OMA-TS-SIP_Push-V1_0-200806090416-D
Page 9 V(51)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Push using SIP

	Draft Version 1.0 – 09 June 2008

	Open Mobile Alliance

	OMA-TS-SIP_Push-V1_0-20080609-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
9
3.
Terminology and Conventions
10
3.1
Conventions
10
3.2
Definitions
10
3.3
Abbreviations
11
4.
Introduction
12
5.
End to End Push Service
13
6.
Functional Description
15
6.1
Push Sender Agent
15
6.2
Push Receiver Agent
15
7.
Push Operations
16
7.1
SIP MESSAGE Method (Pager mode Messaging)
16
7.1.1
Procedures at the Push Receiver Agent
16
7.1.2
Procedures at the Push Sender Agent
16
7.2
“Void”
17
7.3
SIP INVITE/MSRP Method (Session-Mode Messaging)
20
7.3.1
Procedures at the Push Receiver Agent
20
7.3.2
Procedures at the Push Sender Agent
21
7.3.3
User Plane
22
8.
Registration
24
8.1
Overview
24
8.2
Procedures at Push Receiver Agent
24
9.
Resources and Application Addressing (Normative)
25
9.1
Application Resource Identifier Definition
25
9.1.1
Feature Tag Format
25
9.2
Application Resource Identifier Usage
26
9.2.1
REGISTER
26
9.2.2
SIP MESSAGE
26
9.2.3
SIP INVITE
26
10.
Security
27
10.1
General
27
10.2
Trust Model
27
10.3
SIP Signaling Security
27
10.3.1
Integrity and confidentiality protection
27
10.3.2
Source Origin Authentication
27
Appendix A.
Change History (Informative)
28
A.1
Approved Version History
28
A.2
Draft/Candidate Version 1.0 History
28
Appendix B.
“Voided”
30
Appendix C.
Sample flows (Informative)
35
C.1
Registration
35
C.2
SIP MESSAGE sample flow
37
C.3
SIP INVITE / MSRP Sample Flow
48
Appendix D.
Response Code Interpretation (Informative)
54
Appendix E.
Interoperability with ICSI and IARI (Informative)
55
E.1
Introduction
55
E.2
Examples
55
Appendix F.
SIP/IP Core Network Considerations
57
F.1
3GPP IMS and 3GPP2 MMD Network Architectures
57
F.1.1
Architecture Compliance
57
F.1.2
Registration Procedures
57
F.1.3
Security Considerations
57
Appendix G.
Static Conformance Requirements
58
G.1
Client Conformance Requirements
58
G.2
Server Conformance Requirements
59

Figures

12Figure 1: Push Sender and Receiver Agent

25Figure 2 SIP Push generic model

35Figure 3 Registration and de-registration procedures

37Figure 4 - SIP MESSAGE flow with an example feature tag

49Figure 7: Pushing MSRP Messages

55Figure 8 ICSI, IARI and Application Resource Identifier usage

Tables

54Table 3: Response code interpretation

1. Scope

This specification defines the protocol for delivery of content to a mobile terminal via SIP [RFC3261], referred to as SIP Push. The protocol specified in this document is an application layer protocol that interacts with a SIP/IP core network, such as IMS [IMSArch] to fulfil the Push using SIP service.
The scope of this specification is to specify mechanisms for the following functionality within the architecture identified in [PushSIPArch]

2. References

2.1 Normative References

	[3GPP TS 23.228]
	“IP Multimedia Subsystem (IMS); Stage 2”, 3GPP TS 23.228

	[3GPP TS 33.203]
	“Access Security for IP-based services”, 3GPP TS 33.203

	[3GPP TS 33.210]
	“Network domain security; IP network layer security”, 3GPP TS 33.210

	[3GPP TS 24.229]
	“Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3”, 3GPP TS 24.229

	[3GPP2 X.S0013-002-A]
	“All-IP Core Network Multimedia Domain: IP Multimedia Subsystem - Stage 2”, Revision A, Version 2.0, 3GPP2, 2004

	[3GPP2 X.S0013-004-A]
	“All-IP Core Network Multimedia Domain: IP Multimedia Call Control Protocol Based on SIP and SDP Stage 3”, Revision A, Version 2.0, 3GPP2, 2004

	[3GPP2 S.R0086-0]
	“IMS Security Framework”, 2004

	draft-drage-sipping-service-identification
	"A Session Initiation Protocol (SIP) Extension for the Identification of Services".
NOTE: The referenced IETF draft is a work in progress.

	[draft-ietf-sip-gruu]
	Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) in the Session Initiation Protocol
NOTE: The referenced IETF draft is a work in progress.

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[OMA-UAProf]
	"User Agent Profile", OMA-TS-UAProf-V2_0-20060206-A. URL: http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(.
http://www.openmobilealliance.org/tech/omna

	mmusic-file-transfer
	A Session Description Protocol (SDP) Offer/Answer Mechanism to Enable File Transfer

	[RFC4975]
	Campbell, B., Ed., Mahy, R., Ed., and C. Jennings, Ed., "The Message Session Relay Protocol (MSRP)", RFC 4975, September 2007.

	[RFC4976]
	Jennings, C., Mahy, R., and A. Roach, "Relay Extensions for the Message Session Relay Protocol (MSRP)", RFC 4976, September 2007.

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2183]
	“Communicating Presentation Information in Internet Messages: The Content-Disposition Header Field.” URL:http//www.ietf.org/rfc/rfc2183.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC2506]
	"Media Feature Tag Registration Procedure". Holtman et al. M1999. URL:http://www.ietf.org/rfc/rfc2506.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, Fielding et al, June 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3261]
	"SIP: Session Initiation Protocol". J. Rosenberg et al. June 2002. URL:http://www.ietf.org/rfc/rfc3261.txt

	
	

	[RFC3325]
	“Private Extensions to the Session Initiation Protocol”, C. Jennings, J. Peterson, M. Watson, Nov. 2002

	[RFC3428]
	"Session Initiation Protocol (SIP) Extension for Instant Messaging". B. Campbell et al. December 2002. URL:http://www.ietf.org/rfc/rfc3428.txt

	
	

	[RFC3680]
	Rosenberg, J., “A Session Initiation Protocol (SIP) Event Package for Registrations”, RFC 3680, March 2004.

	[RFC3840]
	“Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)”.J. Rosenberg, H.Schulzrinne, P.Kyzivat, Aug. 2004. URL:http://www.ietf.org/rfc/rfc3840.txt

	[RFC3841]
	“Caller Preferences for the Session Initiation Protocol (SIP)”.J. Rosenberg, H.Schulzrinne, P.Kyzivat, Aug. 2004. URL:http://www.ietf.org/rfc/rfc3841.txt

	[RFC4483]
	E. Burger, Ed., “A Mechanism for Content Indirection in Session Initiation Protocol (SIP) Messages”, RFC 4483, May 2006

	
	

	
	

2.2 Informative References

	[IMSArch]
	"Utilization of IMS capabilities Architecture", OMA-AD-IMS-V1_0-20050204-C URL:http://www.openmobilealliance.org/

	[PushMsg]
	"Push Message Specification". WAP Forum(.
WAP-251-PushMessage. URL: http://www.openmobilealliance.org/

	[PushSIPArch]
	"OMA-AD-SIP_Push_AD-V1_0-20071203-D ", Open Mobile Alliance(. URL:http//www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Application
	An implementation of a related set of functions that perform useful work, often enabling one or more services. It may consist of software and/or hardware elements.

	Application-Level Addressing
	The ability to address Push Content between a particular user agent on a client and push initiator.

	Bearer Network
	A network used to carry the messages of a transport-layer protocol between physical devices.

	Capabilities
	Platform, protocol, or configuration characteristics that a system supports.

	Content
	A digital work e.g. a ringing tone, a screen saver, etc.

	Device
	Device is a network entity that is capable of sending and/or receiving packets of information and has a unique device address. A device can act as either a client or a server within a given context or across multiple contexts. For example, a device can service a number of clients (as a server) while being a client to another server.

	Encoding
	1: The act or method of converting a data object from one format to another. 2: a format of an object resulting from conversion.

	Pull
	A service delivery method in which a client initiates content delivery by requesting content from a server.

	Push
	A service delivery method in which a server initiates content delivery to a client.

	Push Access Protocol
	A protocol used for conveying content that should be pushed to a client, and push related control information, between a Push Initiator and a Push Proxy/Gateway.

	Push Content
	Content, metadata and application level control information that has a shared interpretation by both Push Sender Agents and Push Receiver Agents.

