Doc# Config Framework Usage pa3 kent.doc[image: image2.jpg]
Change Request

Doc# Config Framework Usage pa3 kent.doc
Change Request

Change Request

	Title:
	Config Framework Usage
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CD Push

	Doc to Change:
	OMA-TS-SIP_Push-V1_0-20080416-D

	Submission Date:
	22 April 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Kent Bogestam, Ericsson, kent.bogestam@ericsson.com

	Replaces:
	n/a

1 Reason for Change

Correction initiated by the comments in the consistency review.
The main change in regarding the config framework is the clarification on that we have two types of content.

Content aimed for end user consumption and content aimed for configuration.

Related Review Comments:

B043
B030

B032

B265
2 Impact on Backward Compatibility

non
3 Impact on Other Specifications

n/a
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

To be agreed
6 Detailed Change Proposal

5 End to End Push Service

Within the scope of this specification, the support for end-to-end push services focuses on the relationship between the Push Sender Agent and the Push Receiver Agent. While not limiting the potential types of end-to-end services that can leverage push, there are three types of push objectives that have been considered in the creation of this specification:

· Generic Push: Push is available towards user’s device, asynchronously, whilst the user is registered with the SIP/IP Core network (e.g. used to broadcast content to a large community of users, and for generic “content-to-person” applications);

· “Trusted” Push: for pushing high value, trusted and certified information (e.g. device management/configurations, policies, based on terminal characteristics or user profile and related to application/service/user configuration)

· Selective Push: push can be used to provide content or application-related information in a personalized way, depending on user profile, user preferences or explicit interests, and device capabilities.

To provide options and methods best supporting those types of push, within the context of SIP, multiple mechanisms are defined for SIP Push. The SIP-based content delivery methods leveraged in this specification are based on page-mode messaging, subscription (event notification), and session-mode messaging models.

The SIP-based event subscription mechanism is described in [RFC3265] uses the SIP SUBSCRIBE and NOTIFY methods to allow for asynchronous notification of events during the duration of a subscription. This subscription model, allows for configurations where the actual content can be pushed by the Push Sender Agent using the NOTIFY method or by other methods, such as MESSAGE or INVITE/MSRP,. Subscription is performed by a subscriber entity, which can refresh it periodically, whilst termination can be done either by subscriber or notifier entity. Once created, subscription provides a point-to-point, dedicated channel between Push Sender Agent and the Push Receiver Agent, for the Push Sender to send push content directly or via content indirection (delivery of a content reference only). Because the NOTIFY is a SIP signalling message, the ability to embed content is limited by the maximum size of SIP signalling messages. A “200 OK” response for notifications may be interpreted as delivery notifications from the Push Reciever without requiring extra signalling.

Page-mode messaging through SIP can be provided through the MESSAGE method ([]), which may be more appropriate in some contexts. The MESSAGE method [RFC3428] is an extension to SIP that allows the transfer of messages to the client. Since the MESSAGE reques is an extension to SIP, it inherits all the request routing and security features of that protocol. The MESSAGE request carries the content or content reference (for content indirection) in the form of MIME body parts. Because like NOTIFY, MESSAGE is a SIP signalling message, the ability to embed content is also limited by the maximum size of SIP signalling messages.The MESSAGE requests do not themselves initiate a SIP dialog; under normal usage each MESSAGE stands alone, much like pager messages . Thus, each MESSAGE request is independent and no session states are stored in the system. The push content is carried in a SIP Message body.

Session-mode messaging (also referred to as the INVITE/MSRP method) avoids the limitations on embedded content imposed by SIP MESSAGE and SIP NOTIFY. This limitation is especially acute if the push content is multimedia in nature. To allow arbitrarily large messages, the content is carried by MSRP [Error! Reference source not found.]. A SIP session is established between the interested parties (Push Sender Agent and Push Receiver Agent) with MSRP as the media component. The SIP session can be used to transmit exactly one large message or a number of large messages either parallel or sequentially. The file selection mechanism allows for the Push Receiver Agent to understand ahead of delivery on what is going to be transferred as a number of additional attributes are supported [mmusic-file-transfer].This gives the Push Receiver Agent a possibility to take decisions ahead of delivery and by that save network and terminal capacity.
This specification addresses SIP Push as a reference enabler, in which the requirements of specific end-to-end Push services are not addressed. Future work will address specific OMA enabler use of SIP Push in support of Push services. For example, a new version of the OMA Push enabler may be developed, to take advantage of SIP transport for legacy Push-based and Push-dependent services. In that case, the existing OMA Push architecture entities (Push Proxy Gateway and Push Client) will likely take on the roles of the SIP Push entities (Push Sender Agent and Push Receiver Agent, respectively). The current roles of the OMA Push entities will further be adapted to use of SIP Push as the Push transport protocol, e.g.

