Doc# OMA-STI-2006-0003R03-Content-Query-Mechanisms.doc[image: image1.jpg]
Input Contribution

Doc# OMA-STI-2006-0003R02-Content-Query-Mechanisms.doc
Input Contribution

Input Contribution

	Title:
	Content Query Mechanisms
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-STI

	Submission Date:
	4 Avr 2006

	Source:
	Andre Bertrand, VoiceAge Networks
+1 514-866-1717 ext 241
andre.bertrand@voiceagenetworks.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	OMA-STI-2006-0003R02-Content-Query-Mechanisms

1 Reason for Contribution

This contribution proposes 5 alternatives to support the content query use case. This is to find out the media characteristics of a source file, without asking for a transcoding.
R01 - At the Paris face to face meeting, alternatives 2, 4, and 5 were rejected (See details below)

R02 – During the March 7th conf call, there was a slight preference for option 1. Also, there was a new proposal from Mobixell, see comment #7, at the end of the contribution.

R03 – yet a new proposal is combine alternative 2 and alternative 3. This is deemed the most appropriate solution from a standard point of view.
2 Summary of Contribution

The remaining 3 alternatives are as follows:
1. Using the existing TranscodingRequest data structure
2. Creating a new data structure called ContentQueryRequest

3. Creating a new level, namely an operation level
4. Using SOAPAction with the existing structure

5. Using SOAP Headers
6. Combination of Alternative #2 and #3

Reasons for rejecting alternatives 2, 4, and 5:

Alternative 2 is not an option because it introduces unnecessary work without adding any value.

Alternative 4 is not an option because the SOAPAction header will not be continued as a header in SOAP 2.0 and therefore the option is not future proof.

Alternative 5 is not an option because we prefer to keep the information within the SOAP body instead of using SOAP headers.
For details about Alternative 6, see in section 3 below.
3 Detailed Proposal

ALTERNATIVE 1 - Using the existing TranscodingRequest data structure
The idea is to re-use the existing structure to perform a content query. No profileID, transcoding parameters, or target structure are necessary in the request since the idea is only to query the characteristics of a source file.

<TranscodingRequest>
<originatorID>abc</originatorID>

<operationID>def<operationID>

<requestType>contentQuery</requestType> (See Note 1 below)

<transcodingJob>
<jobID>123</jobID>

<extensionData> (property structure(s) come(s) here) </extensionData>
<source>

<contentType> (content type value comes here (note 2)) </contentType>

<location> (location value comes here) </location>

<extensionData> (property structure(s) come(s) here) </extensionData>
</source>

<inputMediaProperties>(inputMediaProperties struc. comes here) </inputMediaProperties>

</transcodingJob>

<extensionData> (property structure(s) come(s) here) </extensionData>
</TranscodingRequest>

Note 1:

a) requestType is the only new parameter, and it is optional.

b) This value is a String, possible values are contentQuery and transcode, default is “transcode”
c) Should we allow to have a transcoding job that is a content query and another transcoding job that is a “real” transcoding job within the same TranscodingRequest ? This may affect the placement of the contentQuery parameter (i.e. within TranscodingRequest or within transcodingJob)
d) Should we allow to have the requestType parameter both at the TranscodingRequest and the transcodingJob levels ?

Note 2:
If we want to re-use the existing structure, then we must specify the content type of the source file since this is a mandatory parameter. If the value entered in the content query is wrong, the actual content type value will be in the content query response from the Transcoding Platform. Alternatively, we could make this parameter optional (or conditional) in STI 1.1.
The following is for TranscodingResponse for the content query:

<TranscodingResponse>

<originatorID>abc</originatorID>

(optional)
<operationID>def<operationID>

(optional)
<mainReturnResult> </mainReturnResult>

(mandatory)
<additionalReturnResult> </additionalReturnResult>

(optional)
<totalDuration> </totalDuration>

(mandatory)
<jobResult>
<jobID>123</jobID>

(mandatory)
<extensionData> (property structure(s) come(s) here) </extensionData>

 (optional)
<mainReturnResult> </mainReturnResult>

(mandatory)
<additionalReturnResult> </additionalReturnResult>

(optional)
<inputMediaProperties>(inputMediaProperties struc. comes here) </inputMediaProperties>

</jobResult>

<extensionData> (property structure(s) come(s) here) </extensionData>

(optional)
</TranscodingResponse>

Notes:
3) There are no new parameters in the TranscodingResponse in order to support the content query (other than the inputMediaProperties structure introduced in the contribution 2005-0106).

