Doc# OMA-STI-2006-0003-Content-Query-Mechanisms.doc[image: image1.jpg]
Input Contribution

Doc# OMA-Template-InputContribution-20060101-I.doc
Input Contribution

Input Contribution

	Title:
	Content Query Mechanisms
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-STI

	Submission Date:
	1 Feb 2006

	Source:
	Andre Bertrand, VoiceAge Networks
+1 514-866-1717 ext 241
andre.bertrand@voiceagenetworks.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution proposes 5 alternatives to support the content query use case. This is to find out the media characteristics of a source file, without asking for a transcoding.
2 Summary of Contribution

The 5 alternatives are as follows:
1. Using the existing TranscodingRequest data structure
2. Creating a new data structure called ContentQueryRequest

3. Creating a new level, namely an operation level
4. Using SOAPAction with the existing structure

5. Using SOAP Headers

3 Detailed Proposal

ALTERNATIVE 1 - Using the existing TranscodingRequest data structure
The idea is to re-use the existing structure to perform a content query. No profileID, transcoding parameters, or target structure are necessary in the request since the idea is only to query the characteristics of a source file.

<TranscodingRequest>
<originatorID>abc</originatorID>

<operationID>def<operationID>

<requestType>contentQuery</requestType> (See Note 1 below)

<transcodingJob>
<jobID>123</jobID>

<extensionData> (property structure(s) come(s) here) </extensionData>
<source>

<contentType> (content type value comes here (note 2)) </contentType>

<location> (location value comes here) </location>

<extensionData> (property structure(s) come(s) here) </extensionData>
</source>

<inputMediaProperties>(inputMediaProperties struc. comes here) </inputMediaProperties>

</transcodingJob>

<extensionData> (property structure(s) come(s) here) </extensionData>
</TranscodingRequest>

Note 1:

a) requestType is the only new parameter, and it is optional.

b) This value is a String, possible values are contentQuery and transcode, default is “transcode”
c) Should we allow to have a transcoding job that is a content query and another transcoding job that is a “real” transcoding job within the same TranscodingRequest ? This may affect the placement of the contentQuery parameter (i.e. within TranscodingRequest or within transcodingJob)
d) Should we allow to have the requestType parameter both at the TranscodingRequest and the transcodingJob levels ?

Note 2:
If we want to re-use the existing structure, then we must specify the content type of the source file since this is a mandatory parameter. If the value entered in the content query is wrong, the actual content type value will be in the content query response from the Transcoding Platform. Alternatively, we could make this parameter optional (or conditional) in STI 1.1.
The following is for TranscodingResponse for the content query:

<TranscodingResponse>

<originatorID>abc</originatorID>

(optional)
<operationID>def<operationID>

(optional)
<mainReturnResult> </mainReturnResult>

(mandatory)
<additionalReturnResult> </additionalReturnResult>

(optional)
<totalDuration> </totalDuration>

(mandatory)
<jobResult>
<jobID>123</jobID>

(mandatory)
<extensionData> (property structure(s) come(s) here) </extensionData>

 (optional)
<mainReturnResult> </mainReturnResult>

(mandatory)
<additionalReturnResult> </additionalReturnResult>

(optional)
<inputMediaProperties>(inputMediaProperties struc. comes here) </inputMediaProperties>

</jobResult>

<extensionData> (property structure(s) come(s) here) </extensionData>

(optional)
</TranscodingResponse>

Notes:
3) There are no new parameters in the TranscodingResponse in order to support the content query (other than the inputMediaProperties structure introduced in the contribution 2005-0106).

4) Even though inputMediaProperties is optional in the structure, it would appear in the response of a content query (unless there had been an error).

5) If we want to re-use the existing structure, then we must specify the mainReturnResult both at the TranscodingResponse and the jobResult levels, as well as the totalDuration and the jobID since these are all mandatory parameters.

ALTERNATIVE 2 - Creating a new data structure called ContentQueryRequest
The content query request XML would be as follows:

<ContentQueryRequest>

<originatorID>abc</originatorID>

<operationID>def<operationID>

<queryJob>
<jobID>123</jobID>

<extensionData> (property structure(s) come(s) here) </extensionData>
<source>

<location> (location value comes here) </location>

<extensionData> (property structure(s) come(s) here) </extensionData>
</source>

</queryJob>

<extensionData> (property structure(s) come(s) here) </extensionData>
</ContentQueryRequest>

The content query response XML would be as follows:

<ContentQueryResponse>

<originatorID>abc</originatorID>

(optional)

<operationID>def<operationID>

(optional)

<mainReturnResult> </mainReturnResult>

(mandatory)
<additionalReturnResult> </additionalReturnResult>

(optional)
<queryJobResult>
<jobID>123</jobID>

(mandatory)
<extensionData> (property structure(s) come(s) here) </extensionData>

 (optional)
<mainReturnResult> </mainReturnResult>

(mandatory)
<additionalReturnResult> </additionalReturnResult>

(optional)
<inputMediaProperties>(inputMediaProperties struc. comes here) </inputMediaProperties>

</queryJobResult>

<extensionData> (property structure(s) come(s) here) </extensionData>

(optional)
</ContentQueryResponse>

Questions:

1. Do we need all these extensionData parameters ?

2. Should we allow more than one query job per ContentQueryRequest ? (I think yes)

3. Do we need the return results at the ContentQueryResponse level, or just at the queryJobResult level ?

ALTERNATIVE 3 - Creating a new level, namely an operation level
In SOAP terms, we don’t currently use an operation, or the operation is implicit: “transcode” and the data structure is called “TranscodingRequest” with the corresponding “TranscodingResponse”. We could define the next level of abstraction (after the data structure), which is the operation. The operation is defined so that the Web service knows how to interpret the data and what, if any, data is to be returned in the response.
With the new transcode operation, the equivalent STI 1.0 transcoding request would look as follows:

<Transcode>

<TranscodingRequest>

(existing data structure)

…
</TranscodingRequest>

</Transcode>

With the new transcode operation, the equivalent STI 1.0 transcoding response would look as follows:

<Transcode>

<TranscodingResponse>

(existing data structure)

…
</TranscodingResponse>

</Transcode>
With the new content query operation, a content query request would look as follows:

<ContentQuery>

<TranscodingRequest>

(existing data structure)

…
</TranscodingRequest>

</ContentQuery>

With the new content query operation, a content query response would look as follows:

<ContentQuery>

<TranscodingResponse>

(existing data structure)

…
</TranscodingResponse>

</ContentQuery>
Note:

6) To ensure compatibility, the Transcoding Platform implementation can be made to understand the original TranscodingRequest and the new Transcode and ContentQuery operations directly under the SOAP body. The implementation can also use the WSDL to know what to expect (all 3 possibilities can be included officially in the WSDL).

ALTERNATIVE 4 - Using SOAPAction with the existing structure
This alternative makes use of the SOAPAction HTTP header to carry the information that a request is a content query request.

The following is a transcoding request with the new “contentQuery” string specified in the SOAPAction HTTP header:
POST /MMSTrRequest HTTP/1.1

Host: mmsc.host.com:80

Content-Type: multipart/related; boundary=<boundary_string>; type=text/xml; start=”<soap-part>”

SOAPAction: “contentQuery”

--<boundary_string>

Content-type: text/xml; charset=”utf-8”

Content-Length: ###

Content-Id: <soap-part>

Content-Transfer-Encoding: 8bit

<?xml version="1.0" encoding="UTF-8"?>

<env:Envelope xmlns="http://www.openmobilealliance.org/schema/sti/v1_1" xmlns:env=http://schemas.xmlsoap.org/soap/envelope/>

<env:Body>
<TranscodingRequest>

Note:
7) As per WS-I Basic Profile 1.1 specification, “a receiver must not rely on the value of the SOAPAction HTTP Header to correctly process the (SOAP) message”. Also, the SOAPAction HTTP Header will not be continued as a mandatory header in SOAP 2.0. For these reasons, this alternative should not be considered (in case the STI specification ever moves to SOAP 2.0). It was included here just for completeness.

ALTERNATIVE 5 - Using SOAP Headers

This alternative makes use of a SOAP Header to carry the information that a request is a content query request (i.e. the operation).

Since a header is an optional part of a SOAP message, the mustUnderstand attribute should be used.
By default, without any SOAP Headers, the request would be a “normal” transcoding request as in STI 1.0. If a content query request is desired, then the “contentQuery” SOAP Header would be included as follows in the request:

…

<env:Envelope xmlns="http://www.openmobilealliance.org/schema/sti/v1_1" xmlns:env=http://schemas.xmlsoap.org/soap/envelope/>

<env:Header>

<contentQuery

 xmlns=http://www.openmobilealliance.org/schema/sti/v1_1

 env:mustUnderstand=”1”>

</contentQuery>

</env:Header>

<env:Body>
<TranscodingRequest>

…

Alternatively, to request a transcoding, a “transcode” SOAP Header could also be included as follows in the request:

…

<env:Envelope xmlns="http://www.openmobilealliance.org/schema/sti/v1_1" xmlns:env=http://schemas.xmlsoap.org/soap/envelope/>

<env:Header>

<trancode

 xmlns=http://www.openmobilealliance.org/schema/sti/v1_1

 env:mustUnderstand=”1”>

</transcode>

</env:Header>

<env:Body>
<TranscodingRequest>

…

Notes:

8) This is similar to alternative 3 but the operation is specified in the SOAP Header instead of within the SOAP body.
9) The reason why requestType is not used is to make it possible to define the operation directly within the WSDL. Only the name of a SOAP Header can be specified, not specific values in it.

Overall comments and considerations:

1. Alternative 2 is cleaner than alternative 1, but we need to define a new data structure, but alternative 1 is a transcoding request for which no transcoding is requested !

2. Choosing alternative 2 or 3 would mean some changes and addition to our AD document and the XSD, and probably the creation of the STI 1.1 WSDL (which is needed anyway for testing purposes).

3. Using any method will necessitate changes to the spec text, the UML diagrams, the parameter tables, the examples, the XSD, and new error and warning codes. These will come in separate contributions after the group has decided on the mechanism.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

VoiceAge Networks proposes these alternatives for discussion within the STI group.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

