Power State

· 0x00000005: Roaming

· 0x00000006: Signal Strength

· 0x00000007: GPS

· 0x00000008: SMS Received

· 0x00000009: Byte Count

· 0x0000000A: Incoming Call

· 0x0000000B: USSD Message

· 0x0000000C: Card Application Toolkit proactive command

· 0x0000000D: QOS change

· 0x0000000E: RF Information change

· 0x0000000F: Device Detection callback
· 0x00000010: Device Addition and Removal
· 0X00000011: PUSH message received
· 0x00000012: WLAN Connection Status

· 0x00000013: WLAN Scan complete

· 0x00000014: WLAN New network available

	method
	Input
	The callback method to use when event is triggered.

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

	0x00000002
	Radio type not present

Editorial Note: To align and harmonize the callbacks in one callback function.
6.5.2 CMAPI_Callback_Register()

The CMAPI_Callback_Register() function is used to select which callback the application is interested in.

	Prototype

	dword CMAPI_Callback_Register(CMAPI_callback MyCallbackFunction, dword CallbackFilter)

	Parameters

	Field Name
	Mode
	Description

	MyCallbackFunction
	Output
	The callback function which will be called by the CMAPI. The callback data differs depending on the type of callback.

	CallbackFilter
	Input
	Each bit indicates a specific callback type. If e.g. the application is interested in new incoming SMS, it would set the corresponding bit.

Convention to be agreed

0x00000001: CallBack 1

0x00000002: Callback 2

0x00000004: Callback 3

0x00000008: …

0xffffffff: ALL Callbacks

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

6.5.3 CMAPI_Callback_Unregister()

The CMAPI_Callback_Unregister() function is used to turn off all callbacks or just some.

	Prototype

	dword CMAPI_Callback_Unregister(dword CallbackFilter)

	Parameters

	Field Name
	Mode
	Description

	CallbackFilter
	Input
	Each bit indicates a specific callback type. If e.g. the application needs to turn off the new incoming SMS callback, it would set the corresponding bit.

Convention to be agreed:

0x00000001: CallBack 1

0x00000002: Callback 2

0x00000004: Callback 3

0x00000008: …

0xffffffff: ALL Callbacks

	Return Values

	Value
	Description

	0X00000000
	The function succeeded.

	0X00000001
	A fatal error has occurred. Consult the logger for details.

Error Logger

The Error Logger is used to capture the warnings, error codes and info when the Open CMAPI is running. The warnings and output info can be defined depends on the implementation. For the error codes, below table gives the detailed description:

	Error Code
	Description

	0X0000~0x00FF Common Errors

	0X0000
	Invalid parameter

	0X0001
	Buffer size is not enough

	
	

	0X1000~0X1FFF Net Connect Errors

	
	

	
	

	

	
	

	0X2000~0X2FFF SMS Errors

	
	

	 0X3000~0X3FFF Call Errors

	
	

	 0X4000~0X4FFF Call Log Errors

	
	

	0X5000~0X5FFF Data Service Errors

	
	

	 0X6000~0X6FFF Device Errors

	
	

	 0X7000~0X7FFF Net (Setting) Errors

	
	

	0X8000~0X8FFF Statistics Errors

	
	

	0X9000~0X9FFF UICC Errors
	

	
	

	
	

	 0XA000~0XAFFF USSD Errors

	
	

	 0XB000~0XBFFF GPS Errors

	
	

	0XC000~0X CFFF TRACE Errors

	
	

	
	

	0XD000~0XDFFF User Number Errors

	
	

	0XE000~0XEFFF WLAN Errors

	
	

	
	

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-OpenCMAPI-V1_0
	9 Sep 2011
	5.1.1,5.1.2,5.1.3,5.1.4,5.1.5,5.1.6
	Incorporates input to committee:

 OMA-CD-OpenCMAPI-2011-0008R04-CR_TS_Device_Service_APIs

	
	23 Sep 2011
	5.1.7,5.1.8,5.1.9,5.1.10,5.1.11,5.1.12,5.1.13
	Incorporates input to committee:

 OMA-CD-OpenCMAPI-2011-0013R03-CR_TS_More_Device_Service_APIs

	
	16 Oct 2011
	All
	Incorporated:

OMA-CD-OpenCMAPI-2011-0016R03-CR_TS_Some_PIN_Mgmt_APIs

OMA-CD-OpenCMAPI-2011-0030R03-CR_TS_Callback

OMA-CD-OpenCMAPI-2011-0031R01-CR_TS_Mobile_IP_APIs

OMA-CD-OpenCMAPI-2011-0032R01-CR_TS_Get_RF_Status_APIs

OMA-CD-OpenCMAPI-2011-0035R01-CR_TS_Information_APIs

	
	19 Oct
	5
	Incorporated:
OMA-CD-OpenCMAPI-2011-0031R01-CR_TS_Mobile_IP_APIs (remaining)

OMA-CD-OpenCMAPI-2011-0041R02-CR_TS_Network_Management_APIs

OMA-CD-OpenCMAPI-2011-0045R01-CR_TS_Statistic_APIs

	
	27 Oct
	3, 5, 6, Appendix C
	Incorporated:

OMA-CD-OpenCMAPI-2011-0047R02-CR_TS_DeviceDiscovery_APIs
OMA-CD-OpenCMAPI-2011-0056R01-CR_Device_Identification

	
	2 Nov
	5, 6
	Incorporated:

OMA-CD-OpenCMAPI-2011-0057R02-CR_API_Management
OMA-CD-OpenCMAPI-2011-0058R01-CR_TS_WLAN_APIs

OMA-CD-OpenCMAPI-2011-0065-CR_TS_Alignment_of_GetPinStatus_with_PIN_PUK_Management

	
	16 Nov
	3,5,6,7
	Incorporates input to committee:

OMA-CD-OpenCMAPI-2011-0014R05-CR_TS_Some_Connection_Mgmt_APIs
OMA-CD-OpenCMAPI-2011-0044R01-CR_TS_Network_Connectivity_APIs
OMA-CD-OpenCMAPI-2011-0059R01-CR_TS_Tethering_APIs
OMA-CD-OpenCMAPI-2011-0060R01-CR_TS_Security_and_Concurrency_APIs
OMA-CD-OpenCMAPI-2011-0066R01-CR_Data_Push_Management_APIs
OMA-CD-OpenCMAPI-2011-0068R01-CR_TS_SMS_Mgm_API
OMA-CD-OpenCMAPI-2011-0072-CR_TS_Async_Connection_Mgt
OMA-CD-OpenCMAPI-2011-0074R01-CR_TS_WLAN_Callback_Fix
OMA-CD-OpenCMAPI-2011-0075R01-CR_TS_WLAN_Situation_of_Multiple_Devices
OMA-CD-OpenCMAPI-2011-0077R01-CR_Error_Logger_Template
OMA-CD-OpenCMAPI-2011-0079-CR_TS_Power_Control_APIs
OMA-CD-OpenCMAPI-2011-0080R01-CR_TS_WLAN_Additions_APIs
OMA-CD-OpenCMAPI-2011-0081-CR_TS_Get_APN_Clarification

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

B.3 Typical scenario for use of OpenCMAPI in Mobile Broadband (Laptop context)
B.4 Typical Scenario in laptop environment
A typical scenario for the use of OpenCMAPI in a laptop environment with the possibility of having multiple devices would be:

1. On start-up, the CM application calls CMAPI_OpenAPI()

2. The CM application registers for callback “DeviceChanges”

3. The CM application enumerates all currently available devices through the function CMAPI_DeviceDiscovery_DetectDevices()

4. The CM application opens one or several devices with the function CMAPI_DeviceDiscovery_OpenDevice()

5. The “DeviceChanges” callback is called when device availability changes

6. The CM application can open and close devices as needed

7. The CM application calls CMAPI_CloseDevice() to close a specific device or all

8. The CM application unregisters “DeviceChanges” callback

9. The CM application calls CMAPI_CloseAPI() when it closed

B.5 Example with multiple devices

To be provided later (based on the example presented by Orange (cf. OMA-CD-OpenCMAPI-2011-0021-INP_Implementation_Options)

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]