	Push Framework
	Is the entire push system. The push framework encompasses the protocols, service interfaces, and software entities that provide the means to push data to user agents on a client

	Push Initiator
	The entity that originates Push Content and submits it to the push framework for delivery to a user agent on a client

	Push OTA Protocol
	A protocol used for conveying content between a Push Proxy/Gateway and a certain user agent on a client.

	Push Proxy Gateway
	A proxy gateway that provides push proxy services.

	Push Receiver Agent
	Push Receiver Agent is a logical entity that uses the SIP Push procedure to receive Push Content, and generate a response to the Push Sender Agent request.

	Push Sender Agent
	Push Sender Agent is a logical entity that creates a push request, and then uses the SIP Push procedure to send Push Content.

	Server
	An entity that provides resources to clients in response to requests.

	Session Identity
	SIP URI, which identifies a joint state shared between Push Sender and Receiver agents

	User Agent
	Any software or device that acts on behalf of a user, interacting with other entities and processing resources.

	User Plane
	The User Plane includes the media (MSRP) and media control signaling between the Push Sender Agent and the Push Receiver Agent

3.3 Abbreviations

	CPI
	Capability and Preference Information

	HTTP
	Hypertext Transfer Protocol

	IANA
	Internet Assigned Numbers Authority

	IP
	Internet Protocol

	MIME
	Multipurpose Internet Mail Extensions

	MMD
	Multi-Media Domain

	MMS
	Multimedia Messaging Service

	MSISDN
	Mobile Station International Subscriber Directory Number

	MSRP
	The Message Session Relay Protocol

	OMA
	Open Mobile Alliance

	OMNA
	OMA Naming Authority

	OTA
	Over The Air

	PAP
	Push Access Protocol

	PI
	Push Initiator

	PPG
	Push Proxy Gateway

	QoS
	Quality of Service

	RFC
	Request For Comments

	SDP
	A Session Description Protocol

	SI
	Service Indication

	SIP
	Session Initiation Protocol

	SIR
	Session Initiation Request

	SL
	Service Loading

	TCP
	Transmission Control Protocol

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WAP
	Wireless Application Protocol

	XML
	Extensible Mark-up Language

4. Introduction

Push-based service enablers in OMA define the delivery of content to a mobile device utilizing push methods. The SIP Push architecture [PushSIPArch] defines the architectural context of such enablers in SIP-based environments. This specification defines the functions required of the Push Sender and Receiver Agents as defined in [PushSIPArch].

[image: image2.emf]Push

Receiver

agent

Push

Sender

agent

SIP Push

Figure 1: Push Sender and Receiver Agent

In general terms, the functionality defined in this specification will be referred to as “SIP Push”. To implement this specification, it is necessary that the Push Sender and Receiver Agents interface with a SIP/IP Core network [PushSIPArch]. An examples of SIP/IP Core network are the 3GPP IMS [3GPP TS 23.228] and 3GPP2 MMD [3GPP2 X.S0013-002-A] networks.

This specification will also make reference to specific SIP RFCs to further clarify the use of SIP for push service in the context of particular SIP/IP Core network definitions.
This specification encompasses the following:

1. SIP Push Protocol definition, including the push methods: page-mode, and session mode (SIP INVITE/MSRP).
2. Registration of Push Receiver Agents with Push Sender Agents.
3. Application Resource Indentifier.

4. Authentication and authorization for push service.
5.
6. Supporting multi-terminals belonging to the same user in SIP Push service.
5. End to End Push Service

Within the scope of this specification, the support for end-to-end push services focuses on the relationship between the Push Sender Agent and the Push Receiver Agent. While not limiting the potential types of end-to-end services that can leverage push, there are three types of push objectives that have been considered in the creation of this specification:

· Generic Push: Push is available towards user’s device, asynchronously, whilst the user is registered with the SIP/IP Core network (e.g. used to broadcast content to a large community of users, and for generic “content-to-person” applications).

· “Trusted” Push: for pushing high value, trusted and certified information (e.g. device management/configurations, policies, based on terminal characteristics or user profile and related to application/service/user configuration).
· Selective Push: push can be used to provide content or application-related information in a personalized way, depending on user profile, user preferences or explicit interests, and device capabilities.

To provide options and methods best supporting those types of push, within the context of SIP, multiple mechanisms are defined for SIP Push. The SIP-based content delivery methods leveraged in this specification are based on page-mode messaging, and session-mode messaging models.

Page-mode messaging through SIP can be provided through the SIP MESSAGE method ([RFC3428]), which may be more appropriate in some contexts. The SIP MESSAGE method [RFC3428] is an extension to SIP that allows the transfer of messages to the client. Since the SIP MESSAGE request is an extension to SIP, it inherits all the request routing and security features of that protocol. The SIP MESSAGE request carries the content or content reference (for content indirection) in the form of MIME body parts. Because SIP MESSAGE is a SIP signalling message, the ability to embed content is also limited by the maximum size of SIP signalling messages.The SIP MESSAGE requests do not themselves initiate a SIP dialog; under normal usage each SIP MESSAGE is a stands alone transaction, much like pager messages . Thus, each SIP MESSAGE request is independent and no session states are stored in the system. The Push Content is carried in a SIP message body.

Session-mode messaging (also referred to as the SIP INVITE/MSRP method) avoids the limitations on embedded content imposed by SIP MESSAGE. This limitation is especially acute if the Push Content is multimedia in nature. To allow arbitrarily large messages, the content is carried by MSRP [RFC4975]. A SIP session is established between the interested parties (Push Sender Agent and Push Receiver Agent) with MSRP as the media component. The SIP session can be used to transmit exactly one large message or a number of large messages either parallel or sequentially. The file selection mechanism allows for the Push Receiver Agent to understand ahead of delivery on what is going to be transferred as a number of additional attributes are supported [mmusic-file-transfer].This gives the Push Receiver Agent a possibility to take decisions ahead of delivery and by that save network and terminal capacity.
Push Sender Agent is responsible for the delivery method to use, based upon the requirements of the specific Push service being provided.
This specification addresses SIP Push as a reference enabler, in which the requirements of specific end-to-end Push services are not addressed. Future work will address specific OMA enabler use of SIP Push in support of Push services. For example, a new version of the OMA Push enabler may be developed, to take advantage of SIP transport for legacy Push-based and Push-dependent services. In that case, the existing OMA Push architecture entities (Push Proxy Gateway and Push Client) will likely take on the roles of the SIP Push entities (Push Sender Agent and Push Receiver Agent, respectively). The current roles of the OMA Push entities will further be adapted to use of SIP Push as the Push transport protocol, e.g.

· For the Push Proxy Gateway, its primary role as an adapter between Push requests on the network side (via the Push Access Protocol (PAP)) and Push delivery to the Push Client will be extended to include SIP Push as an over-the-air protocol (in addition to the current Push Over-the-Air (Push-OTA) protocol). This may include updates to PAP to expose specific SIP Push related aspects, e.g. use of SIP URIs for addressing the target, or enhancements to Push Quality of Service options for selection of the SIP Push methods to be used.
· For the Push Client, its primary role as a Push message receiver and router inside terminals for Push applications will be extended to include SIP Push as an over-the-air protocol (in addition to Push-OTA). This may include the ability to register and subscribe to Push services on behalf of the Push Application clients present in the terminal.

6. Functional Description

6.1 Push Sender Agent

The Push Sender Agent is an entity that pushes content to the Push Receiver Agent. Push Sender Agents support the following functions:

1. Discovering the Push Receiver Agent through its Registration with the SIP/IP Core.

2. Facilitating Push Receiver Agent subscription to specific Push-based services and application events.

3. Receiving, storing, and sharing the capabilities information of the Push Receiver Agent, such as application type or push characteristics.

4. Selecting the type of push method to the Push Receiver Agent, depending on the supported capabilities and application push request.

5. Creating push request to deliver the content to the Push Receiver Agent.

6. Requesting delivery reports from Push Receiver Agent.

7. Mapping of SIP Push delivery status (e.g. SIP response code) to application level status information for communication to the initiator of the push.
8. If required, in the multi terminal scenarios e.g. the user has registered from more then one terminal with a push sender Agent, the Push Sender Agent may select the explicit terminal(s) to take part of the communication to by using a GRUU value.
The Push Sender Agent SHALL support the P-2 reference point.
NOTE: Unless the Push Sender Agent receives the GRUU prior to any other communication (e.g., reg-event package), it may not be able to contact a specific instance of the device.