· For the Push Proxy Gateway, its primary role as an adapter between Push requests on the network side (via the Push Access Protocol (PAP)) and Push delivery to the Push Client will be extended to include SIP Push as an over-the-air protocol (in addition to the current Push Over-the-Air (Push-OTA) protocol). This may include updates to PAP to expose specific SIP Push related aspects, e.g. use of SIP URIs for Push Target Addressing, or enhancements to Push Quality of Service options for selection of the SIP Push methods to be used.

· For the Push Client, its primary role as a Push message receiver and router inside terminals for Push applications will be extended to include SIP Push as an over-the-air protocol (in addition to Push-OTA). This may include the ability to register and subscribe to Push services on behalf of the Push Application clients present in the terminal.

Change 1: (optional)Brief description of specific change

7.2 SUBSCRIBE/NOTIFY Method (Event Notification)

The SIP-based event subscription mechanism, or SIP event framework, is described in [RFC3265] and allows for asynchronous notification of events during the duration of the subscription. Subscription is performed explicitly by a subscriber entity, also called watcher, which can refresh it periodically, whilst termination of the subscription can be done either by watcher or notifier entity. Once created, subscription provides a dedicated channel between the watcher and notifier entities.

The event subscription mechanism used by SIP Push is based upon the SIPPING Config Framework [SIP_UA_Prof] and the "ua-profile" Event Package that it defines. The use of the Config Framework serves two purposes:

· to inform the Push Sender Agent of device capabilities (its configuration): The subscription mechanism is used after each registration to send the device capabilities to all Push Sender Agents. Those capabilities will be referenced via [OMA-UAProf]. This reference will be sent using the "ua-profile" Event Package (see Appendix B).

· to establish Push Receiver Agent subscriptions to event notifications for configuration-related data: the notifications are the means to deliver push content to the Push Receiver Agent. Due to the intended scope of use for the SIPPING Config Framework, only configuration-related data should be included in the event notifications, i.e. if other data types need to be delivered, another push content delivery method must be used.

The Push Sender Agent and the Push Receiver Agent SHALL support the SUBSCRIBE and NOTIFY methods as stated in [RFC3265] [SIP_UA_Prof]. In particular, the Push Receiver Agent SHALL support the subscriber functionality for some specific push content and SHALL support reception of push content, and the Push Sender Agent SHALL support the notifier functionality to receive subscription requests from Push Receiver Agents and send push information to them.
If the content is aimed for end-user consumption (and not specifically for configuration purposes as described in [SIP_UA_Prof]) it is recommended to be sent via the MESSAGE method or the Session-Mode Messaging model.
The Push Sender Agent and the Push Receiver Agent SHALL support the direct embedding of push content in the NOTIFY method, and content indirection per [RFC4483]. The choice to embed or reference the content is outside the scope of this specification. It may be defined by SIP Push-referencing service enablers, or left as an implementation decision.
The Push Sender Agent MAY decide to grant or reject a subscription request from a Push Receiver Agent. The Push Receiver Agent MAY subscribe to any push application at any time, and for any duration. Subscription policies are outside the scope of this specification. They may be defined by SIP Push-referencing service enablers, or left as an implementation decision.

Based on the design of the SIP event framework, final successful (200 OK) responses to NOTIFY requests may be interpreted as delivery notifications by the Push Sender Agent.
7.2.1 Procedures at the Push Receiver Agent

Push Receiver Agents MAY support use of the SUBSCRIBE/NOTIFY method for SIP Push. Push Receiver Agents that support use of the SUBSCRIBE/NOTIFY method for SIP Push SHALL disclose this capability through: :

· a published User Agent Profile

· inclusion of the NOTIFY method in the method feature tag of the Contact header [RFC3840] as sent in REGISTER

· inclusion of the NOTIFY method in the method feature tag of the Accept-Contact header [RFC3841] as sent in SUBSCRIBE
7.2.1.1 Initial subscription

The Push Receiver Agent SHALL send a SUBSCRIBE request to Push Sender Agents after initial registration, if necessary to subscribe to push events for specific services, e.g. to convey client capabilities or to subscribe to specific events.