4) Even though inputMediaProperties is optional in the structure, it would appear in the response of a content query (unless there had been an error).

5) If we want to re-use the existing structure, then we must specify the mainReturnResult both at the TranscodingResponse and the jobResult levels, as well as the totalDuration and the jobID since these are all mandatory parameters.

ALTERNATIVE 2 - Creating a new data structure called ContentQueryRequest
The content query request XML would be as follows:

<ContentQueryRequest>

<originatorID>abc</originatorID>

<operationID>def<operationID>

<queryJob>
<jobID>123</jobID>

<extensionData> (property structure(s) come(s) here) </extensionData>
<source>

<location> (location value comes here) </location>

<extensionData> (property structure(s) come(s) here) </extensionData>
</source>

</queryJob>

<extensionData> (property structure(s) come(s) here) </extensionData>
</ContentQueryRequest>

The content query response XML would be as follows:

<ContentQueryResponse>

<originatorID>abc</originatorID>

(optional)

<operationID>def<operationID>

(optional)

<mainReturnResult> </mainReturnResult>

(mandatory)
<additionalReturnResult> </additionalReturnResult>

(optional)
<queryJobResult>
<jobID>123</jobID>

(mandatory)
<extensionData> (property structure(s) come(s) here) </extensionData>

 (optional)
<mainReturnResult> </mainReturnResult>

(mandatory)
<additionalReturnResult> </additionalReturnResult>

(optional)
<inputMediaProperties>(inputMediaProperties struc. comes here) </inputMediaProperties>

</queryJobResult>

<extensionData> (property structure(s) come(s) here) </extensionData>

(optional)
</ContentQueryResponse>

Questions:

1. Do we need all these extensionData parameters ?

2. Should we allow more than one query job per ContentQueryRequest ? (I think yes)

3. Do we need the return results at the ContentQueryResponse level, or just at the queryJobResult level ?

ALTERNATIVE 3 - Creating a new level, namely an operation level
In SOAP terms, we don’t currently use an operation, or the operation is implicit: “transcode” and the data structure is called “TranscodingRequest” with the corresponding “TranscodingResponse”. We could define the next level of abstraction (after the data structure), which is the operation. The operation is defined so that the Web service knows how to interpret the data and what, if any, data is to be returned in the response.
With the new transcode operation, the equivalent STI 1.0 transcoding request would look as follows:

<Transcode>

<TranscodingRequest>

(existing data structure)

…
</TranscodingRequest>

</Transcode>

With the new transcode operation, the equivalent STI 1.0 transcoding response would look as follows:

<Transcode>

<TranscodingResponse>

(existing data structure)

…
</TranscodingResponse>

</Transcode>
With the new content query operation, a content query request would look as follows:

<ContentQuery>

<TranscodingRequest>

(existing data structure)

…
</TranscodingRequest>

</ContentQuery>

With the new content query operation, a content query response would look as follows:

<ContentQuery>

<TranscodingResponse>

(existing data structure)

…
</TranscodingResponse>

</ContentQuery>
Note:

6) To ensure compatibility, the Transcoding Platform implementation can be made to understand the original TranscodingRequest and the new Transcode and ContentQuery operations directly under the SOAP body. The implementation can also use the WSDL to know what to expect (all 3 possibilities can be included officially in the WSDL).

ALTERNATIVE 6 - Creating a new level (operation level) and creating a new data structure for Content Query (this is a combination of alternative 2 and 3)
The rest of Alternative 6 is shown without change bars to make it easier to read.
With the new transcode operation, the equivalent STI 1.0 transcoding request would look as follows:

<Transcode>

<TranscodingRequest>

(existing data structure)

…
</TranscodingRequest>

</Transcode>

With the new transcode operation, the equivalent STI 1.0 transcoding response would look as follows:

<Transcode>

<TranscodingResponse>

(existing data structure)

…
</TranscodingResponse>

</Transcode>
With the new content query operation, a content query request would look as follows:

<ContentQuery>

<ContentQueryRequest>

(new data structure)

…
</ContentQueryRequest>

</ContentQuery>

With the new content query operation, a content query response would look as follows:

<ContentQuery>

<ContentQueryResponse>

(new data structure)

…
</ContentQueryResponse>

</ContentQuery>
Notes:
10) The details of the ContentQueryRequest and the ContentQueryResponse would be as shown in Alternative 2 above, not repeated here.