6.2 Push Receiver Agent

The Push Receiver Agent is a logical entity that receives Push Content from the Push Sender Agent. It is the responsibility of Push Receiver Agents to pass the received Push Content to the appropriate application. Push Receiver Agent supports the following functions:

1. Registering with a SIP/IP Core.
2. Subscribing to specific Push-based services and application events.

3. Publishing its push capabilities information.
4. Receiving and acknowledging Push Content from Push Sender Agent.
The Push Receiver Agent SHALL supports the P-1 reference point.
7. Push Operations

This section describes three delivery mechanisms for SIP Push. It is the choice of the individual Push Sender Agent to implement and select the appropriate Push method, e.g. based upon the service requirements. Such service-specific method selection criteria are considered outside the scope of SIP Push.
7.1 SIP MESSAGE Method (Pager mode Messaging)
7.1.1 Procedures at the Push Receiver Agent

Push Receiver Agents MAY support use of the SIP MESSAGE method for SIP Push, as specified in [RFC3428]. Push Receiver Agents that support use of the SIP MESSAGE method for SIP Push SHALL disclose this capability through:

1. A published User Agent Profile.
2. Inclusion of the SIP MESSAGE method in the “sip.methods” feature tag of the Contact header [RFC3840] as sent in REGISTER.
Upon receiving an incoming SIP MESSAGE,

1. If an Application Resource Identifier is present, the Push receiver Agent SHALLuse the Application Resource Identifier according to the rules and procedures, as defined in [RFC3841] and section 9.2.

2. If Push Content is contained in the body of the SIP MESSAGE request, the Push Receiver Agent SHALL pass the received Push Content to the targeted push application.

3. If the content is indirectly referenced in the SIP MESSAGE request as specified in [RFC4483], the Push Receiver Agent SHALL retrieves the Push Content at the indicated location, and passes the content to the targeted push application.
4. The Push Receiver Agent SHALL generates a success response in accordance to [RFC3428] and the procedures of the SIP/IP Core.
7.1.2 Procedures at the Push Sender Agent

The Push Sender Agent SHALL generates a SIP MESSAGE request in accordance with [RFC3428] and [RFC3841].

In generating and sending a SIP MESSAGE required:

1. The push message [PushMsg] carried in a SIP message body must be such that the entire SIP MESSAGE SHALL NOT exceeds 1300 bytes as defined in [RFC3428].
2. The Push Sender Agent MAY include an Application Resource Identifier of the application resource e.g. +g.oma.pusheventapp to the accept contact header according to rules and procedures in section 9.2.
3. The Push Sender Agent SHALL set the Request-URI of the SIP MESSAGE request to the public user identity of the intended recipient.
4. The Push Sender Agent SHOULD check the content to send against content-types supported by the Push Receiver Agent as indicated in the Client Capabilities (see Section7.2.2).
5. If the content is to be included in the Push message, the Push Sender Agent SHALL embeds the Push Content in the body of the SIP MESSAGE request.

6. If content indirection is to be applied, the Push Sender Agent SHALL indirectly references the content in the SIP MESSAGE request as specified in [RFC4483].
7. The Push Sender Agent SHALL, in accordance with [3GPP TS 24.229] and [RFC3325], include a P-Asserted-Identity in the header field of the SIP MESSAGE request if the message initiator is trusted by the Push Sender Agent.
8. In the case of a user having multiple registered terminals with a Push Sender Agent, the Push Sender Agent:
a. MAY enforce a delivery model including a GRUU value according to rules and procedures in [draft-ietf-sip-gruu] in order to select the explicit terminal(s) to set up the communication to.
NOTE: The GRUU value of the Push Receiver Agent may be obtained by a Push Sender Agent subscription to the registration event package from the SIP/IP Core.
9. The Push Sender Agent SHALL send the SIP MESSAGE request towards the SIP/IP Core according to the procedures of the SIP/IP Core.
10. The Push Sender Agent SHALL recognizes success responses in accordance to [RFC3428] and the procedures of the SIP/IP Core.
7.2 “Voided”

7.2.1

·
·
·
7.2.1.1

1.
2.
3.

4.
5.
6.
7.2.1.2

·
·
·
7.2.2
7.2.2.1

1.
2.
3.
4.
5.
6.
7.
7.2.2.2

1.
2.
3.
4.

7.2.3

7.2.3.1

1.
2.
a.
b.
c.
i.
3.
a.
4.

7.2.3.2

1.

1.
2.
3.

7.3 SIP INVITE/MSRP Method (Session-Mode Messaging)
When a Push Sender Agent wishes to send a large content without using content indirection, the Push Sender Agent SHALL initiate a MSRP session as described in procedure 7.3.2. Once the MSRP session is established and the message is delivered, Push Sender Agent shall automatically close down the MSRP session as specified in 7.3.1.2.
7.3.1 Procedures at the Push Receiver Agent
Push Receiver Agents MAY support use of the SIP INVITE/MSRP method for SIP Push. Push Receiver Agents that support use of the SIP INVITE/MSRP method for SIP Push SHALL disclose this capability through:

1. A published User Agent Profile.
2. Inclusion of the SIP INVITE method in the “sip.methods” feature tag of the Contact header [RFC3840] as sent in REGISTER.
7.3.1.1 Push Receiver Agent Invited to a MSRP Session

When the Push Receiver Agent receives a SIP INVITE to set up a MSRP session, the Push Receiver Agent:

1. SHALL check if the accept-type attribute of the SDP m line in the SIP INVITE request are supported by the Push Receiver Agent and if not, reject the request with a SIP 488 "Not Acceptable Here" response. Otherwise, continue with the rest of the steps.
2. MAY reject the SIP INVITE request with an appropriate reject code as specified in [RFC3261] e.g. when the Push Receiver Agent determines that there is not enough resources to handle the MSRP Session, or SHALL store as the Session Identity the content of the Contact header as described in [RFC 4579].

3. If an Application Resource Identifier is present, the Push Receiver Agent SHALL use the Application Resource Identifier according to the rules and procedures for the SIP Push implementing enabler.

4. When the Push Receiver Agent receives a SIP INVITE containing a “file-selector” parameter, the Push Receiver Agent SHALL accept from the Push Sender Agent input regarding the file (s) he is willing to accept.
5. SHALL include in the SIP “200 OK” response a SDP body as a SDP answer according to rules and procedures of [RFC3264], [RFC4566] and [RFC4975] and

a. SHALL set the SDP directional media attribute to a=recvonly.
b. MAY indicate the maximum size message they wish to receive using the max-size a-line attribute according to rules and procedures of [RFC4975].

c. MAY add a feature tag +g.oma.pusheventapp to the Accept-Contact header according to rules and procedures of [RFC3841] and section 9.3.
6. SHALL send the SIP 200 "OK" response towards the Push Sender Agent according to rules and procedures of the SIP/IP Core.
7. SHALL include the option tag 'timer' in a Require header.
8. SHALL include the Session-Expires header in the SIP 200 "OK" response to the initial SIP INVITE request or the SIP re-INVITE request within a Pre-established Session and start the SIP Session timer according to rules and procedures specified in [RFC4028].
9. SHOULD include an Allow header with the SIP methods supported in this SIP dialog according to rules and procedures of [RFC3261].
10. SHALL prepare to receive MSRP SEND request as described in [RFC4975].
7.3.1.2 MSRP Session release

Upon reception of a SIP BYE request, the Push Receiver Agent:

1. SHALL generate a 200 “OK” response according to rules and procedures of [RFC3261].
2. SHALL send a 200 “OK” response according to rules and procedures of SIP/IP Core.

3. SHALL release User Plane resources associated with the SIP Session.
7.3.1.3 MSRP Relays
Push Receiver Agents MAY support the use of intermediaries for MSRP sessions, as described in [RFC4976].
Push Receiver Agents that support use of MSRP Relays per [RFC4976] SHALL disclose this capability through a published User Agent Profile.
7.3.2 Procedures at the Push Sender Agent
7.3.2.1 Establishment of a MSRP Session

When the establishment of an MSRP session is needed, the Push Sender Agent:

1. SHALL generate an initial SIP INVITE request as according to rules and procedures of [RFC3261].
2. MAY include an Application Resource Identifier of the application resource e.g. +g.oma.pusheventapp to the Accept-Contact header according to rules and procedures in section 9.3.
3. SHOULD include an Allow header with all supported SIP methods.
4. SHALL include the option tag 'timer' in the Supported header according to rules and procedures RFC 4028.
5. SHOULD include the Session-Expires header with the refresher parameter set to ''uac'' according to rules and procedures of [RFC4028].
6. SHALL set the Request-URI of the SIP INVITE request to the Push Receiver Agent.
7. SHALL include in the SIP INVITE request a MIME SDP body as a SDP offer according to rules and procedures of [RFC3264], [RFC4566] and [RFC4975] and
a. SHALL set the SDP directional media attribute to a=sendonly.
b. MAY add the media attribute to the SDP settings as specified in [mmusic-file-transfer].
c. SHALL support multiple m= lines if more than one file is to be transfered as described in [mmusic-file-transfer].
8. In the case of a user having multiple registered terminals with a Push Sender Agent, the Push Sender Agent:
a. MAY enforce a delivery model including a GRUU value according to rules and procedures in [draft-ietf-sip-gruu] in order to select the explicit terminal(s) to set up the communication to.
9. SHALL send the SIP INVITE request towards the Push Receiver Agent according to rules and procedures of the SIP/IP Core.
On receiving a SIP 200 "OK" response to the SIP INVITE request the Push Sender Agent:

1. SHALL store the list of supported SIP methods if received in the Allow header.
2. SHALL store the Session Identity if received in the Contact header as described in [RFC 4579].
3. SHALL start the Session timer using the value received in the Session-Expires header according to rules and procedures of [RFC4028].
4. SHALL interact with the User Plane as specified in 7.3.3.2.
5. When the 200 OK response for the last MSRP SEND request is received, the Push Sender Agent SHALL close the MSRP session for that particular file transfer by setting the m line to zero i.e. m= 0, according to the procedures defined in section 5.2.1.2.
7.3.2.2 Push Sender Agent canceling a MSRP Session

When the Push Sender Agent wants to cancel the MSRP Session initiation, and the MSRP Session signalling is used as specified in section 7.3.2.1 and the Push Receiver Agent has not yet received a final SIP response for the SIP INVITE request, Push Sender Agent SHALL send a SIP CANCEL according to rules and procedures of [RFC3261].

7.3.2.3 MSRP Session release

When the Push Sender Agent completes MSRP session, Push Sender Agent:
1. SHALL generate a SIP BYE request according to rules and procedures of [RFC3261] if there had been only one MSRP-file or the MSRP-file is the last remaining media stream in the SDP file.
2. SHALL set the Request-URI to the SIP Session Identity of the SIP Session to release.
3. SHALL send a SIP BYE request according to rules and procedures of SIP/IP Core.
If the timer set expires, the Push Sender Agent:

1. SHALL send re-INVITE to set the media line to zero i.e. m= 0 of the MSRP-file that has been transferred, if there is any other media stream than the MSRP-file transfer media stream in the SDP file.
2. In case of multiple media lines for multiple different file transfer , the Push Sender Agent SHALL send the re-INVITE to set to zero i.e. m=0 , of all the media lines corresponding to the MSRP-files that have been transferred.
Upon receiving a SIP 200 "OK" response to the SIP BYE request the Push Sender Agent SHALL release User Plane resources associated with the SIP Session with the Push Receiver Agent.

7.3.2.4 MSRP Relays
Push Sender Agents MAY support the use of intermediaries for MSRP sessions, as described in [RFC4976].

7.3.3 User Plane

7.3.3.1 General

· MSRP Session between end points is negotiated with an Offer and Answer model using Session Description Protocol. These negotiation parameters are carried by SIP Signalling.
· Recommended media parameters to be used in near real-time communication are specified in [3GPP TS 26.141].

7.3.3.2 MSRP Media Session

7.3.3.2.1 Procedures for Originating Client

The Push Sender Agent sends a MSRP Message according to the following procedure:
1. To provide rich description of the Push content when sending multimedia message during an MSRP session, the Push Sender Agent:
a. SHOULD add a Content-Disposition header field according to [RFC2183] to the MSRP SEND request.

b. If the Push Sender Agent does not want the content to be rendered automatically to the receiver, but only on an express action of the receiver, then the sending Push Sender Agent SHALL add a Content-Disposition header field ‘attachment’ according to [RFC2183] to the MSRP SEND request according to rules and procedures of [RFC4975].
2. The Push Sender Agent MAY include Content-Description header field whenever available;
3. To get the confirmation of the MSRP delivery, the Push Sender Agent MAY add a Success-Report header in the MSRP SEND request and set the value to yes.
When the Push Sender Agent has received the corresponding response for the last chunk of the MSRP SEND request, e.g. MSRP 200 response or Success-Report, the Push Sender Agent should close the MSRP session according to [RFC4975].

Upon receipt of an MSRP failure response (e.g. 4XX), the Push Sender Agent:
1. SHALL check whether the corresponding MSRP request contains a failure delivery request, if true the the Push Sender Agent SHALL generate a Failure delivery notification with MSRP REPORT. Otherwise, end the procedures.
7.3.3.2.2 Procedures for Terminating Client

The Push Reciver Agent SHALL checks whether the message contains the request for delivery report. If true, the Push Reciver Agent SHALL send a delivery notification with MSRP REPORT to the initiating Push Sender Agent according to the rules and procedures of [RFC4975].
8. Registration

8.1 Overview

SIP provides a registration function, using the SIP REGISTER request, which allows users to notify SIP/IP core of their availability for specific services. The registration process can also be used by the SIP/IP core to perform authentication and authorization procedures prior to granting network access.

Whenever a Push Receiver Agent performs registration with the SIP/IP core and indicates support for SIP Push, the SIP/IP core can notify the Push Sender Agent via a third-party registration, as specified in [RFC 3261]. Alternatively, the Push Sender Agent can subscribe to the “reg” event package, as specified in [RFC 3680]. For specific SIP/IP Network Architecture Considerations, refer to Appendix F.

8.2 Procedures at Push Receiver Agent

The Push Receiver Agent SHALL register, re-register and de-register to the SIP/IP Core according to rules and procedures of [RFC3261] with the clarifications in the following subsection.

When the Push Receiver Agent registers it performs the following steps:

1. SHALL generate a SIP REGISTER request.
2. MAY include an Application Resource Identifier of each supported push resource in the Contact header as feature tag +g.oma.pusheventapp (see Section 9.1).
3. SHALL include a require header with the option tag “pref” according to rules and procedures of [RFC3840].

4. If the Push Receiver Agent relies on Globally Routable User Agent URIs (GRUU), the Push Receiver Agent:
a. SHALL request a GRUU value during the registration process by including the +sip.instance parameter “Contact header” according to rules and procedures of [draft-ietf-sip-gruu].
Note: Upon successful registration, the SIP/IP returns the GRUU values (temporary and permanent GRUU values). These GRUU values can then be used by the Push Receiver Agent in non-REGISTER requests.
5. When the Push Receiver Agent re-registers, or deregisters it perform the following steps:
a. SHALL generate a SIP REGISTER request.
b. If the client needs to remain registered the Push Receiver Agent SHALL reregisters with the SIP/IP Core without including each of the SIP Push feature-tag.
c. If the client also needs to deregister from the SIP/IP Core, the Push Receiver Agent SHALL send a SIP REGISTER request with an Expires header set to 0.
9. Resources and Application Addressing
(Normative)
9.1 Application Resource Identifier Definition
As described in [SIP Push AD], enablers need to integrate SIP Push specifications to build a service using SIP Push. An Application Resource Identifier is intended to identify the resources (e.g. service access point or enabler-specific application) of implementing enablers. Such resources can be targeted using SIP Push as a content or notification transport mechanism.

Application Resource Identifiers are represented
 as a media feature tag, as specified in section 9.2.

The same format for the value of the Application Resource Identifier, referred to as “app-res-id”.

[image: image4.emf]S

I

P

/

I

P

C

o

r

e

Push

Sender

Agent

Enabler Resource Enabler

Push

Receiver

Agent

Resource

Figure 2 SIP Push generic model
9.1.1 Feature Tag Format
The syntax of the Application Resource Identifier feature tag is name=value.
The Application Resource Identifier SHALL be encoded into a feature tag where:

· The name of the media feature tag [RFC3840] is g.oma.pusheventapp, an object identifier assigned by IANA. When the feature tag is included in a header, it is prefixed with “+”.

· The value of the media feature tag is the “event-app-id” presented as a quoted-string (which may be a comma-separated list) that defines the resource(s).
The syntax of the quoted-string is “event-app-id*("," event-app-id)”, where “event-app-id” = 1*(%x21 / %x23-2B / %x2D-7E).
For example:

In the context of an OMA Push 2.x Service that integrates SIP Push, the Application Resource Identifier could be used to distinguish and route between applications that use the push enabler. If there is an MMS application on top of this Push 2.x service, the “event-app-id” can be the full URN or only the Namespace Specific String of the PUSH Application ID defined by [OMNA], e.g. x-wap-application:mms.ua or only mms.ua. The feature tag in this case is g.oma.pusheventapp =”x-wap-application:mms.ua” or g.oma.pusheventapp =” mms.ua”.

