OMA-TS-OpenCMAPI_Web_V1_1-20140505-D	Page 3 V(32)
	[image: oma]
	

	Open Connection Manager WebAPI

	Draft Version 1.1 – 5 May 2014

	Open Mobile Alliance

	OMA-TS-OpenCMAPI_Web_V1_1-20140505-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.
Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.
You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.
Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.
THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.
© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents
1.	Scope	5
2.	References	6
2.1	Normative References	6
2.2	Informative References	6
3.	Terminology and Conventions	7
3.1	Conventions	7
3.2	Definitions	7
3.3	Abbreviations	7
4.	Introduction	8
4.1	Version 1.1	8
5.	Detailed API specification	9
5.1	Device Discovery	9
5.2	Payload Data Structure of CMAPI interface messages	9
5.2.1	CMAPI-1 Messages	9
5.2.2	CMAPI-2 Messages	10
5.2.3	Binary Data Handling	11
5.2.4	Message Examples (Informative)	11
5.3	Error Codes	13
5.3.1	Error Codes	13
5.3.2	UICC Status Words	20
5.4	WebAPI Transport Bindings	21
5.4.1	WebSocket Transport Binding	21
5.4.2	HTTP Transport Binding	23
5.5	Security Considerations	24
Appendix A.	Change History (Informative)	25
A.1	Approved Version History	25
A.2	Draft/Candidate Version 1.1 History	25
Appendix B.	Static Conformance Requirements (Normative)	27
B.1	SCR for Mobile Broadband Device	27
B.2	SCR for laptop	27
B.3	SCR for wireless router	28
B.4	SCR for M2M device	28
B.5	SCR for Smart Phone	29
B.6	SCR for Tablets	29
B.7	SCR for Cloud Devices	30
Appendix C.	Web IDL Definitions (Informative)	31
Appendix D.	JavaScript Library of WebSocket API Binding (Informative)	32

Figures
Error! No table of figures entries found.

Tables
Table 1: CMAPI-1 Request Message Data Structure	10
Table 2: CMAPI-1 Response Message Data Structure	11
Table 4: Return Values & Error Codes	20
Table 5: Status Words Codes	21
Table 6: Steps of Handling a CMAPI-1 Function Call	22
Table 7: Steps of Handling a CMPI-1 Response Message	22
Table 8: Extra Step of Handling a Callback Registration	22
Table 9: Extra Step of Handling a Callback Unregistration	22
Table 10: Steps of Handling a Callback	23

[bookmark: _Ref511812747][bookmark: _Toc51149231][bookmark: _Toc378768341][bookmark: _Toc388260020]Scope
[bookmark: _Toc51149232]This specification of the OpenCMAPI defines interfaces (derived from [OpenCMAPI-TS]), through which connection management services are made available to Web applications.
The specification addresses the requirements enumerated in [OpenCMAPI-RD] and adheres to the architecture described in [OpenCMAPI-AD].

[bookmark: _Toc388260021]References
[bookmark: _Toc388260022]Normative References
	[JSON-RPC]
	“JSON RPC (Remote Procedure Call) Specification 2.0”,
URL: http://www.jsonrpc.org/specification

	[OpenCMAPI-TS]
	“Open Connection Manager API”, Open Mobile Alliance™, OMA-TS-OpenCMAPI-V1_1,
URL: http://www.openmobilealliance.org/

	[OpenCMAPI-AD]
	“Open Connection Manager API Architecture”, Open Mobile Alliance™, OMA-AD-OpenCMAPI-V1_1, URL: http://www.openmobilealliance.org/

	[OpenCMAPI-RD]

	“Open CM API Requirements”, Open Mobile Alliance™, OMA-RD-OpenCMAPI-V1_1,
URL: http://www.openmobilealliance.org/

	[OpenCMAPI-SUP-JSD]
	“JSON schema for the Open Connection Manager API”, Open Mobile Alliance™, OMA-SUP-JSD_deviceapi_opencmapi-V1_1, URL: http://www.openmobilealliance.org/

	[OpenCMAPI-SUP-WIDL]
	 “JSON schema for the Open Connection Manager API”, Open Mobile Alliance™, OMA-SUP-WIDL_ deviceapi_opencmapi-V1_1, URL: http://www.openmobilealliance.org/

	[RFC1034]
	"DOMAIN NAMES - CONCEPTS AND FACILITIES", P. Mockapetris, November 1987, URL:http://tools.ietf.org/html/rfc1034

	[RFC1035]
	"DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION", P. Mockapetris, November 1987, URL:http://tools.ietf.org/html/rfc1035

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997,
URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999,
URL: http://www.ietf.org/rfc/rfc2616.txt

	[RFC6455]
	“The Web Socket Protocol”, I. Fette and A. Melnikov, December 2011,
URL: http://tools.ietf.org/html/rfc6455

	[RFC7159]
	“The JavaScript Object Notation (JSON) Data Interchange Format“,T. Bray, Ed., March 2014, URL:http://tools.ietf.org/html/rfc7159

	
	

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures,
URL: http://www.openmobilealliance.org/

[bookmark: _Toc388260023]Informative References
	[JSON-Schema]
	“JSON Schema: core definitions and terminology”, Francis Galiegue, Kris Zyp, Gary Court, URL:http://tools.ietf.org/html/draft-zyp-json-schema-04
Note: The referenced IETF draft is a work in progress, subject to change without notice.

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL: http://www.openmobilealliance.org/

	[RFC4122]
	“A Universally Unique IDentifier (UUID) URN Namespace”, P. Leach, M. Mealling, R. Salz, July 2005, URL: http://www.ietf.org/rfc/rfc4122.txt

	[RFC6202]
	“Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP”, April 2011, URL:http://tools.ietf.org/rfc/rfc6202.txt

	[W3C_WebSocket]
	“The WebSocket API”, W3C Candidate Recommendation 20 September 2012, Ian Hickson, ed., URL:http://www.w3.org/TR/websockets/

	[Wi-Fi Alliance HS2.0 TS]
	Hotspot 2.0 (Release 1) Technical Specification version 1.0.0, Wi-Fi Alliance Technical Committee Hotspot 2.0 Technical Task Group, URL:https://www.wi-fi.org/hotspot-20-technical-specification-v100

	
	

[bookmark: _Toc388260024]Terminology and Conventions
[bookmark: _Toc388260025]Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.
[bookmark: _Toc388260026]Definitions
For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].
	Hotspot 2.0
	Hotspot 2.0 [Wi-Fi Alliance HS2.0 TS] (also known as Passpoint) is a set of specifications from the Wi-Fi Alliance.

	JSON
	The JSON refers to the definition of [RFC7159].

	Long Polling
	A variation of the traditional polling technique, where the server does not reply immediatelly to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of a push mechanism from a server to a client.

[bookmark: _Toc388260027]Abbreviations
	[bookmark: _Hlk378851803]API
	Application Programming Interface

	CM
	Connection Manager

	D2D
	Device to Device

	DNS
	Domain Name System

	GNSS
	Global Navigation Satellite System

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	OpenCMAPI
	Open Connection Manager (CM) Application Programming Interface (API)

	PIN
	Personal Identification Number

	ProSe
	Proximity Services (Also referred to as LTE D2D)

	PUK
	Personal Unlocking Key also called UNBLOCK PIN.