11)
What we have used up to now in STI is only a data structure for one implicit operation that we may call "transcode". What solution #1 is proposing is to add a new field in that data structure to define the operation to perform. So we are trying to reuse the same data structure for two different (but related) operations that do not really need exactly all the same fields. For the contentQuery operation, many fields in our data structure are irrelevant (for example, the transcoding parameters).
Also, from a WSDL (Web Services Definition Language) perspective, the STI 1.0 specification represents only a data structure with an implicit operation. It would also have been possible to explicitly define that operation (transcode), especially if we need to define additional operations as we now need. So defining a new level of XML elements in the STI SOAP message that represents the operation(s) to perform is the proper way to do it in Web Services and with WSDL.
Defining a new level to specify an operation also gives us the possibility to add other operations in the future. Each operation can have their own data structure or reuse all or part of existing ones. In solution #3, we have proposed to reuse the same data structure for the new contentQuery operation as for the transcode operation. This was to simplify the solution, but creating a new data structure more specific to Content Query as suggested in Alternative #6 is better.
Another advantage in having a different data structure for each operation allow us more flexibility in the future to change the data structure for one operation without affecting other operations. With solution #1, what if you need new fields for contentQuery in the future that have nothing to do with the transcode operation?
To summarize, here are the advantages of Alternative #6:

· More appropriate according to the Web Services and WSDL philosophy
· Allow different data structure for each operation, limiting effect on other operations when one is modified
· Easier to add new operations in the future
· Can send multiple operations in the same SOAP Message (same request)
12) It is possible to create the STI 1.1 WSDL to be compatible with STI 1.0 transcoding requests (i.e. without the operation) as well as STI 1.1 transcoding requests and content query requests (i.e. with the operation)
Overall comments and considerations:

1. Alternative 3 is cleaner than alternative 1, since alternative 1 is a transcoding request for which no transcoding is requested ! As a standard, I am not sure whether this is acceptable.
2. Choosing alternative 3 would mean some changes and addition to our AD document and the XSD, and probably the creation of the STI 1.1 WSDL (which is needed anyway for testing purposes).

3. Using any method will necessitate changes to the spec text, the UML diagrams, the parameter tables, the examples, the XSD, and new error and warning codes. These will come in separate contributions after the group has decided on the mechanism.
4. If we want to have the flexibility to send both transcoding jobs and query jobs within the same request, than alternative 1 is preferable.

5. With both alternatives, it is possible to request the media properties in addition to requesting transcoding (in the same request).
6. Regarding issues with backward compatibility, the problem may lie in the namespace used in each STI request, not necessarily with the decision between the 2 above alternatives. If it is not possible to have an STI 1.1 server accept requests that contain the STI 1.0 namespace (and vice-versa), then backward compatibility will not be possible (and the new spec should be called 2.0 !)
7. Would it be possible to have another name for the same structure ? ContentQuery with exactly the same structure as TranscodingRequest, i.e. starting with originatorID, etc ?

<ContentQuery>

<originatorID>abc</originatorID>

<operationID>def<operationID>

<transcodingJob>
<jobID>123</jobID>

So we would have both TranscodingRequest and ContentQuery with exactly the same structure, similar to “property” being used by codecParam, contentTypeParam, etc. I’m not sure this is possible.
(Even though this is technically possible since we are using “Complex Types”, we could name a new element “ContentQuery” and declare it to be of the same type as TranscodingRequest. However, we would be left with a very confusing request called ContentQuery, but which includes all kinds of transcoding parameters which are irrelevant to the request. This is similar to Alternative one which is a transcoding request for which we are requesting no transcoding. It is VoiceAge Networks’ opinion that neither this nor Alternative #1 should be used, but rather Alternative #6 should be used.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

VoiceAge Networks proposes these alternatives for discussion within the STI group.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