9.1.2 “Voided”

9.2 Application Resource Identifier Usage

9.2.1 REGISTER

The Application Resource Identifier of each supported push application MAY be included as a feature tag in the Contact header of the REGISTER message.
9.2.2 SIP MESSAGE
In delivering push messages through the SIP MESSAGE method the Push Sender Agent MAY add the Application Resource Identifiers as a feature tag in the Accept-Contact header according to rules and procedures in section 7.1.
When receiving a SIP MESSAGE request, the Push Receiver Agent SHALL use the Application Resource Identifier (when present) to route the incoming SIP MESSAGE to the correct application, as specified in section 7.1.
An example usage (sample flow) of the SIP MESSAGE method with feature tag is shown in Appendix C.2.
9.2.3

9.2.4

9.2.5

9.2.6 SIP INVITE
The Push Sender Agent MAY add the Application Resource Identifiers as a feature tag in the Accept-Contact header of the SIP INVITE message according to rules and procedures in section 9.3.
10. Security

10.1 General
The SIP Push enabler SHOULD rely on and reuse security features and mechanisms provided by the underlying SIP/IP Core, to e.g. secure the service environment and authenticate users. Such dependence is assumed as the basis for the security architecture. Access level security mechanisms will be provided by the SIP/IP core network, including user authentication and integrity. The SIP/IP Core SHALL provide confidentiality protection of SIP signalling as defined in [RFC3261].
For Push Receiver Agents implemented on trusted or untrusted network elements, authentication and secure communication channels can be established using intra-network security procedures provided by the SIP/IP core. In certain cases confidentiality of SIP signaling may also be required, e.g., SIP methods such as SIP MESSAGE that contain sensitive profile data.

The Push Sender Agent and the Push Receiver Agent SHALL rely on the authentication and confidentiality mechanisms provided by the underlying SIP/IP Core network to accomplish user identity verification.
Note that the user plane security is not a part of the SIP/IP Core Security. SIP Push implementing enablers must ensure that user plane security is addressed through the options available for the user plane transport protocols, e.g. MSRP, or HTTP (in the case of content redirection).

For applicability to specific SIP/IP core environments please refer to Appendix F. The following sub-sections provide detailed security requirements for the SIP Push enabler.

10.2 Trust Model

The SIP Push trust model for SIP signalling is based on the SIP/IP Core security trust model which SHALL provide hop-by-hop security, proxy authentication, and intra-domain security. When intra-domain security is not sufficient, e.g., the Push Receiver Agent is not part of a trusted network component, and then the SIP/IP core SHOULD provide security mechanisms for authentication and secure communications between the SIP/IP core and the Push Receiver Agent.

It SHALL be possible to assert, by the SIP/IP Core according to [RFC3261], the user identities of the Push Sender Agent when the Push Sender Agent is acting as the originating user agent.
10.3 SIP Signaling Security

The SIP signalling security mechanisms/features described here cover signalling and user messaging using SIP messages.

10.3.1 Integrity and confidentiality protection

Any SIP/IP core used to support the SIP Push enabler SHALL be capable of providing the necessary security mechanisms to enable authentication, integrity protection and confidentiality of SIP signalling between the Push Receiver Agent and the Push Sender Agent. This includes, but is not limited to, credentials, authentication mechanisms, and security protocols.

10.3.2 Source Origin Authentication
Push Receiver Agents and Push Sender Agents SHALL use the security mechanisms provided by the SIP/IP core to ensure source origin authentication. One way to accomplish this is using the P-Asserted-Identity header as specified in [RFC3325]. See Appendix F for examples of SIP/IP core implementations.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-SIP-Push-V0_1
	21 Jul 2005
	-
	From input paper OMA-PUSH-2005-0032; OMA-PUSH-2005-0030; and emails

	OMA-SIP-Push-V0_2
	16 Sep 2005
	6.2 and 6.3
	OMA-PUSH-2005-0043R02-PushUsingSIP-SenderReceiver-Description.zip

	OMA-SIP-Push-V0_3
	19 Oct 2005
	all
	Incorporated OMA-PUSH-2005-0037R02

OMA-PUSH-2005-0039R04

OMA-PUSH-2005-0046R01

OMA-PUSH-2005-0047

OMA-PUSH-2005-0049

OMA-PUSH-2005-0051

OMA-PUSH-2005-0053

OMA-PUSH-2005-0054

	OMA-SIP-Push-V0_4
	17 Apr 2006
	All
	Editorial clean up, and generate a clean version of the document.

	OMA-SIP-Push-V0_4
	17 May 2006
	All
	OMA-PUSH-2006-0004R02

OMA-PUSH-2006-0010R02

OMA-PUSH-2006-0011R02

OMA-PUSH-2006-0012R02

OMA-PUSH-2006-0013R02

OMA-PUSH-2006-0016R01

	OMA-SIP-Push-V0_6
	23 Jun 2006
	
	OMA-PUSH-2006-0022R01

OMA-PUSH-2005-0055R04

	OMA-SIP-Push-V0_7
	12 Apr 2007
	
	Based on OMA-CD-2006-074-Minutes_21Aug2006_Push_Beijing_Meeting

OMA-CD-2006-0014R03

Based on OMA-CD-2006-0101-MINUTES_21Sept2006Push_CC

OMA-CD-2006-0039R01

OMA-CD-2006-0064R01

OMA-CD-2007-0085-INP_SIP_Push_IC0034_Comment_Tracking.doc

- implemented: A001, A002, A003, A007, A008, A012, A013

	OMA-SIP-Push-V0_8
	6 Jun 2007
	
	Editorial: Move section 6.1 and 6.2 to section 6.

Global technical change to reflect +g.oma.icsi.push’;+ g.oma.iari.push.XXX based on contribution -0125R04

OMA-CD-2007-0125R04-CR_SIP_push_service_and_application_addressing.doc

	OMA-SIP-Push-V0_9
	4 Jul 2007
	
	OMA-CD-2007-0124R04-CR_Introducing_INVITE_MSRP_as_push_method.zip

OMA-CD-PUSH-2007-0012-CR_SIP_Push_ClientCapabilitiesWithPresence.doc

	OMA-SIP-Push-V0_10
	10 Sep 2007
	
	OMA-CD-PUSH-2007-0008R02-CR_SIP_Push_Client_Capabilities.doc

OMA-CD-PUSH-2007-0032R02-CR_Update_of_SUBSCRIBE_NOTIFY_Method.doc

OMA-CD-PUSH-2007-0024R04-CR_Definition_of_additional_profile_to_the_sipping_config_framework_package.doc

	OMA-TS-SIP_Push-V1_0
	28 Sep 2007
	All
	Version fixed from V0_10 to V1_0

Editorial fixes:

- Cover page with correct file name and versioning

- History moved to App A and fixed as per template

- 2007 template and styles

- fixed cross-references

	
	14 Nov 2007
	All
	OMA-CD-PUSH-2007-0047-CR_AppID_inconsistency.doc
OMA-CD-PUSH-2007-0061R01-INP_MSRP_Relay.doc
OMA-CD-PUSH-2007-0063R01-INP_SIP_PUSH_Content_Indirection.doc
OMA-CD-PUSH-2007-0024R08-CR_Definition_of_additional_profile_to_the_sipping_config_framework_package.doc
OMA-CD-PUSH-2007-0058R01-INP_AI2007_0001.doc

OMA-CD-PUSH-2007-0064-CR_Device_reference_removal_.doc
OMA-CD-PUSH-2007-0054R03-CR_An_update_to_support_for_CSI_and_ARI_in_SIP_Push_.doc
OMA-CD-PUSH-2007-0068-CR_OMA_TS_SIP_Push_V1_0_20070928_D_left_to_change.doc
OMA-CD-PUSH-2007-0065R02-CR_SCR_in_SIP_Push_.doc.doc

	
	05 Dec 2007
	All
	OMA-CD-PUSH-2007-0085R01-INP_OMA_TS_SIP_Push_V1_0_20071204_D.doc
OMA-CD-PUSH-2007-0077-CR_SIP_Push_TS_Edits.doc (implemented Change #1 and #3 only).