	RFC
	Request For Comments

	RPC
	Remote Procedure Call

	SCR
	Static Conformance Requirements

	SMS
	Short Message Service

	TLS
	Transport Layer Security

	UICC
	Universal Integrated Circuit card

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	USSD
	Unstructured Supplementary Service Data

	WLAN
	Wireless Local Area Network

[bookmark: _Ref511812783][bookmark: _Toc51149239][bookmark: _Toc378768349][bookmark: _Toc388260028]Introduction
[bookmark: _Toc51149240]With the multiplicity of networks available and the need for more connectivity, there is a market demand for a standardized WebAPI to provide connection management functionalities which would facilitate development and integration of Connection Manager Web Applications as well as to provide more status information about the connection to any Web application using mobile data services.
The goal of the OMA OpenCM WebAPI is to facilitate the development of Connection Manager Web Applications to the mobile environment and to provide additional services such as Information Status to Web applications relying on connectivity to mobile networks.
In this context, the Technical Specification for the Open Connection Management WebAPI defines a WebAPI binding for the [OpenCMAPI_TS] specification, i.e. it provides the CMAPI device discovery, a transport independent JSON-RPC payload data structure, return values, error codes and two transport bindings (native HTTP and WebSockets).
In the context of this specification a WebIDL [OpenCMAPI-SUP-WIDL] and a JSON schema [OpenCMAPI-SUP-JSD] is provided.
Appendix D. describes how a JavaScript Library implements the WebAPI based on WebSocket Transport binding. .
[bookmark: _Toc160850339][bookmark: _Toc378768351][bookmark: _Toc388260029]Version 1.1
Version 1.1 is the first version which was produced of this document as WebAPI was not part of the scope of OpenCMAPI Enabler 1.0.
This version of the specification addresses the following aspects:
· Security and concurrency control function, e.g. access control and authorization
· Device Discovery & Device Handling
· Device Services
· Cellular Network Connection Management
· PIN/PUK Management
· Interaction with the UICC
· WLAN connection management
· Information Status handling
· Statistics handling
· GNSS handling
· SMS&USSD management
· Push Data service management
· Callbacks & Registration/Deregistration to receive callbacks
· Additional Information Status functions
· Phone Book /Contacts management support
· Support of Hotspot 2.0
· Support of P2P (or D2D or ProSe as known in 3GPP) Direct connection
· Router Management support

[bookmark: _Toc388260030]Detailed API specification
This section is organized to support a comprehensive understanding of the OpenCM WebAPI design. It specifies the device discovery, message payload data structures, transport bindings and error handling.
[bookmark: _Toc388260031]Device Discovery
All devices implementing the Web Binding of OpenCMAPI v1.1 SHALL register the name “cmapi.device” on its local network. Thus those devices SHALL be discovered by innate DNS ([RFC1034], [RFC1035]) resolution of “cmapi.device”.
[bookmark: _Toc378768352][bookmark: _Ref385926601][bookmark: _Toc388260032]Payload Data Structure of CMAPI interface messages
This section defines the transport independent representation of CMAPI-1 and CMAPI-2 interfaces.
The request and response messages are based on JSON-RPC 2.0 [JSON-RPC]. JSON-RPC is a stateless, light-weight remote procedure call based on JSON data format [RFC7158].
CMAPI functionality is implemented by using extended JSON-RPC data objects as the Application Data. A schema for each message is provided in [OpenCMAPI-SUP-JSD] that is based on [JSON-Schema].
[bookmark: _Ref385944331][bookmark: _Toc388260033]CMAPI-1 Messages
CMAPI-1 request messages are originated from the client, response messages are originated from the CMAPI implementation.
[bookmark: _Ref385941119]CMAPI-1 Request Message
The CMAPI-1 request message conforms to the structure as defined in [JSON-RPC], extended by “cmapiversion”. The details are as follows:
	Member
	Type
	Optional
	Description

	jsonrpc
	String
	No
	It SHALL be the exact value of “2.0”.

	cmapiversion
	String
	No
	It SHALL be the exact value of “1.1”.

	method
	String
	No
	The name of the method to be invoked. It SHALL be the name of a function call as specified in [OpenCMAPI-TS], e.g. “CMAPI_Network_GetRFInfo”.

	id
	String
	No
	An identifier established by the Client, which is used to match the response with the request that it is replying to.
It SHALL be the globally unique identifier to distinguish each CMAPI-1 function call originated by a Web application.
Note: How such a globally unique identifier is generated is out of scope of this specification, however, it is pointed out that for example UUID [RFC4122] provides a way to implement such a scheme.
The CMAPI-1 function call and corresponding response messages SHALL have the same “id” value
Note: This specification does not use notifications as specified in [JSON-RPC], i.e. the “id” property SHALL NOT be omitted (or Null).

	params
	Object
	No
	Object, with member names that match the Server expected parameter names. It SHALL be a structure of specific parameters of a CMAPI-1 function call. The set of parameters is unique for each CMAPI-1 function call as specified in [OpenCMAPI-TS].

[bookmark: _Toc378768646][bookmark: _Toc385954658]Table 1: CMAPI-1 Request Message Data Structure
[bookmark: _Toc378768354][bookmark: _Ref385941241][bookmark: _Ref385941392]CMAPI-1 Response Message
The CMAPI-1 response message conforms to the structure as defined in [JSON-RPC], extended by “cmapiversion”. The details are as follows:
	Member
	Type
	Optional
	Description

	jsonrpc
	String
	No
	It SHALL be the exact value of “2.0”.

	cmapiversion
	String
	No
	It SHALL be the exact value of “1.1”.

	id
	String
	No
	It SHALL be the same value of “id” member in the prior request message of corresponding function call.
Multiple sequential response messages are possible for the same prior CMAPI-1 function call. Their “id” SHALL be the same value.
If there was an error in detecting the id in the request object (e.g. parse error/invalid request), it SHALL be Null.

	error
	Object
	Yes
	In case of an error it SHALL be the error structure according to [JSON-RPC] indicating the execution status of the corresponding CMAPI-1 function call. Please refer to section 5.3 for CMAPI specific error codes.
On success this member SHALL be omitted.

The error structure SHALL include the members “code” and “message”. For “code” the integer value of the error as listed in the table in section 5.3.1 SHALL be used. For “message” the text in the description column in the table in section 5.3.1 SHALL be used.
 The error structure MAY include the member “data”. It may be a used for additional information about the error.

	result
	Object
	Yes
	On success it SHALL be a structure of the information with regard to execution outcome resulting from the function call as specified in [OpenCMAPI-TS]. In case of an error this member SHALL be omitted.
Note: The structure of the response is unique for each CMAPI-1 function call

[bookmark: _Toc378768647][bookmark: _Toc385954659]Table 2: CMAPI-1 Response Message Data Structure
[bookmark: _Ref385944710][bookmark: _Toc388260034]CMAPI-2 Messages
The CMAPI-2 interface is an asynchronous interface used to provide callbacks (i.e. notifications) and the registration/deregistration mechanisms to receive these callbacks.
The CMAPI-2 callback message conforms to the structure defined in [JSON-RPC], extended by “cmapiversion” and “callbackId”. The details are as follows:
	Member
	Type
	Optional
	Description

	jsonrpc
	String
	No
	It SHALL be the exact value of “2.0”.

	cmapiversion
	String
	No
	It SHALL be the exact value of “1.1”.

	id
	String
	No
	It SHALL be a globally unique identifier to distinguish each CMAPI-2 callback function.
Note: How such a globally unique identifier is generated is out of scope of this specification, however, it is pointed out that for example UUID [RFC4122] provides a way to implement such a scheme.
Note: This specification does not use notifications as specified in [JSON-RPC], i.e. the “id” property SHALL NOT be omitted (or null).

	error
	Object
	Yes
	In case of an error it SHALL be the error structure according to [JSON-RPC] indicating the execution status of a CMAPI-2 callback function. Please refer to section 5.3 for CMAPI specific error codes.
On success this member SHALL be omitted.