The SUBSCRIBE request SHALL be set according to [Error! Reference source not found.] and [Error! Reference source not found.], and the Push Receiver Agent:
1. SHALL include the “oma-app” profile type according to rules and procedures of the “Initial Profile Enrolment” as specified in Appendix B.1.1. Further, it SHALL set the Request-URI to either the user AoR (public SIP URI) identifying the current user, or a SIP URI identifying the Push Sender agent, based on local policy or configuration.
2. MAY insert a P-Preferred-Identity header according to rules and procedures of [RFC 3325].
3. If GRUU [draft-ietf-sip-gruu], is supported, and has been obtained during the registration process, it SHALL be included in the Contact header of the SIP SUBSCRIBE message.
Note: See Section 8.2 for more information on when GRUU is supported.
4. SHALL send the SUBSCRIBE request towards the SIP/IP Core.
5. If a UAProf information is available for a device, the dev-cap parameter SHALL be included

6. If a UAProf information is not available for a device, then the model, vendor, and version parameters SHALL be included.
7.2.1.2 NOTIFY processing

Upon receiving an incoming NOTIFY request that is part of the same dialog as the previously sent SUBSCRIBE request the Push Receiver Agent SHALL handle the request according to [RFC3265], [RFC3841], [SIP_UA_Prof],
If the NOTIFY request was accepted,
· If push content is contained in the body of the NOTIFY request, the Push Receiver Agent SHALL pass the received push content to the targeted push application.

· If the content is indirectly referenced in the NOTIFY request per [RFC4483], the Push Receiver Agent SHALL retrieve the push content at the indicated location, and pass the content to the targeted push application.

· The Push Receiver Agent SHALL generate a response in accordance to [RFC3265] and the procedures of the SIP/IP Core.

7.2.2 Procedures at the Push Sender Agent
7.2.2.1 Initial subscription

Upon receiving a SUBSCRIBE request the Push Sender Agent SHALL follow the steps and procedures in accordance with [RDC3265], [RFC3841], and [SIP_UA_Prof] and Appendix B.1.2 “The Profile Enrollment Confirmation” with the clarifications in the following steps:

1. SHALL return the SIP “489 Bad Event” error response, if the “ua-profile” event package is not supported, as defined in [Error! Reference source not found.RFC3265]. Otherwise perform the following steps.
2. SHALL verify that a P-Asserted-Identity exists according to the procedures of [Error! Reference source not found.RFC3325]. If the authorization check fails, the Push Sender Agent SHALL return the SIP "403 Forbidden" error response,
3. SHOULD store the [OMA-UAProf] link when present and retrieve the associated device capabilities,
4. If no event-app-id value is present in the “oma-app” profile type parameters in the Event header then an IMS Communication Service Identifier MAY be interpreted as the event-app-id value of the “oma-app” profile type,
5. SHALL create a subscription to push application data identified by Event header parameters as described in [Error! Reference source not found.SIP_UA_Prof],
6. SHALL send a SIP “200 OK” in accordance with [Error! Reference source not found.RFC3265], [SIP_UA_Prof], and the procedures of the SIP/IP Core,
7. SHALL generate a Profile Enrollment Confirmation as specified in Appendix B.1.2 “The Profile Enrollment Confirmation”.
7.2.2.2 Delivering content via a NOTIFY

When generating a SIP NOTIFY for content delivery the Push Sender Agent

1. SHALL generate a Content Push as according to rules and procedures in the Appendix B.1.3 Delivering Push Notifications and [Error! Reference source not found.SIP_UA_Prof],

2. SHALL generate a SIP NOTIFY request according to rules and procedures of [Error! Reference source not found.RFC3265]],

3. In the case of a user having multiple registered terminals with a Push Sender Agent, the Push Sender Agent:
a. MAY Enforce a delivery model including a GRUU value according to rules and procedures in [draft-ietf-sip-gruu] in order to select the explicit terminal(s) to set up the communication to.
4. SHALL either embed the content in the NOTIFY, or provide a content reference per [RFC4483],
5. SHALL send the SIP NOTIFY within the context of the existing subscription created by the Push Reciveer Agent according to rules and procedures of the SIP/IP Core.
The responses to the SIP NOTIFY request SHALL be handled in according to rules and procedures of [Error! Reference source not found.RFC3265].