	
	08 Jan 2008
	All
	OMA-CD-PUSH-2007-0060R01-INP_SIP_PUSH_TS_edits.doc

OMA-CD-PUSH-2007-0088R01-CR_Section_9_Rewording.doc

OMA-CD-PUSH-2007-0067R02-CR_ICSI_IARI_usage_example.doc
OMA-CD-PUSH-2007-0082R01-CR_New_figure_for_ICSI_and_IARI_usage.doc

	
	07 Feb 2008
	
	OMA-CD-PUSH-2007-0091R01-CR_Security_chapter_10.doc
OMA-CD-PUSH-2008-0001R02-CR_Example_Consistency.doc
OMA-CD-PUSH-2008-0006-CR_Resolution_AI1012_1.doc
OMA-CD-PUSH-2008-0005R01-CR_Includes_changes_agreed_to_by_the_group_based_on_the_comments_from_CableLabs.doc
OMA-CD-PUSH-2008-0010R02-CR_Update_of_the_REFER.doc

	
	15 Feb 2008
	
	OMA-CD-PUSH-2008-0008R02-CR_CR_SIPPUSH_NewAppendix.doc

OMA-CD-PUSH-2007-0079-R5-CR_Multi_terminals_situation_in_SIP_Push_latest.doc

	
	03 Mar2008
	
	Same as 15 February, 2008 (clean version)

	
	14 Mar 2008
	
	Editorial fixes:

- 2008 template and styles

History Box fixed

	
	11 Apr 2008
	All
	Document updated as per CONRR comments:

 B007: fix occurances of [OMNA]

 B071: fix occurances of NOTE:

 B086: fix double commas, semi-columns, double periods.

	
	
	
	OMA-CD-PUSH-2008-0033R04-CR_Config_Framework_Usage.doc

Appendix B. “Voided”

B.1

B.1.1

B.1.1.1

B.1.2

B.1.3

B.2

B.2.1

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

B.2.2

B.2.2.1

B.2.2.2

Appendix C. Sample flows
(Informative)

C.1 Registration

[image: image5.emf]REGISTER request

200 (OK)

Push

Receiver

Agent

SIP/IP Core

Network

Push Sender Agent

Third-Party

REGISTER request

200 (OK)

Figure 3 Registration and de-registration procedures

· Upon connecting to the SIP/IP Core Network, the Push Receiver Agent will perform the registration procedure as specified in 3GPP [3GPP TS 23.228] and 3GPP2 [3GPP2 X.S0013-002-A], respectively. For de-registration, the same procedures will apply accordingly.

· Upon successful registration procedure and filter information the SIP/IP Core Network generates a third-party REGISTER request and sends it to the Push Sender Agent, when the Push Receiver Agent is authorized to use the service. The same procedures apply for de-registration.
· Upon receipt of the REGISTER request, the Push Sender Agent wills response with 200 (OK).

REGISTER sip:registrar.biloxi.com SIP/2.0

Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Bob <sip:bob@biloxi.com>;tag=456248

Call-ID: 843817637684230@998sdasdh09

CSeq: 1826 REGISTER

Contact: <sip:bob@192.0.2.4>; +g.oma.pusheventapp=" mms.ua”
Expires: 7200

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7

;received=192.0.2.4

To: Bob <sip:bob@biloxi.com>;tag=2493k59kd

From: Bob <sip:bob@biloxi.com>;tag=456248

Call-ID: 843817637684230@998sdasdh09

CSeq: 1826 REGISTER

Contact: <sip:bob@192.0.2.4>

Expires: 7200

Content-Length: 0
C.2 SIP MESSAGE sample flow

[image: image6.emf]Push

Receiver

Agent

SIP/IP Core

Network

Push Sender Agent

MESSAGE

MESSAGE

200 OK

200 OK

Figure 4 - SIP MESSAGE flow with an example feature tag
1. A Push Sender Agent sends a SIP MESSAGE request to the Push Receiver Agent
MESSAGE sip:user2@domain.com SIP/2.0

Via: SIP/2.0/TCP user1pc.domain.com;branch=z9hG4bK776sgdkse

Max-Forwards: 70

P-Asserted-Identity: "John Doe" <sip:john.doe@home1.net>
From: sip:user@PushSenderAgent.domain.com;tag=49583

To: sip:user@PushReceiverAgent.domain.com
Accept-Contact:*; +g.oma.pusheventapp=" mms.ua”
Call-ID: asd88asd77a@1.2.3.4

CSeq: 1 MESSAGE

Content-Type: text/plain

Content-Length: 18

2 Push Receiver Agent returns a 200 OK to Push Sender Agent
SIP/2.0 200 OK

Via: SIP/2.0/TCP proxy.domain.com;branch=z9hG4bK123dsghds;received=192.0.2.1

Via: SIP/2.0/TCP user1pc.domain.com;;branch=z9hG4bK776sgdkse;received=1.2.3.4

From: sip:user@PushReceiverAgent.domain.com;tag=49394

To: sip:user@ PushsenderAgent.domain.com;tag=ab8asdasd9

Call-ID: asd88asd77a@1.2.3.4

CSeq: 1 MESSAGE
Content-Length: 0

C.3

C.4

C.5 SIP INVITE / MSRP Sample Flow

The following example describes how to push content to a user.

In this scenario, the Content will be sent over MSRP to the Push Receiver Agent.

 Push Sender Agent Push Receiver Agent.

 | |

 |(1) (SIP) INVITE |

 |----------------------->|

 |(2) (SIP) 200 OK |

 |<-----------------------|

 |(3) (SIP) ACK |

 |----------------------->|

 | |

 |(4) (MSRP) SEND (chunk) |

 |----------------------->|

 |(5) (MSRP) SEND (chunk) |

 |----------------------->|

 |(6) (MSRP) 200 OK |

 |<-----------------------|

 |(7) (MSRP) 200 OK |

 |<-----------------------|

|

 |

|(8) (MSRP) REPORT |

 |<-----------------------|

 | |

 |(9) (SIP) BYE |

 |----------------------->|

 |(10) (SIP) 200 OK |

 |<-----------------------|

 | |

 | |

Figure 7: Pushing MSRP Messages

One or more messages will be sent to the Push Receiver Agent by MSRP channel. The Push Sender Agent will sends a SIP INVITE request to the SIP/IP core to negotiate with the Push Receiver Agent about establishing MSRP channel. . If the Push Sender want to send more then one file then one m= line is required per file with file descriptor information connected to each of the m lines.
1. The Push Sender Agent sends the SIP INVITE to the Push Receiver Agent. The SIP/IP Core forwards the SIP INVITE" to the Push Receiver Agent (not shown in the picture).
2. The Push Receiver Agent analyses the SDP parameters and returns the agreed parameters by sending a SIP 200 "OK" response to the SIP/IP Core. If the Push Receiver Agent for some reason do not want to reject a file offered by the offerer, it sets the port number of the m= line associated with the file to zero. The SIP/IP Core forwards the SIP 200 "OK" response to the Push Sender Agent (not shown in the picture).
3. The Push Sender Agent acknowledges the SIP 200 “OK” response with a SIP ACK request sent to the SIP/IP Core. The SIP/IP Core forwards the SIP ACK request to the Push Sender Agent (not shown in the picture).
4. The Push Sender Agent send the the first chunk of data in a MSRP SEND request to the Push Receiver Agent using the MSRP channel and the Success-Report header is inserted and set to yes. The MSRP SEND request that will carry the push message as payload.

5. The Push Sender Agent send the the second chunk of data in a MSRP SEND request to the Push Receiver Agent using the MSRP channel. The MSRP SEND request that will carry the push message as payload.

6. The Push Receiver Agent responds with an MSRP 200 “OK” to the first MSRP SEND request to the Push Sender Agent using the MSRP channel.
7. The Push Receiver Agent responds with an MSRP 200 “OK” on the second MSRP SEND request to the Push Sender Agent using the MSRP session. When the Push Sender Agent and the Push Receiver Agent do not need the MSRP session, the Push Sender Agent sends a SIP BYE to SIP/IP Core to disconnect the MSRP session with the Push Receiver Agent.
8. When the complete message was successfully received, the Push Receiver Agent sends a MSRP REPORT as a Success Report was requested.