The error structure SHALL include the members “code” and “message”. For “code” the integer value of the error as listed in the table in section 5.3.1 SHALL be used. For “message” the text in the description column in the table in section 5.3.1 SHALL be used.
 The error structure MAY include the member “data”. It may be a used for additional information about the error.

	result
	Object
	Yes
	On success it SHALL be a structure of the information that the application server intends to inform the Web application as specified in [OpenCMAPI-TS].
Note: The structure of callback is unique for each CMAPI-2 callback function
In case of an error this member SHALL be omitted.

	callbackId
	String
	No
	It SHALL be present if and only if it is a CMAPI-2 callback message, and indicate the type of callback function as specified in [OpenCMAPI-TS].

Table 3: CMAPI-2 Callback Message Data Structure

[bookmark: _Toc378768355][bookmark: _Toc388260035]Binary Data Handling
Occasionally, binary data may be passed as a parameter in a request message, or returned in a response message after the function call is executed, or part of a callback message. BASE64 encoding SHALL be applied to binary data before it is constructed into the data structure of a request message, or a response message, or a callback message.

[bookmark: _Toc378768356][bookmark: _Toc388260036]Message Examples	(Informative)
CMAPI-1 Request Message Example
An example of a request message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:
	{
	 "jsonrpc": "2.0",
 “cmapiversion”: “1.1”,
	 "method": "CMAPI_Network_GetRFInfo",
	 "id": "111",
	 "params": {
	 "deviceId": "1"
	 }
	}

[bookmark: _Toc378768357]CMAPI-1 Response Message Examples
An example of a successful response message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:
	{
	 "jsonrpc": "2.0",
 “cmapiversion”: “1.1”,
	 "id": "111",
	 "result": {
	 "RFInfoListElements": 1,
	 "RFInfoList": [
	 {
	 "Radio": "WCDMA_UMTS",
	 "maxDataRateUL": 1024,
	 "maxDataRateDL": 1024,
	 "frequencyBand": "1900 PCS",
	 "channelNumberUL": "333,444",
	 "channelNumberDL": "333,444"
	 }
]
	 }
	}

An example of a error response message of CMAPI-1 function call “CMAPI_Network_GetRFInfo()” is as follows:
{
	 "jsonrpc": "2.0",
 “cmapiversion”: “1.1”,
	 "id": "111",
	 " error": {
	 "code": 1,
	 "message": “A fatal error has occurred.”
	 }
	 }

[bookmark: _Toc378768358]CMAPI-2 Callback Message Example
An example of a CMAPI-2 Callback Message “CMAPI_Callback_DeviceChanged()” is as follows:
	{
	 "jsonrpc": "2.0",
 “cmapiversion”: “1.1”,
	 "id": "511",
	 "callbackId": "CMAPI_Callback_DeviceChanged",
	 "result": {
	 "deviceId": 1,
	 "deviceState": 3,
	 "radio": 64,
	 "deviceCapability": 1,
	 "connectionType": 32,
	 "deviceType": 5,
	 "description": "This is a wireless router",
	 "uniqueIdentifier": "1234567890"
	 }
	}
[bookmark: _Toc378597628][bookmark: _Ref385926468][bookmark: _Ref385937707][bookmark: _Toc378768359][bookmark: _Toc388260037]Error Codes
This section defines the CMAPI specific error codes and UICC Status Words.
For error handling specific to the transport please refer to the respective transport binding sections 5.5.1.4 and 5.5.2.6. For error handling specific to JSON-RPC please refer to [JSON-RPC].

[bookmark: _Ref387164999][bookmark: _Toc388260038]Error Codes
The error codes table is used to capture the warnings, error codes and information when the Open CMAPI is running. Some additional warnings and output information can be defined depending on the implementation.

	Error Codes

	Integer Value
	Hex Value
	Description

	General Error Codes

	1
	0X00000001
	A fatal error has occurred.

	2
	0X00000002
	Invalid Parameter

	4
	0X00000004
	Invalid Operation

	5
	0X00000005
	No service

	6
	0X00000006
	The requested operation cannot currently be completed because another application is currently performing the same operation.

	7
	0X00000007
	This optional function is not supported by this implementation

	10
	0X00000010
	The OpenCMAPI implementation cannot perform this operation since there is currently a connection which prevents the request. NOTE: The OpenCMAPI implementation may be able to apply the change in some conditions and may return success instead of this return code in some connected conditions.

	11
	0X00000011
	The type of data requested is not present

	13
	0X00000013
	QoS unsupported

	14
	0X00000014
	Not connected

	Device Error Codes

	
	0X00000100
	The UniqueIdentifier is referencing a non-existing device

	
	0X00000101
	The deviceID references a non-existing device or a device which is not open

	
	0X00000102
	The device is already opened.

	
	0X00000103
	Maximum number of device that the API can handle per client is reached (can be 1), close another open device handle.

	
	0X00000104
	The device does not contain hardware which supports this operation.

	
	0X00000105
	The radio references a radio which the device does not support

	
	0X00000106
	The radio references a radio which the device does not support (exception, this error is not reported if the radio is set to 0xFF (all)).

	
	0X00000107
	System not supported by the device

	
	0X00000108
	The requested data is not meaningful for a 3GPP device.

	
	0X00000109
	The requested data is not meaningful for a 3GPP2 device.

	
	0X00000110
	The device cannot be activated while connected.

	
	0X00000111
	The device is not connected

	
	0X00000112
	The routerID references a non-existing router

	
	0X00000140
	The MACAddress references a non-existing Connected Device

	
	0X00000120
	Configuration not supported by the device

	
	0X00000121
	The device does not offer this capability

	
	0X00000130
	The device is not in a power state which allows this operation.

	
	0X00000131
	Requested power state is not supported by the device (ex power saving)

	
	0X00000132
	Radio off

	
	0X00000133
	The power state is invalid

	
	0X00000134
	The system ID is invalid

	
	0X00000135
	No IMSI available

	
	0X00000140
	The MACAddress references a non-existing Connected Device

	
	0X00000210
	Control Key not supported by this system (when an ID of a 3GPP2 only Control Key is sent to a 3GPP system device or when an ID of a 3GPP only Control Key is sent to a 3GPP2 system device).

	
	0X00000211
	The control key value is invalid

	UICC Error Codes

	
	0X00000501
	There is no smart card support for this device

	
	0X00000502
	Smart card not accessible

	
	0X00000551
	ENVELOPE command was not sent to SIM/R-UIM/UICC as overlapping was detected.