Change 2: Another change

Appendix B. A SIP SUBSCRIBE for the “oma-app” Profile Type

To initiate Profile Enrolment the Push Receiver Agent sends a SIP SUBSCRIBE with the “oma-app” profile type.

B.1.1 Initial Profile Enrollment

During the “oma-app” Profile Enrolment the Push Receiver Agent transmits a SIP SUBSCRIBE, optionally including the specific applications and versions being requested using the "event-app-id" parameter as specified in B.2.2.2. This parameter SHALL be used in SUBSCRIBE requests only when the Event package is set to "ua-profile" and the profile-type header is set to "oma-app".

The Push Receiver Agent MAY add the Push Resource Identifier (see section 9) of each resource that it is interested within to receive updates in by adding the event-app-id parameter of the “oma-app” profile. The event-app-id parameter MAY contain one or more Push Resource Identifiers. If no Push Resource Identifier is specified the event-app-id is omitted.
B.1.1.1 SUBSCRIBE and NOTIFY Examples

Examples 1:
The Push Receiver Agent only subscribes to one resource (app1), and supports UAProf. The Push Sender Agent supports app1.

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;event-app-id="app1";dev-cap= "http://wap.company.com/UAProf/model.xml"

NOTIFY

Event: ua-profile; profile-type=oma-app; event-app-id=”app1”
Examples 2:
The Push Receiver Agent only subscribes to one resource (app1), and does not support UAProf. The Push Sender Agent supports app1.
[image: image1.emf]S

I

P

/

I

P

C

o

r

e

Push

Sender

Agent

EnablerResourceEnabler

Push

Receiver

Agent

Resource

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;event-app-id="app1";vendor= "vendor.example.net";model="Z-phone";version="1.2.3"

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app1”

Examples 3:
The Push Receiver Agent subscribes to multiple resources (app1, app2 and app3), and supports UAProf. The Push Sender Agent supports app1, app2, and app3.

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;event-app-id="app1, app2, app3";dev-cap= "http://wap.company.com/UAProf/model.xml"

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app1”

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app2”

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app3”

Examples 4:
The Push Receiver Agent subscribes to multiple resources (app1, app2 and app3), and does not support UAProf. The Push Sender Agent supports app1, app2.

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;event-app-id=" app1, app2, app3";vendor= "vendor.example.net";model="Z-phone";version="1.2.3"

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app1”

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app2”

Examples 5:
The Push Receiver Agent does not specify any Push Resource Identifier, and supports UAProf.

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;dev-cap= "http://wap.company.com/UAProf/model.xml"

NOTIFY

Event: ua-profile; profile-type=oma-app;

B.1.2 The Profile Enrollment Confirmation

The Push Sender Agent that can accomodate the profile enrollment request SHALL accept the SIP SUBSCRIBE by transmitting a 2xx-class response, and subsequently send a NOTIFY upon a successful SUBSCRIBE as specified in [SIP-UA-Prof].

Push Content MAY be delivered in the NOTIFY, if this is the case, the SIP Push Receiver Agent SHALL process the notification as specified in [SIP-UA-Prof].

When the Push Sender Agent receives a SUBSCRIBE with the “oma-app” profile type and no event-app-id parameter it SHALL NOT include an event-app-id parameter in the response.

If the event-app-id parameter includes one or more Push Resource Identifiers, the Push Sender Agent SHALL respond only with the event-app-id values supported by the Push Sender Agent, using a separate NOTIFY for each event-app-id supported.

B.1.3 Delivering Push Notifications
A successful Profile Enrollment may result in delivery of notifications of content to the Push Receiver Agent.

The Push Sender Agent SHALL use the same format for the Event header as provided in the profile enrollment confirmation..
The Push Sender Agent SHALL include only the targeted Push Resource Identifier in the event-app-id parameter in the NOTIFY.