9. The Push Sender Agent terminates the session by sending a SIP BYE to the Push Receiver Agent. The SIP/IP Core forwards the SIP BYE request to the Push Receiver Agent (not shown in the picture).
10. The Push Sender Agent responds to the Push Receiver Agent with SIP 200 "OK" through the SIP/IP Core. The SIP/IP Core forwards the SIP 200 "OK” to the Push Sender Agent (not shown in the picture).
NOTE: If more than one message is to be sent to the client before step10, the Push Sender Agent will repeat the step 8-10.
File Transfer with SDP offer/answer, modified example from file transfer draft
SIP INVITE request containing an SDP offer for file transfer

 INVITE sip:bob@example.com SIP/2.0

 To: Bob <sip:bob@example.com>

 P-Asserted-Identity: "John Doe" <sip:john.doe@home1.net>
 From: My Sender Agent <sip:bob@push-sender-agent.example.com>;tag=1928301774

 Call-ID: a84b4c76e66710

 CSeq: 1 INVITE

 Max-Forwards: 70

 Date: Sun, 21 May 2006 13:02:03 GMT

 Contact: <sip:bob@push-sender-agent.example.com>
 Accept-Contact:*; +g.oma.pusheventapp="mms.ua”
 Content-Type: application/sdp

 Content-Length: [length of SDP]

 --boundary71

 Content-Type: application/sdp

 Content-Length: [length of SDP]

 v=0

 o=push 2890844526 2890844526 IN IP4 push-sender-agent.example.com

 s=

 c=IN IP4 push-sender-agent.example.com

 t=0 0

 m=message 7654 TCP/MSRP *

 i=This is my latest picture

 a=sendonly

 a=accept-types:message/cpim

 a=accept-wrapped-types:*

 a=path:msrp://push-sender-agent.example.com:7654/jshA7we;tcp

 a=file-selector:name:"My cool picture.jpg" type:image/jpeg

 size:4092 hash:sha-1:72245FE8653DDAF371362F86D471913EE4A2CE2E

 a=disposition: not-render
 a=file-date:creation:"Mon, 15 May 2006 15:01:31 +03:00"

 a=icon:cid:id2@ push-sender-agent.example.com

 --boundary71

 Content-Type: image/jpeg

 Content-Transfer-Encoding: binary

 Content-ID: <id2@ push-sender-agent.example.com>

 Content-Length: [length of image]

 Content-Disposition: icon

 ...small preview icon of the file...

 --boundary71--

From now on we omit the SIP details for the sake of brevity.

The Push Receiver Agent on bob pc receives the SIP INVITE request, inspects the SDP offer, computes the file descriptor and finds a local file whose hash equals the one indicated in the SDP. Push Receiver Agent accepts the file transmission and creates an SDP answer as follows:

 v=0

 o=bob 2890844656 2890844656 IN IP4 bobpc.example.com

 s=

 c=IN IP4 bobpc.example.com

 t=0 0

 m=message 8888 TCP/MSRP *

 a=recvonly

 a=accept-types:message/cpim

 a=accept-wrapped-types:*

 a=path:msrp://bobpc.example.com:8888/9di4ea;tcp

 a=file-selector:name:"My cool picture.jpg" type:image/jpeg size:4092 hash:sha-1:72245FE8653DDAF371362F86D471913EE4A2CE2E

The push sender agent opens a TCP connection to the push receiver agent. The push sender agent then creates an MSRP SEND request request that. This SEND request contains the first chunk of the file.

 MSRP d93kswow SEND

 To-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 From-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 Message-ID: 12339sdqwer

Byte-Range: 1-2048/4385
 Success-Report: yes
 Content-Type: message/cpim

 To: Bob <sip:bob@example.com>

 From: <sip:bob@push-sender-agent.example.com>

 DateTime: 2006-05-15T15:02:31-03:00

 Content-Disposition: not-render; filename="My cool picture.jpg"; creation-date="Mon, 15 May 2006 15:01:31 +03:00"; size=4092

 Content-Type: image/jpeg

 ... first set of bytes of the JPEG image ...

 -------d93kswow+

The Push Sender Agent sends the second and last chunk. Note that MSRP allows to send pipelined chunks, so there is no need to wait for the 200 (OK)response from the previous chunk.

 MSRP op2nc9a SEND

 To-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 From-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 Message-ID: 12339sdqwer

 Byte-Range: 2049-4385/4385

 Content-Type: message/cpim

 ... second set of bytes of the JPEG image ...

 -------op2nc9a$

Bob acknowledges the reception of the first chunk.

 MSRP d93kswow 200 OK

 To-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 Byte-Range: 1-2048/4385

 -------d93kswow$

Bob acknowledges the reception of the second chunk.

 MSRP op2nc9a 200 OK

 To-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 Byte-Range: 2049-4385/4385

 -------op2nc9a$

Bob acknowledges the reception of the complete message as a REPORT was requested

Bob-> The Push Sender Agent (MSRP):

 MSRP dkei38sd REPORT

 To-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp
 Message-ID: 12339sdqwer

 Byte-Range: 1-4385/4385
 Status: 000 200 OK

 -------dkei38sd$

Push Sender Agent terminates the SIP session by sending a SIP BYE request.

Bob acknowledges the reception of the BYE request and sends a 200 (OK) response.

Appendix D. Response Code Interpretation
(Informative)

When the Push Receiver Agent receives a SIP request, it will generate a SIP response. The following Table 3 shows a mapping between SIP response codes to the SIP Push response scenarios. These response scenarios represent an interpretation of SIP response codes and guidance for applications. Unless stated otherwise in this document, response is interpreted according to the rules in the SIP specification [RFC3261], and [RFC3428].

	Scenario
	SIP Push Method
	SIP Response code
	Description

	1
	SIP MESSAGE
	- 200 OK
	Push request accepted

	2
	SIP MESSAGE

	- 400 bad request

- 500 server internal error

- 503 server unavailable

- 603 decline

	Push request rejected without specific causes, retries allowed

	3
	SIP MESSAGE
	- 403 Forbidden

- 604 does not exist anywhere
	Push request rejected without specific causes, no retries

	4
	SIP MESSAGE
	- 408 request timeout
	Push request rejected because the push message cannot be delivered to the intended destination

	5
	SIP MESSAGE
	- 500 Server internal error.
	Push request rejected because the push message is discarded due to resource shortage

	6
	SIP MESSAGE
	- 415 Unsupported media type
	Push request rejected, because the content type cannot be processed

	
	
	
	

Table 3: Response code interpretation
Appendix E. Interoperability with ICSI and IARI
(Informative)

E.1 Introduction

Enablers using this specification to enable push services may be deployed within 3GPP IMS networks. In this case the implementing enabler is considered a communication service which is identified through an IMS Communication Service Identifier (ICSI) within the IMS network.
More than one application of the same type may run over the same communication service. The IMS application reference identifier (IARI) is used to address the application instance. For example it might be possible to use two MMS applications on the same device.

An enabler utilizing SIP Push may itself have different resources (see Section 9.1) which needs to be addressed. It is addressing them by the use of the Application Resource Identifier.

[image: image9.emf]S

I

P

/

I

P

C

o

r

e

ICSI IARI

Application

Resource

Identifier

ICSI IARI

Application

Resource

Identifier

Resource 1

Enabler

(including

Push Sender

Agent)

Enabler

Application 1

Resource 1

Enabler

(including

Push Receiver

Agent)

Enabler

Application 1

Enabler

Application 2

Resource 2

Resource 1

Resource 2

Enabler

Application 2

Figure 8 ICSI, IARI and Application Resource Identifier usage

Only the usage of the Application Resource Identifier is specified in this specification. However, if an enabler is deployed in an IMS environment the ICSI, IARI and Application Resource Identifier may be used together.
E.2 Examples

This simple Example shows the use of ICSI, IARI and the Application Resource Identifier coexistent within one push request utilizing the SIP MESSAGE method. The IARI and the Push Event Id are send as feature tag parameters within the Accept-Contact header. The ICSI is send in the P-Preferred-Service/P-Asserted-Service header.

MESSAGE sip:user2@domain.com SIP/2.0
Via: SIP/2.0/TCP user1pc.domain.com;branch=z9hG4bK776sgdkse
Max-Forwards: 70
P-Preferred-Identity: "John Doe" <sip:john.doe@home1.net>
From: sip:user1@domain.com;tag=49583
To: sip:user2@domain.com
Accept-Contact; +g.ims.app_ref="<urn:urn-xxx:3gpp.application.mmsua >"; + g.oma.pusheventappp=”mms.ua”
Call-ID: asd88asd77a@1.2.3.4
CSeq: 1 MESSAGE
Content-Type: text/plain
P-Preferred-Service: urn:urn-xxx.push
Content-Length: 18

SIP/2.0 200 OK
Via: SIP/2.0/TCP proxy.domain.com;branch=z9hG4bK123dsghds;received=192.0.2.1
Via: SIP/2.0/TCP user1pc.domain.com;;branch=z9hG4bK776sgdkse;received=1.2.3.4
P-Asserted-Identity: "John Doe" <sip:john.doe@home1.net> From: sip:user1@domain.com;tag=49394
To: sip:user2@domain.com;tag=ab8asdasd9
Call-ID: asd88asd77a@1.2.3.4
CSeq: 1 MESSAGE
P-Asserted-Service: urn:urn-xxx.push
Content-Length: 0

Appendix F. SIP/IP Core Network Considerations

The SIP Push Architectural Model, specified in [PUSHSIPArch], specifes the SIP/IP core functional requirements for using SIP Push. Two SIP/IP network architectures that meet these requirements are considered by this version of the document. They include the 3rd Generation Partnership Project (3GPP) IP Multimedia Subsystem (IMS) and the Third Generation Partnership Project 2 (3GPP2) Multimedia Domain (MMD). Additional requirements and considerations for implementing SIP Push within these architectures are specified in the following sub-section. Other SIP/IP Core Network Architectural considerations may be added in the future.