	
	0X00000552
	The envelope command is invalid

	
	0X00000553
	The terminal profile is invalid

	
	0X00000554
	The function succeeded except for the overlapping ToolKit functions with the device or another or other Connection Manager Application(s)

	
	0X00000555
	The terminal response is invalid

	Profile Error Codes

	
	0X00002001
	The Cellular profile name does not exist

	
	0X00002002
	The Cellular profile name is not valid

	
	0X00002003
	The Cellular profile name is already existing, only happen when creating a profile with a existing name

	
	0X00002004
	The Cellular profile can not be updated while currently in use (connected)

	
	0X00002005
	A default profile has not been set for this device.

	
	0X00002101
	The user name is not valid

	
	0X00002102
	The password is not valid

	
	0X00002104
	The APN is not valid

	
	0X00002105
	The IP Address is not valid

	
	0X00002106
	The primary DNS address is not valid

	
	0X00002107
	The secondary DNS address is not valid

	
	0X00002108
	The Auth type is not valid

	
	0X00002109
	The IPAddrType is not valid

	
	0X0000210A
	The profile type is not valid

	
	0X0000210B
	The timeout is not valid

	
	0X00002202
	The type of IP address is not available.

	Network Connection Error Codes

	
	0X00003001
	The requested bearer is not possible

	
	0X00003002
	There is no connection to disconnect from

	
	0X00003004
	There is no connecting session for cancellation

	
	0X00003005
	The Connection is releasing

	
	0X00003006
	Remote system not present

	
	0X00003007
	The supplied index identifies a record which does not exist.

	
	0X00003008
	Current APN cannot be retrieved because there is no connection.

	
	0X00003009
	The requested connection type is not valid

	
	0X0000300A
	There is currently a connection which prevents this operation. It is necessary to disconnect before the requested operation can be completed.

	
	0X00003101
	The requested mode is not valid

	
	0X00003102
	The requested PLMNID is not valid

	
	0X00003103
	The requested bearer or combination of bearers is not valid.

	
	0X00003201
	No Primary context activated

	
	0X00003202
	The secondary context doesn’t exist

	
	0X00003203
	The secondary context is already activated/created

	
	0X00003204
	The secondary context activation is in progress

	
	0X00003205
	The secondary context is already deactivated

	
	0X00003206
	The secondary context deactivation is in progress

	
	0X00003207
	The secondary context is already deactivating

	CDMA 2000 Error Codes

	
	0X00004001
	Unrecognized session identifier.

	
	0X00004002
	The SPC is valid.

	
	0X00004003
	The SPC is invalid.

	
	0X00004004
	The requested activation code is invalid.

	
	0X00004005
	Activation failed (other than invalid activation code).

	
	0X00004006
	The index is invalid

	
	0X00004007
	File does not exist at the given path.

	
	0X00004008
	An invalid PRL file is entered.

	
	0X0000400B
	No record exists at the specified index.

	
	0X0000400C
	The ACCOLC is invalid.

	
	0X0000400D
	The requested ForceRev0 is invalid

	
	0X0000400E
	The CustomSCP is invalid

	
	0X0000400F
	The protocol is invalid

	
	0X00004010
	The broadcast is invalid

	
	0X00004011
	The application is invalid

	
	0X00004012
	The roaming is invalid

	
	0X00004013
	The SID is invalid

	
	0X00004014
	The MDN is invalid

	
	0X00004015
	The MIN is invalid

	
	0X00004016
	The PRL is invalid

	
	0X00004017
	The MNHA is invalid

	
	0X00004018
	The MNAAA is invalid

	
	0X00004019
	The session type is invalid

	
	0X0000401A
	The session state is invalid

	
	0X0000401B
	The failure reason is invalid

	
	0X0000401C
	The retry count is invalid

	
	0X0000401D
	The session pause is invalid

	
	0X0000401E
	The selection is invalid

	
	0X0000401F
	The session id is invalid

	
	0X00004020
	The defer is invalid

	
	0X00004021
	The feature state is invalid

	
	0X00004022
	The update feature state is invalid.

	
	0X00004023
	The firmware update feature state is invalid

	
	0X00004024
	The reason is invalid

	
	0X00004025
	The mode is invalid

	
	0X00004026
	The enabled value is invalid

	
	0X00004027
	The RevTunn value is invalid

	
	0X00004028
	The NAI is invalid

	
	0X00004029
	The HASPI is invalid

	
	0X0000402A
	The AAASPI is invalid

	
	0X0000402B
	The Address parameter was not formatted properly.

	
	0X0000402C
	The Primary Home Agent parameter was not formatted properly.

	
	0X0000402D
	The Secondary Home Agent parameter was not formatted properly.

	
	0X0000402E
	The retry limit is invalid

	
	0X0000402F
	The retry interval is invalid

	
	0X00004030
	The Reregperiod is invalid

	
	0X00004031
	The Reregtraffic is invalid

	
	0X00004032
	The HAAuthenticator is invalid

	
	0X00004033
	The HA2002bis is invalid

	SMS Error Codes

	
	0X00005001
	Failure of communication with device

	
	0X00005002
	Timer expired without receiving response from device

	
	0X00005003
	Response with error indication from device

	
	0X00005004
	Operation NOT supported

	
	0X00005005
	SMS message NOT found

	
	0X00005006
	The SMS record is invalid

	
	0X00005007
	The ifrom value is invalid

	
	0X00005008
	The SMSC value is invalid

	
	0X00005009
	The PSI value is invalid

	
	0X0000500A
	The delivery report switch is invalid

	
	0X0000500B
	The SMS Class is invalid

	
	0X0000500C
	The msgID is invalid

	
	0X00005901
	The USSD Data is invalid

	Contact Management Error Codes

	
	0X00005501
	The contact record is invalid

	
	0X00005502
	Memory capacity exceeded.

	
	0X00005503
	The index is invalid

	
	0X00005504
	The contact location value is invalid

	Information Status Error Codes

	
	0X00006001
	The type of data requested is not present

	
	0X00006002
	The type is not valid

	
	0X00006003
	Remote system not present

	
	0X00006004
	The supplied index identifies a record which does not exist.

	
	0X00006005
	Current APN cannot be retrieved because there is no connection.

	
	0X00006006
	The type of IP address is not available.

	
	0X00006007
	IP Address is not currently assigned (advisable to retry call)

	
	0X00006008
	Authentication failure

	GNSS Error Codes

	
	0X00007001
	The GNSS state is invalid

	
	0X00007002
	The operation is invalid

	
	0X00007003
	The accuracy threshold is not supported

	
	0X00007004
	The server address is invalid.

	
	0X00007005
	The server port is invalid.

	
	0X00007006
	The server FQDN is invalid.

	
	0X00007007
	The tracking value is invalid

	P2P Direct Management Error Codes

	
	0X00008001
	The P2PTechnology is not supported

	
	0X00008002
	The P2P Technology is invalid

	
	0X00008003
	The Service Record is invalid

	
	0X00008004
	The list of Remote Devices is invalid.

	
	0X00008005
	The list of Service Identifiers is invalid.

	
	0X00008006
	The ID of the Connection is invalid.

	
	0X00008007
	The list of Device ID is invalid

	
	0X00008008
	The ID of the group is invalid

	
	0X00008009
	The ID of the Remote Device is invalid

	
	0X0000800A
	The Invitation ID is invalid

	Router Management Error Codes

	
	0X00009001
	The routerConfig value(s) are incorrect

	
	0X00009002
	The policy value(s) are incorrect

	
	0X00009003
	The restrict value(s) are incorrect

	
	0X00009004
	The administrator password is incorrect

	WLAN Error Codes

	
	0X00010001
	No network exists at the specified index.