When there was no event-app-id parameter specified during the Profile Enrollment, the Push Sender Agent SHALL not include any event-app-id parameter in the Event header of the NOTIFY.

B.2 “oma-app” profile-type format

The "profile-type" parameter is used to indicate the token name of the profile type the user agent wishes to obtain data or URIs for and to be notified of subsequent changes. Specifying "device" type profile(s) indicates the desire for the profile data (URI when content indirection is used) and change notification of the contents of the profile that is specific to the device or user agent.

In the following syntax definition using ABNF, EQUAL and token are defined in [RFC3261]. It is to be noted that additional profile types may be defined in subsequent documents.

profile-type = "profile-type" EQUAL profile-value

profile-value = profile-type / token

profile-type = "oma-app"

B.2.1 Event parameters

The following table shows the use of Event header parameters in SUBSCRIBE requests for the “oma-app” Profile Type:

	Event header
	oma-app

	event-app-id
	optional

	dev-cap
	conditional

	model
	conditional

	version
	conditional

	vendor
	conditional

	extension
	optional

Table 1: “oma-app” Parameters in SUBSCRIBE
Push Receiver Agents and Push Sender Agents MAY support extensions to the “oma-app” profile type. Extensions MUST be registered via OMNA. Push Receiver Agents and Push Sender Agents SHALL ignore extensions that they do not support.

The following table shows the use of Event header parameters in NOTIFY requests for the “oma-app” profile type:

	Event header
	oma-app

	event-app-id
	optional

Table 2: “oma-app” Parameters in NOTIFY
B.2.2 Parameter format

A Push Receiver or Sender Agent Shall use the following format for “oma-app”:

In the following ABNF, SEMI,EQUAL and token are defined in [RFC3261].

 OMA-APP = EVENT-APP-ID SEMI DEV-CAP SEMI VENDOR SEMI MODEL SEMI VERSION

 EVENT-APP-ID = “event-app-id” EQUAL event-app-id-list

 DEV-CAP = "dev-cap" EQUAL quoted-string
 ; the quoted-string is a URI, as specified in [OMA-UAProf]

 VENDOR = "vendor" EQUAL quoted-string

 MODEL = "model" EQUAL quoted-string

 VERSION = "version" EQUAL quoted-string

 event-app-id-list = DQUOTE app *("," app) DQUOTE

 app = 1*(%x21 / %x23-2B / %x2D-7E)

 DQUOTE = %x22 ;as per section 6.1 of [RFC2234]

B.2.2.1 Vendor, model, version, dev-cap

The "vendor", "model" and "version" parameter values are tokens specified by the implementer of the user agent. These parameters SHALL be provided in the SUBSCRIBE request for all profile types, if the dev-cap parameter is not supported.

The implementer SHOULD use their DNS domain name (e.g., example.com) as the value of the "vendor" parameter so that it is known to be unique.

These parameters are useful to the Push Sender Agent to affect the service provided. In some scenarios it is desirable to provide different services based upon these parameters. e.g., feature property X in a service may work differently on two versions of the same user agent. This gives the Push Sender Agent the ability to compensate for, or take advantage of, the differences.

The DEV-CAP parameter is a parameter that provides an optional method of getting the device capabilities

When using DEV-CAP Parameter, the "vendor", "model" and "version" parameter SHOULD not be used.

The DEV-CAP Parameter SHOULD use the [OMA-UAProf] reference to the device capabilities..

B.2.2.2 Event-app-id
The event-app-id parameter provides the reference for the Push Sender / Receiver Agent to the requested resources

A SUBSCRIBE MAY include one event-app-id parameter that can contain one or more identifiers to the requested resources. When no identifier is specified, the event-app-id is omitted..

A NOTIFY MAY include one one event-app-id parameter if the SUBCRIBE contained one. The event-app-id in the NOTIFY SHALL contain exactly one identifier to a requested resource.

This document does not define values for event-app-id. These values will be defined and SHALL be registered with OMNA.

Change 3: etc

Modify the Push Content term and add new term to the section 3.2.

	Push Content
	The content being delivered for various purposes e.g. for use by applications, consumption by the end-user, application configuration, etc.

	
	

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

_1264753041.vsd
SIP/IP Core

Push Sender Agent

Enabler

Resource

Enabler

Push Receiver Agent

Resource