F.1 3GPP IMS and 3GPP2 MMD Network Architectures

Within the context of 3GPP IMS and 3GPP2 MMD networks, SIP Push should be considered as the primary mechanism for push-based services. When the SIP/IP core complies with the 3GPP IMS or 3GPP2 MMD specifications, the following additional requirements and considerations in the following subsections apply.
F.1.1 Architecture Compliance

The Push Sender Agent and Push Receiver Agent SHALL comply with the 3GPP IMS or 3GPP2 MMD requirements, mechanisms and procedures, such as session establishment, according to rules and procedures of [3GPP TS 24.229] and [3GPP2 X.S0013-004-A], respectively. Specifically:

· The P-1 reference point defined for the Push Receiver Agent SHALL conform to the Gm reference point when the Push Receiver Agent is implemented on the UE, or to the ISC reference point when the Push Receiver Agent is implemented on an Application Server, as specified in [3GPP TS 23.228] and [3GPP2 X.S0013-002-A], respectively.
· The P-2 reference point defined for Push Sender Agent shall conform to the ISC reference point as defined in [3GPP TS 23.228] and [3GPP2 X.S0013-002-A], respectively.

F.1.2 Registration Procedures

In order for the Push Sender Agent to be aware of a registration request (SIP REGISTER) from the Push Receiver Agent, when implemented on the UE, the SIP/IP Core Network can initiate a third-party REGISTER request upon receiving a registration request from the Push Receiver Agent. Such third party registrations can be triggered based on a filter criteria set for REGISTER requests that indicate support for SIP Push as specified in [3GPP TS 23.228] and [3GPP2 X.S0013-002-A]. Alternatively, the Push Sender Agent can subscribe to the “reg” event package as specified in [3GPP TS 24.229] and [3GPP2 X.S0013-002-A].

F.1.3 Security Considerations

The 3GPP IMS and 3GPP2 MMD Network Architectures provide for mutual authentication and integrity protection between the Push Receiver Agent (when implemented on a UE) and the Push Sender Agent (if implemented as part of a trusted network element), as well as confidentiality protection of SIP signalling. Access network security requirements to accomplish these are specified for 3GPP IMS and 3GPP MMD in [3GPP TS 33.203] and [3GPP2 S.R0086-0], respectively. Inter- and Intra-domain security procedures for accomplishing secure communication between trusted network elements is specified in [3GPP TS 33.210] for 3GPP IMS and [3GPP2 S.R0086-0] for 3GPP MMD.

Specific requirements are listed below:

· Push Sender Agents (in the role of an Application Server) and Push Receiver Agents (implemented on the UE or as part of an Application Server) in 3GPP IMS networks SHALL comply with all applicable security requirements and procedures, such as mutual authentication, in [3GPP TS 33.203], [3GPP TS 33.210] and [3GPP TS 24.229] for 3GPP IMS, and [3GPP2 S.R0086-0] and [3GPP2 X.S0013-002-A] for 3GPP MMD.
· When the Push Sender Agent, in the role of an IMS Application Server, is not part of a trusted network element (intra-domain security is not sufficient), it SHOULD authenticate and establish secure communications to Proxies or Push Receiver Agent as specified in [3GPP TS 33.210] for 3GPP IMS and [3GPP2 S.R0086-0] for 3GPP MMD.
· It SHALL be possible to assert the Push Sender Agent when it is acting as the originating user agent, by the SIP/IP Core, as specified in [3GPP TS 24.229] and [3GPP2 X.S0013-002-A] for 3GPP IMS and 3GPP2 MMD, respectively.
Appendix G. Static Conformance Requirements

The notation used in this appendix is specified in [IOPPROC].

G.1 Client Conformance Requirements

The table below enumerates the client conformance requirements. A client being a Push Receiver Agent wishes to receive Push Content.
	Item
	Function
	Reference
	Status
	Requirements

	SIPPUSH-PRA-C-001
	Support receive Push Content from the Push Sender Agent
	6.2
	M
	(SIPPUSH-PRA-C-004 OR SIPPUSH-PRA-C-005 OR SIPPUSH-PRA-C-013), AND SIPPUSH-PRA-C-006

	
	
	
	
	

	
	
	
	
	

	SIPPUSH-PRA-C-004
	Support reception of page mode messaging
	7.1
	O
	SIPPUSH-PRA-C009

	
	
	
	
	

	SIPPUSH-PRA-C-006
	Register to the SIP/IP Core network
	8.2
	M
	SIPPUSH-PRA-C008

	SIPPUSH-PRA-C-007
	Support application ID
	9
	O
	

	SIPPUSH-PRA-C008
	SIP REGISTER method
	8.2
	O
	SIPPUSH-PRA-C-007

	SIPPUSH-PRA-C009
	SIP MESSAGE method
	7.1.1
	O
	SIPPUSH-PRA-C-007

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	SIPPUSH-PRA-C013
	 SIP INVITE & MSRP methods
	7.3
	O
	SIPPUSH-PRA-C-007

G.2 Server Conformance Requirements

The table below enumerates the server conformance requirements. A server being a Push Sender Agent wishes to send content.

	Item
	Function
	Reference
	Status
	Requirements

	SIPPUSH-PSA-S-001
	Creating push request to deliver the content to the push receiver agent
	6.1
	M
	SIPPUSH-PSA-S-004, AND
(SIPPUSH-PSA-S-005, OR

SIPPUSH-PSA-S-006, OR

SIPPUSH-PSA-S-012)

	SIPPUSH-PSA-S-002
	Receiving and store the capabilities of push receiver agent
	7.1, and 7.3
	M
	SIPPUSH-PSA-S-003,
SIPPUSH-PSA-S-006

	
	
	
	
	

	SIPPUSH-PSA-S-004
	Supporting Push Receiver Agent registration status
	8.3
	M
	SIPPUSH-PSA-S-007

	SIPPUSH-PSA-S-005
	Support page mode push
	7.1
	O
	SIPPUSH-PSA-S-008

	
	
	
	
	

	SIPPUSH-PSA-S-007
	Support application ID
	9
	O
	

	SIPPUSH-PSA-S-008
	SIP MESSAGE method
	7.1.2
	O
	SIPPUSH-PSA-S-007

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	SIPPUSH-PSA-S-012
	SIP INVITE & MSRP methods
	7.3
	O
	SIPPUSH-PSA-S-007

(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20080101-I]
(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20080101-I]

_1264753041.vsd
SIP/IP Core

Push Sender Agent

Enabler

Resource

Enabler

Push Receiver Agent

Resource

_1274521939.vsd
SIP/IP Core

Push Sender Agent

Enabler

Resource

Enabler

Push Receiver Agent

Resource

_1200866227.vsd
Push Receiver agent

Push Sender agent

SIP Push

_1261229005.vsd
SIP/IP Core

ICSI

IARI

Application Resource Identifier

ICSI

IARI

Application Resource Identifier

Resource 1

Enabler
(including Push Sender Agent)

Enabler Application 1

Resource 1

Enabler (including Push Receiver Agent)

Enabler Application 1

Enabler
Application 2

Resource 2

Resource 1

Resource 2

Enabler Application 2

_1263908496.vsd
�

Push Sender Agent

SIP/IP Core Network

Push Receiver Agent

(3) 202 Accepted

(1) REFER
Refer-To: sip:john.doe@PushSenderAgent.home1.net;method=”SUBSCRIBE”?Event:ua-profile;profile-type=oma-app

(4) 202 Accepted

(2) REFER
Refer-To: sip:john.doe@PushSenderAgent.home1.net;method=”SUBSCRIBE”?Event:ua-profile;profile-type=oma-app

(10) NOTIFY
Event: refer

(11) NOTIFY
Event: refer

(12) 200 Ok

(13) 200 Ok

(5) NOTIFY
Event: refer

(6) NOTIFY
Event: refer

(7) 200 Ok

(8) 200 Ok

(9) Subscription (steps 1-8 of figure 5)�

_1256494522.vsd
MESSAGE

200 OK

Push Receiver Agent

SIP/IP Core Network

Push Sender Agent

MESSAGE

200 OK

_1186457555.vsd
Push Receiver Agent

SIP/IP Core Network

Push Sender Agent

Third-Party
REGISTER request

200 (OK)

REGISTER request

200 (OK)