	
	0X00010002
	Predefined networks are not able to be modified.

	
	0X00010004
	The SSID is invalid

	
	0X00010005
	The BSSID is invalid

	
	0X00010006
	The Friendly Name is invalid

	
	0X00010007
	The security parameter is invalid

	
	0X00010008
	The mode parameter is invalid

	
	0X00010009
	The hidden parameter is invalid

	
	0X0001000A
	The key is invalid

	
	0X0001000B
	The EAP authentication method is invalid

	
	0X0001000C
	The EAP configuration is invalid

	
	0X0001000D
	The WLAN Encryption Type is invalid

	
	0X00011001
	There is no existing WLAN connection

	
	0X00011002
	Security mode does not allow connectivity to unknown networks.

	
	0X00011005
	Operation is prohibited by security policy.

	
	0X00011006
	No pending operation.

	
	0X00011007
	The pin for WPS was malformed or incorrect size

	
	0X00011008
	The device is not connected

	
	0X00011009
	 Device (i.e.: WLAN only device that does not support NAA on UICC for authentication) does not support the requested function.

	
	0X00012001
	The SSID does not reference a valid known network.

	
	0X00012002
	The BSSID does not reference a valid known network

	
	0X00012003
	IP Address is not currently assigned (advisable to retry call)

	
	0X00012004
	Authentication failure

	
	0X00013001
	Invalid combination of AUTH and CIPHER

	
	0X00013002
	Index NOT referring to a valid known network

	
	0X00013003
	NO existing WLAN connection

	
	0X00013004
	IP address NOT valid

	
	0X00013005
	Subnet mask NOT valid

	
	0X00013006
	Operation prohibited by security policy

	
	0X00013007
	The specified index is to large and would leave a gap in the known networks list

	
	0X00013008
	Index is not valid for user defined networks. Please try a higher index.

	
	0X00013009
	The mode is invalid

	
	0X0001300A
	The address is invalid

	
	0X0001300B
	The subnet mask is invalid

	
	0X0001300C
	The http proxy is invalid

	
	0X0001300D
	The mac address is invalid

	
	0X0001300E
	The default gateway is invalid

	PIN/PUK management Error Codes

	
	
	SW1 and SW2 are the Status Words provided by the SIM/R-UIM/UICC (see next chapter). If no Status Word is provided, SW1SW2 will be replaced by “0000”.

	
	0X1001SW1SW2
	Wrong PIN.

	
	0X1002SW1SW2
	PIN is blocked. PUK (UNBLOCK PIN) needed.

	
	0X1003SW1SW2
	Wrong Old PIN.

	
	0X1004SW1SW2
	Old PIN is blocked. PUK (UNBLOCK PIN) needed.

	
	0X1005SW1SW2
	Wrong PUK.

	
	0X1006SW1SW2
	PUK (UNBLOCK PIN) blocked.

	
	0X1007SW1SW2
	Invalid parameter(s)

	
	0X11000001
	The NAA Name is invalid

	
	0X11000002
	The PIN Type is invalid

	
	0X11000003
	The PUK Type is invalid

	Reserved for other use

	
	[bookmark: OLE_LINK3][bookmark: OLE_LINK4]0X30000000 to
0X3FFFFFFF
	Reserved for other purpose – do not use

	Security Errors

	
	0XF0000001
	The security request supplied when the API was opened does not grant privilege to access this functionality. You may close and reopen the API with updated credentials to perform this operation.

	
	0XF0000002
	The authentication failed

	
	0XF0000003
	The authentication has been denied. Please seek proper credentials for your access level.

	
	0XF0000004
	The security request was malformed. Please consult vendor materials and/or output log.

	
	0XF0000005
	The requested access level is not supported

	
	0XF0000006
	The WLAN Encryption Type used is not allowed. Please use proper Encryption type

[bookmark: _Toc378597658][bookmark: _Toc385954660]Table 4: Return Values & Error Codes
[bookmark: _Toc378597630][bookmark: _Toc388260039]UICC Status Words
The following table is listing possible Status Words (SW1 and SW2) provided by the SIM/R-UIM/UICC in accordance with the [ETSI TS 102 221] Status Words list.
	Status Words

	
	Status words (SW1 SW2)
	Description

	
	90 00
	Normal ending of the command

	
	91 XX
	Normal ending of the command, with extra information from the proactive UICC containing a command for the terminal. Length 'XX' of the response data

	
	62 00
	No information given, state of non volatile memory unchanged

	
	63 CX
	Command successful but after using an internal update retry routine 'X' times
Verification failed, 'X' retries remaining (For the VERIFY PIN command, SW1SW2 indicates that the command was successful but the PIN was not correct and there are 'X' retries left. For all other commands it indicates the number of internal retries performed by the card to complete the command.)

	
	64 00
	No information given, state of non-volatile memory unchanged

	
	65 00
	No information given, state of non-volatile memory changed

	
	65 81
	Memory problem

	
	67 XX
	The interpretation of this status word is command dependent, except for SW2 = '00' (Wrong length)

	
	68 00
	No information given

	
	68 81
	Logical channel not supported

	
	68 82
	Secure messaging not supported

	
	69 00
	No information given

	
	69 83
	Authentication/PIN method blocked

	
	69 84
	Referenced data invalidated

	
	69 89
	Command not allowed - secure channel - security not satisfied

	
	6A 81
	Function not supported

	
	6A 86
	Incorrect parameters P1 to P2

	
	6A 88
	Referenced data not found

	
	6B 00
	Wrong parameter(s) P1-P2

	
	6E 00
	Class not supported

	
	6F XX
	The interpretation of this status word is command dependent, except for SW2 = '00' (Technical problem, no precise diagnosis)

[bookmark: _Toc378597659][bookmark: _Toc385954661]Table 5: Status Words Codes
[bookmark: _Toc388260040]WebAPI Transport Bindings
The specification defines two transport bindings for the CMAPI messages, first based on the WebSocket Protocol and second is based on HTTP.
[bookmark: _Toc378768360][bookmark: _Toc388260041]WebSocket Transport Binding
This section introduces a transport binding for the CMAPI messages defined in section 5.2 using the W3C WebSocket API [W3C_WebSocket] and the underlying Web Socket Protocol [RFC6455] for both request/response and callbacks.
WebSocket provides Web applications with a full-duplex communication channel over a persistent connection. It enables a stream of messages, which is a perfect fit for the message exchange of OpenCMAPI..
[bookmark: _Toc378768361]Design Principle
The nature of modern Web applications is asynchrony. The “WebSocket” interface designed in W3C Web Socket API enables the asynchrony of a Web application over a full-duplex communication channel. Once a “WebSocket” connection object is established with the application server:
· sending a message in a Web application: message from a Web application can be sent to the application server using the “send(data)” method, which is non-blocking and immediately returns to the Web application
· receiving a message in a Web application: a Web application can use a “EventHandler onmessage” event handler to receive and handle messages from the application server.
[bookmark: _Toc378768363][bookmark: _Ref385953557]CMAPI-1 Transport Binding
CMAPI-1 defines normal function calls, which is normally synchronous in native API. The native application makes a function call and waits until the function finishes the communication with the application server and returns the result.
However, in WebSocket API Binding, because of the asynchrony nature of WebSocket interface and the asynchronous way for a Web application to handle sending a message and receiving a message, CMAPI-1 functions are all modelled as asynchronous function calls. It means that all function calls are effectively the same as “_Async()” calls in semantics. The binding details are as follows:
· All CMAPI-1 function signatures are defined in WebIDL in [OpenCMAPI-SUP-WIDL];
· An extra parameter “ResultCallback cb” is added to every function signature so that the Web application can specify a callback function “cb” to receive and handle the response message of the function call from the application server
· “ResultCallback” interface is defined in WebIDL for the callback function “cb” of an asynchronous function call to receive and handle the response message formatted as a JSON-RPC data object “CmapiResponse” defined in section 5.2.1.2 and WebIDL as well.
· When a CMAPI-1 function call is invoked by a Web application, the JavaScript Library that implements the WebSocket API Binding follows the steps in the table below.
	Step 1
	Assign a globally unique transaction “id” for this CMAPI-1 function call (see section 5.2.1.1)

