Doc# OMA-CD-PUSH-2011-0006-CR_PushREST_flows.doc
Change Request

Doc# OMA-CD-PUSH-2011-0006-CR_PushREST_flows.doc
Change Request

Change Request

	Title:
	PushREST TS Flows
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA CD WG

	Doc to Change:
	OMA-TS-PushREST-V1_0-20110121-D

	Submission Date:
	03 Feb 2011

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bryan Sullivan, AT&T

	Replaces:
	n/a

1 Reason for Change

Update and extend the flows in the TS.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

It is recommended that the WG to discuss and agree the mentioned changes for the PushREST TS.
6 Detailed Change Proposal

Change 1: Update and extend flows
5.3 Sequence Diagrams

This section summarizes various sequence flows for various PushREST cases.

5.3.1 Push message submission and status query
The figure below shows a scenario for submitting a push message and check for delivery status.

The used resources are:

1. To submit a push message, create a new resource using the PUT method

http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId}

2. To get the delivery status of the message, read the resource

http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId}/status

[image: image1.png]
Figure 2 Push message submission and status check
Editor Note: change 200 to “201 Created” in the figures in case of resource creation, and keep the Push Message to be consistent, and get rid of the Ad in the figures.
1. As Push Initiator, an Application requests Push message delivery using PUT for a new resource identified by the initiatorAddress and pushId.

2. The PPG creates the new resource, and confirms Push message acceptance for the pushId.

3. The application requests the delivery status of the Push message created earlier, using GET to the resource URL created earlier.

4. The PPG responds with the delivery status for the Push message.
5.3.2 Push message submission and result notification
The figure below shows a scenario for submitting a push message with request for result notification, and later receiving the notification.
The used resources are:

1. To submit a push message, create a new resource using the PUT method

http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId}

[image: image3.png]
Figure 2 Push message submission and and result notification
1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId, and includes a result notification URL indicating that the application wants to be explicitly informed of the Push Message delivery result.
2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.
3. The PPG completes delivery of the Push message, and sends a result notification to the notification URL indicating that the message was successfully delivered, and further details as applicable (e.g. to which target addresses the delivery was successful).

4. The PI responds with a result notification response confirming receipt of the notification.

5.3.3 Push message submission and replacement using same pushId
The figure below shows a scenario for submitting a push message, and later replacing the push message with another message using the same pushId, prior to delivery completion of the original message.
The used resources are:

1. To submit a push message, create a new resource using the PUT method

http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId}
2. To replace a push message using the same pushId, replace the earlier created resource using the PUT method

http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId}
[image: image4.png]
Figure 2 Push message submission and replacement using same pushId
1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId.
2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.

3. The PI decides to replace the earlier Push Message for all recipients for which delivery has not been completed, and requests Push message replacement using PUT for the same resource URL earlier created for the pushId, and identifying the earlier Push Message resource URL as the message to be replaced.

4. The PPG cancels delivery of the earlier Push Message for all pending target addresses, if possible, and sends a Result Notification if requested by the PI for the earlier Push Message (see section 5.3.2). The PPG replaces the Push Message resource for the pushId with a new Push Message for the pending target addresses only, and confirms acceptance of Push Message replacement for the pushId.

5.3.4 Push message submission and replacement using new pushId
The figure below shows a scenario for submitting a push message, and later replacing the push message with another message with a different pushId, prior to delivery completion of the original message.
The used resources are:

1. To submit a Push Message, create a new resource using the PUT method

http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId1}
2. To replace a Push Message with a new Push Message using a new pushId, create a new resource using the PUT method

http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId2}
[image: image5.png]
Figure 2 Push message submission and replacement using new pushId
1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId.

2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.

3. The PI decides to replace the earlier Push Message for all recipients, and requests Push message replacement using PUT for a new resource URL uniquely identified by the initiatorAddress and the new pushId. The body of the request contains reference that identifies the earlier Push Message resource URL as the message to be replaced.

4. The PPG cancels delivery of the earlier Push Message for all pending target addresses, if possible, and sends a Result Notification if requested by the PI for the earlier Push Message (see section 5.3.2). The PPG creates a new Push Message resource for the new pushId, for all of the target addresses, and confirms acceptance of Push Message replacement for the new pushId.

5.3.5 Push message submission and cancellation

The figure below shows a scenario for submitting a push message and later cancelling it.
The used resources are:

1. To submit a push message, create a new resource using the PUT method

http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId}
2. To cancel the message, delete the resource using the DELETE method
http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId}
[image: image6.png]
Figure 2 Push message submission and cancellation
1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId.

2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.

3. After some time, the application decides to cancel the Push Message created earlier, using DELETE to the resource URL created earlier.

4. The PPG cancels delivery of the earlier Push Message if possible for all pending target addresses and sends a Result Notification if requested by the PI for the earlier Push Message (see section 5.3.2). The PPG responds with confirmation of the Push Message cancellation.

5.3.6 Push message submission and partial cancellation

The figure below shows a scenario for submitting a push message and later cancelling it for some target addresses.
The used resources are:

1. To submit a push message, create a new resource using the PUT method

http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId}
2. To cancel the message for some target addresses, send a Cancel Message request using the POST method
http://{serverRoot}/{apiVersion}/push/{initiatorAddress}/pushMessages/{pushId}/cancel
[image: image7.png]
Figure 2 Push message submission and partial cancellation
1. As Push Initiator, an application requests Push message delivery using PUT for a new resource URL uniquely identified by the initiatorAddress and pushId.

2. The PPG creates the new resource, and confirms Push Message acceptance for the pushId.

3. After some time, the application decides to cancel the Push Message created earlier for some target addresses only. The application sends a Cancel Message request using POST to the resource URL created earlier, indicating the set of addresses for which message delivery should be cancelled.

4. The PPG cancels delivery of the earlier Push Message if possible for all of the indicated target addresses for which delivery is still pending, and sends a Result Notification if requested by the PI for the earlier Push Message (see section 5.3.2). The PPG responds with confirmation of the Push Message cancellation for the indicated target addresses.

5.3.7 Query client capabilities
This figure below shows a scenario for querying the Push client capability information for a target address.

The used resources are:
1. To obtain the client capabilities, send a Client Capability Query request to the resource URL
http://{serverRoot}/{apiVersion}/push/clientCapabilities/{address}
[image: image8.png]
Figure 2: Query client capabilities by Push Initiator

1. The Push Initiator queries the capabilities of the client identified by an address, using GET.

2. The PPG responds with the capabilities of the client.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