	Step 2
	Construct the JSON-RPC request object, whose format is defined in section 5.2.1.1, based on the transaction “id”, the method and parameters of this CMAPI-1 function call.

	Step 3
	Set up the transaction “id” and callback function “cb” with the event handler of “onmessage” of the “WebSocket” object so that the corresponding “CmapiResponse” data object can be routed to this callback function “cb” according to matching the transaction “id” appropriately (see Section 5.2.1)

	Step 4
	Send the request message of this CMAPI-1 function call to the application server using “send(data)” method of the “WebSocket” object

	Step 5
	Immediately return to the Web application without blocking on waiting for the response message from the application server, which will be received and handled asynchronously.

[bookmark: _Toc378768648][bookmark: _Toc385954662]Table 6: Steps of Handling a CMAPI-1 Function Call
· When a response message from the application server is received by the “WebSocket” object of the JavaScript Library that implements the WebSocket API Binding, the event handler of “onmessage” of the “WebSocket” object is invoked to:
	Step 1
	Construct the “CmapiResponse” JSON-RPC object according to the response message (see section 5.2.1.2).

	Step 2
	Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior request messages.

	Step 3
	If there is a match of transaction “id”, invoke the corresponding callback function “cb” and pass “CmapiResponse” as its parameter.

	Step 4
	If there is no match, handle it in the way defined in section 5.5.1.4.

[bookmark: _Toc378768649][bookmark: _Toc385954663]Table 7: Steps of Handling a CMPI-1 Response Message
· It should be noted that there may be more than one response messages of a CMAPI-1 function call sequentially sent from the application server. Those response messages are in sequence, and may indicate different stages of serving the CMAPI-1 function call in the application server. For example, the stages of a function call request may include “received”, “processing”, “completed” etc in the application server, Those multiple response messages SHALL have the same transaction “id” as that of the original CMAPI-1 function call.

[bookmark: _Toc378768364]CMAPI-2 Transport Binding
CMAPI-2 defines callback functions, which are sent to the client device in the same way as delivering response messages of CMAPI-1 function calls through the “WebSocket” object. In addition, there are two application-initiated function calls to register and unregister callback functions:
· When a Web application registers a callback function, the JavaScript Library that implements the WebSocket API Binding handles this function call in the same way as that of CMAPI-1 function calls. In addition, there is one more step to follow:
	Step 1
	The JavaScript Library sets up the “callbackId” and the callback function “cb” with the event handler of “onmessage” of the “WebSocket” object so that the corresponding “CmapiResponse” data object can be routed to this callback function “cb” according to matching the “callbackId” appropriately (see Section 5.2.2).

[bookmark: _Toc378768650][bookmark: _Toc385954664]Table 8: Extra Step of Handling a Callback Registration
· When a Web application unregisters a callback function, the JavaScript Library that implements the WebSocket API Binding SHALL handle this function call in the same way as that of CMAPI-1 function calls. In addition, there is one more step to follow:
	Step 1
	JavaScript library SHALL remove the prior setup of the “callbackId” and the callback function “cb” with the event handler of “onmessage” of the “WebSocket” object.

[bookmark: _Toc378768651][bookmark: _Toc385954665]Table 9: Extra Step of Handling a Callback Unregistration
When a “WebSocket” object of the JavaScript Library that implements the WebSocket API Binding receives a message from the application server, the event handler of “onmessage” of the “WebSocket” object is invoked to:
	Step 1
	Construct the “CmapiResponse” JSON-RPC object according to the message (see Section 5.2.2).

	Step 2
	Match the transaction “id” of “CmapiResponse” with the list of transaction “id”s of prior CMAPI-1 request messages.

	Step 3
	If there is a match of transaction “id”, handle it in the way defined in Section 5.4.1.2.

	Step 4
	If there is no match:
· If there is a “callbackId” member in “CmapiResponse” with a valid value, match it with the list of registered “callbackIds”.
· If the “callbackId’ is in the list of registered “callbackIds”, invoke the corresponding callback function “cb” and pass “CmapiResponse” as its parameter.
· If the “callbackId’ is not in the list of registered “callbackIds”, call general error handling functions defined in Section 5.4.1.4.
· If there is not a “callbackId” member in “CmapiResponse”, or if the “callbackId” member is empty or invalid value, call general error handling functions defined in Section 5.4.1.4.

	Step 5
	It should be noted that the same type of callback function may be initiated and sent from the server more than once for the changed situation of the same characteristics. Those multiple messages of the same “callbackId” SHALL NOT have the same transaction “id” in order to distinguish those changes.

[bookmark: _Toc378768652][bookmark: _Toc385954666]Table 10: Steps of Handling a Callback
[bookmark: _Toc378768365][bookmark: _Ref385940385][bookmark: _Ref385941278][bookmark: _Ref385944208][bookmark: _Ref385944237][bookmark: _Ref385950668]WebSocket Transport Error Handling
The error handling mechanism SHALL be able to handle those generic errors defined in [JSON-RPC] and CMAPI-specific errors defined in section 5.3
In addition, the following general error conditions will be handled according to operators’ policy.
· In the message from application server, the transaction “id” doesn’t match any transaction “id” of prior CMAPI-1 request messages, and the “callbackId” is either absent or empty or invalid value.
· In the message from application server, the “callbackId” is not in the list of registered CMAPI-2 “callbackIds”.

[bookmark: _Toc388260042]HTTP Transport Binding
This section introduces the transport binding for the CMAPI messages defined in section 5.2 using HTTP for synchronous request /response and HTTP Long Polling used for callbacks.
[bookmark: _Toc319678582][bookmark: _Toc51147387][bookmark: _Toc51149241]General
CMAPI SHALL support HTTP1.1 [RFC2616] for CMAPI-1 and CMAPI-2 interfaces.
Content Type
CMAPI SHALL support messages formatted as entity-bodies with the following content type:
· application/json media type. The application/ json media type is used when a single CMAPI-1 or CMAPI-2 interface message is included in the HTTP request/response.
HTTP Method
CMAPI SHALL send all request messages on CMAPI-1 and CMAPI-2 interface as HTTP POST method requests.
CMAPI-1 HTTP Transport Binding
CMAPI-1 communication between Web applications and a CMAPI is carried out using HTTP POST requests and HTTP responses, with the JSON objects (as specified in section 5.2.1) as data.
CMAPI-2 HTTP Transport Binding
The method for a Web application to receive asynchronous notifications via CMAPI-2 interface about the callbacks the Web application has registered to is based on HTTP requests and often referred to as “HTTP Long Polling” [RFC6202].
When a callback fires a notification is sent to the Web application, i.e. a CMAPI-2 message included in the HTTP message body within the HTTP response to the pending HTTP Long Polling request.
[bookmark: _Ref385940395]HTTP Transport Error Handling
The error handling mechanism SHALL be able to handle those generic errors defined in [JSON-RPC] and CMAPI-specific errors defined in section 5.3.
[bookmark: _Toc244046101][bookmark: _Toc244046102][bookmark: _Toc244046103]When there is no CMAPI message to send in response to an request, CMAPI SHALL send a 204 No Content response. Other allowed status codes, reflecting the outcome of the HTTP POST request, are defined in [RFC2616].
[bookmark: _Toc388260043]Security Considerations
Management of connections is a sensitive operation which can involve secrets and confidential data (i.e. password), so it is recommended to perform CMAPI operations in a secure and authenticated context. CMAPI specifications do not provide the full security features for the secure management operations, provided that underlying layer mechanisms can be employed.

[bookmark: _Toc378768638][bookmark: _Toc388260044]Change History	(Informative)
[bookmark: _Toc44724972][bookmark: _Toc51147388][bookmark: _Toc51149242][bookmark: _Toc378768639][bookmark: _Toc388260045]Approved Version History
	Reference
	Date
	Description

	n/a
	n/a
	No prior version

[bookmark: _Toc44724973][bookmark: _Toc51147389][bookmark: _Toc51149243][bookmark: _Toc378768640][bookmark: _Toc388260046]Draft/Candidate Version 1.1 History
	Document Identifier
	Date
	Sections
	Description

	Draft Versions
OMA-TS-OpenCMAPI_Web_V1_1
	4 Jun 2013
	All
	First baseline document

	
	04 Sept 2013
	All
	Incorporated the following CRs:
OMA-CD-OpenCMAPI-2013-0074R02-CR_TS_WebAPI

	
	01 Jan 2014
	All
	Incorporated the following CRs:
OMA-CD-OpenCMAPI-2013-0085-CR_JSON_API_Management
OMA-CD-OpenCMAPI-2013-0103-CR_JSON_Device_Discovery
OMA-CD-OpenCMAPI-2013-0104-CR_JSON_Cellular_Network_Management
OMA-CD-OpenCMAPI-2013-0105-CR_JSON_Connection_Management OMA-CD- OMA-CD-OpenCMAPI-2013-0106-CR_JSON_Network_Management
OMA-CD-OpenCMAPI-2013-0107-CR_JSON_CDMA2000
OMA-CD-OpenCMAPI-2013-0108-CR_JSON_Device_Service
OMA-CD-OpenCMAPI-2013-0109-CR_JSON__Device_Extended_Service
OMA-CD-OpenCMAPI-2013-0110-CR_JSON_PIN_PUK
OMA-CD-OpenCMAPI-2013-0111-CR_JSON_UICC
OMA-CD-OpenCMAPI-2013-0113-CR_JSON_Statistics
OMA-CD-OpenCMAPI-2013-0114-CR_JSON_Information_Status
OMA-CD-OpenCMAPI-2013-0115-CR_JSON_SMS
OMA-CD-OpenCMAPI-2013-0116-CR_JSON_USSD
OMA-CD-OpenCMAPI-2013-0117-CR_JSON_GNSS
OMA-CD-OpenCMAPI-2013-0118-CR_JSON_Data_Push_Service
OMA-CD-OpenCMAPI-2013-0119-CR_JSON_Contact_Management
OMA-CD-OpenCMAPI-2013-0120-CR_JSON_P2P
OMA-CD-OpenCMAPI-2013-0121-CR_JSON_Router_Management
OMA-CD-OpenCMAPI-2013-0162-CR_CR_JSON_Callback
OMA-CD-OpenCMAPI-2013-0163-CR_CMAPI_WebBinding_Reference
OMA-CD-OpenCMAPI-2013-0166R01-CR_CMAPI_WebBinding_Introduction
OMA-CD-OpenCMAPI-2013-0167-CR_WebBinding_WebSocket
OMA-CD-OpenCMAPI-2013-0168R01-CR_WebBinding_JSONRPC
OMA-CD-OpenCMAPI-2013-0169R01-CR_WebBinding_Appendix_D
OMA-CD-OpenCMAPI-2013-0171-CR_JSON_CB_Registration

	
	30 Jan 2014
	B
	Incorporated CR:
 OMA-CD-OpenCMAPI-2014-0010-CR_WebTS_SCR
Editorial changes

	
	31 Jan 2014
	All
	Editorial changes including changes in accordance with actions:
OpenCMAPI-2014-A001
OpenCMAPI-2014-A002
OpenCMAPI-2014-A003
OpenCMAPI-2014-A005

	
	18 Feb 2014
	All
	Changes according to CONRR comments resolution in OMA-CONRR-OpenCMAPI-V1_1-20140221-D

	
	1 Apr 2014
	All
	Incorporated:
OMA-CD-OpenCMAPI-2014-0017-CR_WebTS_errorcodes
OMA-CD-OpenCMAPI-2014-0020-CR_WebTS_move_JSD_to_SUP
OMA-CD-OpenCMAPI-2014-0021-CR_WebTS_References_Section

	
	22 Apr 2014
	All
	Incorporated:
OMA-CD-OpenCMAPI-2014-0027R01-CR_Resolution_for_some_CONR_comments_to_WebTS

	
	5 May 2014
	5.2, 5.3,
	Incorporated:
OMA-CD-OpenCMAPI-2014-0032R01-CR_Next_WebTS_CONR_comments_resolutions

[bookmark: _Toc84123007][bookmark: _Toc378768641][bookmark: _Toc51147390][bookmark: _Toc51149244][bookmark: _Toc388260047]Static Conformance Requirements	(Normative)
The notation used in this appendix is specified in [SCRRULES].
[bookmark: _Toc378768644]Every API function calls need to be supported by the implementation of the OpenCMAPI. It shall at least support the call of the function and the dedicated generic return value.
But if one the functions is listed as mandatory in one of the following tables the full feature needs to be implemented in the API for the targeted device type.
And if one the functions is listed as Optional in one of the following tables, when implemented then the full feature needs to be implemented in the API for the targeted device type.
[bookmark: _Toc191445495][bookmark: _Toc376868834][bookmark: _Toc388260048]SCR for Mobile Broadband Device
	Item
	Function
	Reference
	Requirement

	OpenCMAPI-MBD-001-M
	Support API Management
	7.2
	

	OpenCMAPI-MBD-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-MBD-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-MBD-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-MBD-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-MBD-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-MBD-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-MBD-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-MBD-009-O
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-MBD-010-O
	Support WLAN APIs
	7.12
	

	OpenCMAPI-MBD-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-MBD-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-MBD-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-MBD-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-MBD-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-MBD-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-MBD-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-MBD-018-O
	Support Device Extented Service APIs
	7.9
	

	OpenCMAPI-MBD-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-MBD-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-MBD-021-O
	Support Wireless Router APIs
	7.21
	

[bookmark: _Toc376868835][bookmark: _Toc388260049]SCR for laptop
	Item
	Function
	Reference
	Requirement

	OpenCMAPI-LAP-001-M
	Support API Management
	7.2
	

	OpenCMAPI-LAP-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-LAP-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-LAP-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-LAP-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-LAP-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-LAP-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-LAP-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-LAP-009-O
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-LAP-010-M
	Support WLAN APIs
	7.12
	

	OpenCMAPI-LAP-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-LAP-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-LAP-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-LAP-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-LAP-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-LAP-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-LAP-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-LAP-018-O
	Support Device Extented Service APIs
	7.9
	

	OpenCMAPI-LAP-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-LAP-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-LAP-021-O
	Support Wireless Router APIs
	7.21
	

[bookmark: _Toc376868836][bookmark: _Toc388260050]SCR for wireless router
	Item
	Function
	Reference
	Requirement

	OpenCMAPI-WIR-001-M
	Support API Management
	7.2
	

	OpenCMAPI-WIR-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-WIR-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-WIR-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-WIR-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-WIR-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-WIR-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-WIR-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-WIR-009-O
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-WIR-010-O
	Support WLAN APIs
	7.12
	

	OpenCMAPI-WIR-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-WIR-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-WIR-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-WIR-014-O
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-WIR-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-WIR-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-WIR-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-WIR-018-O
	Support Device Extented Service APIs
	7.9
	

	OpenCMAPI-WIR-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-WIR-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-WIR-021-M
	Support Wireless Router APIs
	7.21
	

[bookmark: _Toc376868837][bookmark: _Toc388260051]SCR for M2M device
	Item
	Function
	Reference
	Requirement

	OpenCMAPI-M2M-001-M
	Support API Management
	7.2
	

	OpenCMAPI-M2M-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-M2M-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-M2M-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-M2M-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-M2M-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-M2M-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-M2M-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-M2M-009-O
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-M2M-010-O
	Support WLAN APIs
	7.12
	

	OpenCMAPI-M2M-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-M2M-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-M2M-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-M2M-014-O
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-M2M-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-M2M-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-M2M-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-M2M-018-O
	Support Device Extented Service APIs
	7.9
	

	OpenCMAPI-M2M-019-O
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-M2M-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-M2M-021-O
	Support Wireless Router APIs
	7.21
	

[bookmark: _Toc376868838][bookmark: _Toc388260052]SCR for Smart Phone
	Item
	Function
	Reference
	Requirement

	OpenCMAPI-SMA-001-M
	Support API Management
	7.2
	

	OpenCMAPI-SMA-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-SMA-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-SMA-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-SMA-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-SMA-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-SMA-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-SMA-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-SMA-009-M
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-SMA-010-M
	Support WLAN APIs
	7.12
	

	OpenCMAPI-SMA-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-SMA-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-SMA-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-SMA-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-SMA-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-SMA-016-M
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-SMA-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-SMA-018-O
	Support Device Extented Service APIs
	7.9
	

	OpenCMAPI-SMA-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-SMA-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-SMA-021-O
	Support Wireless Router APIs
	7.21
	

[bookmark: _Toc376868839][bookmark: _Toc388260053]SCR for Tablets
	Item
	Function
	Reference
	Requirement

	OpenCMAPI-TAB-001-M
	Support API Management
	7.2
	

	OpenCMAPI-TAB-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-TAB-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-TAB-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-TAB-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-TAB-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-TAB-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-TAB-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-TAB-009-M
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-TAB-010-M
	Support WLAN APIs
	7.12
	

	OpenCMAPI-TAB-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-TAB-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-TAB-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-TAB-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-TAB-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-TAB-016-M
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-TAB-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-TAB-018-O
	Support Device Extented Service APIs
	7.9
	

	OpenCMAPI-TAB-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-TAB-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-TAB-021-O
	Support Wireless Router APIs
	7.21
	

[bookmark: _Toc376868840][bookmark: _Toc388260054]SCR for Cloud Devices
	Item
	Function
	Reference
	Requirement

	OpenCMAPI-CLD-001-M
	Support API Management
	7.2
	

	OpenCMAPI-CLD-002-M
	Support Device Discovery APIs
	7.3
	

	OpenCMAPI-CLD-003-M
	Support Cellular Network Management APIs
	7.4
	

	OpenCMAPI-CLD-004-M
	Support Connection Management APIs
	7.5
	

	OpenCMAPI-CLD-005-M
	Support Network Management APIs
	7.6
	

	OpenCMAPI-CLD-006-O
	Support CDMA2000 APIs
	7.7
	

	OpenCMAPI-CLD-007-M
	Support Device Service APIs
	7.8
	

	OpenCMAPI-CLD-008-M
	Support PINs/PUKs Management APIs
	7.10
	

	OpenCMAPI-CLD-009-M
	Support UICC Management APIs
	7.11
	

	OpenCMAPI-CLD-010-M
	Support WLAN APIs
	7.12
	

	OpenCMAPI-CLD-011-M
	Support Statistics APIs
	7.13
	

	OpenCMAPI-CLD-012-M
	Support Information Status APIs
	7.14
	

	OpenCMAPI-CLD-013-M
	Support SMS Management APIs
	7.15
	

	OpenCMAPI-CLD-014-M
	Support USSD Management APIs
	7.16
	

	OpenCMAPI-CLD-015-O
	Support GNSS APIs
	7.17
	

	OpenCMAPI-CLD-016-O
	Support Data Push Service Management APIs
	7.18
	

	OpenCMAPI-CLD-017-M
	Support Callback APIs
	8
	

	OpenCMAPI-CLD-018-O
	Support Device Extented Service APIs
	7.9
	

	OpenCMAPI-CLD-019-M
	Support Contact Management APIs
	7.19
	

	OpenCMAPI-CLD-020-O
	Support P2P Direct Management APIs
	7.20
	

	OpenCMAPI-CLD-021-O
	Support Wireless Router APIs
	7.21
	

[bookmark: _Toc388260055]Web IDL Definitions 	(Informative)
For the definitions of the WebIDL for the CMAPI WebAPI please refer to [OpenCMAPI-SUP-WIDL].
Place Holder for the Web IDL Definitions including Interface and Method Signatures, Data types that are used by methods or responses, Definitions of Response Types & data structure of callbacks

DELETE THIS COMMENT

[bookmark: _Toc378768645][bookmark: _Toc388260056]JavaScript Library of WebSocket API Binding 	(Informative)

This appendix describes how the JavaScript Library implements the Web API Binding using the methods and event handlers of corresponding Web API, and the details of the JSON-RPC data structure of request and response messages as the Application Data within the underlying Web protocol.

A JavaScript Library implements the Web Socket API Binding using the following algorithm:
· Establishing one and only one persistent “WebSocket” object for a Web application
· Keep the Web Socket connection open unless error happens
· Maintain the list of registered CMAPI-2 “callbackIds” and corresponding callback function “cbs”
· Maintain the list of transaction “ids” and corresponding callback functions “cbs” for outstanding CMAPI-1 function calls
· The validity period of an outstanding CMAPI-1 function call is defined according to operator’s policy in order to handle the possible situation of multiple sequential response messages of the same CMAPI-1 function call. For example, 30 minutes. If it is expired, the transaction “id” and corresponding callback function “cb” shall be removed from the list.
· Handle errors according to section 5.4.1.4.

[bookmark: FootText1][bookmark: FootText2][bookmark: TemplateName] 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-Spec-20130101-I]
 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-Spec-20130101-I]
image1.jpeg

