OMA-STI-V1_0-20041128-D
Page 55 V(69)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Standard Transcoding Interface Specification

	Draft Version 1.0 – 28 November 2004

	Open Mobile Alliance

	OMA-STI-V1_0-20041128-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
9
4.
Introduction (Informative)
10
5.
Transcoding Interface (Normative)
11
5.1
Interface Overview
11
5.1.1
Architecture
11
5.1.2
Protocol choice
11
5.1.3
Data types
12
5.1.4
Transactions structure and elements
12
5.1.5
Content attachments
16
5.1.6
Transcoding Profiles, Parameters, Policies and Adaptation Classes
17
5.1.7
Overall UML Diagram
20
5.2
Request Transaction
22
5.2.1
High-level Format
22
5.2.2
Request Body
24
5.2.3
Supported Media Types
28
5.2.4
Content Types and Codecs
29
5.2.5
Transformations
30
5.2.6
TranscodingParams structure
32
5.3
Response Transaction
42
5.3.1
Successful Response Transaction – high-level overview
42
5.3.2
Failure Response Transaction - High-level Overview
44
5.3.3
Transaction Response –Detailed Structure
48
5.3.4
Return Codes
50
6.
Charging (Informative)
54
Appendix A.
Change History (Informative)
55
A.1
Approved Version History
55
A.2
Draft/Candidate Version 1.0 History
55
Appendix B.
Policy (Informative)
56
Appendix C.
Content Type and Codec Examples (Informative)
58
C.1
Audio
58
C.2
Video
58
C.3
Image
59
C.4
Text
59
C.5
Multipart
59
Appendix D.
Example of Adaptation Classes (Informative)
61
D.1
MMS Major/Minor
61
D.2
Web Browsing Adaptation Classes
61
Appendix E.
Static Conformance Requirements (Normative)
63
E.1
Client Conformance Requirements
63
E.2
Server Conformance Requirements
65

Figures

11Figure 1
Transcoding transaction

13Figure 2
Two configurations of the STI Request Transaction structure within a HTTP POST Request

14Figure 3
Transcoding Job structure

15Figure 4
Response Transaction structure

15Figure 5
Job Result structure

16Figure 6
Example of Multipart Format

21Figure 7
Overall UML Diagram

22Figure 8
STI Request Transaction structure

33Figure 9
Transcoding Params UML Diagram

44Figure 10
Response Transaction Structure

47Figure 11
A failed transaction within a SOAP Fault

Tables

24Table 1: Request Transaction - Detailed Structure

28Table 2: Supported Media Types

29Table 3: Content Type Parameters

29Table 4: Codecs

30Table 5: Codec Parameters

30Table 6: Transformations

34Table 7: Transcoding Parameters - Detailed Structure

48Table 8: Response Transaction - Detailed Structure

50Table 9: Informational Codes (1000-1999)

51Table 10: Success / Warning Codes (2000-2999)

52Table 11: Client Error codes (4000-4999)

53Table 12: Server Error Codes (5000-5999)

56Table 13: Policy Parameters

1. Scope

This document presents the normative and informative elements of a transcoding interface between the Transcoding Platform and the Multimedia Application Platforms. The primary purpose of the interface is to request transcoding of media Content files based on specified transcoding parameters, User Equipment capabilities and Application policies and to return the corresponding transcoded media files.

The notion of “Content adaptation” or “transcoding” in this document refers to the transformation and manipulation of Content (images, audio, video, text, presentation…etc.) to meet the desired targets (defined by the terminal capabilities and the application needs). Those adaptations include: media format transcoding, scaling, re-sampling, file size compression…etc.

The document describes a number of interface exchange examples and proposes syntax and semantics for the first OMA STI specification.

2. References

2.1 Normative References

	[3GPP]
	TS 26.233: End-to-end transparent streaming service; General description

TS 26.234: Transparent end-to-end transparent streaming service; Protocols and codecs

TS 26.244: Transparent end-to-end transparent streaming service; 3GPP file format (3GP)

TS 26.246: Transparent end-to-end transparent Packet-switched Streaming Service (PSS); 3GPP SMIL language profile

TS 26.140: Multimedia Messaging Service (MMS); Media formats and codes

TS 23.140: Multimedia Messaging Service (MMS); Functional description; Stage 2
http://www.3gpp.org/ftp/Specs/html-info/26-series.htm
The specifications will be relative to 3GPP Rel. 6.

TR 21.905: Vocabulary for 3GPP Specifications; 3GPP System Aspects; Rel. 5

	[3GPP2]
	C.P0045-0: MMS Media Formats and Codecs

C.P0050-0: File Formats for Multimedia Services Stage 3

	[CHARSET]
	Character Sets, http://www.iana.org/assignments/character-sets

	[HTTP]
	HTTP v1.1 – RFC 2616, http://www.w3.org/Protocols/rfc2616/rfc2616.html

	[IOPPROC]
	"OMA Interoperability Policy and Process", Open Mobile Alliance™, OMA-IOP-Process-V1_1, http://www.openmobilealliance.org/

	[MIME]
	MIME Part 1, Format of Internet Message Bodies – RFC 2045, http://www.ietf.org/rfc/rfc2045.txt
MIME Part 2, Media Types – RFC 2046, http://www.ietf.org/rfc/rfc2046.txt
MIME Part 3, Message Header Extensions for Non-ASCII-Text – RFC 2047, http://www.ietf.org/rfc/rfc2047.txt
MIME Part 4, Registration Procedures – RFC 2048, http://www.ietf.org/rfc/rfc2048.txt
MIME Part 5, Conformance Criteria and Examples – RFC 2047, http://www.ietf.org/rfc/rfc2049.txt
MIME Multipart/Related Content-Type – RFC 2387, http://www.ietf.org/rfc/rfc2387.txt

	[MMS 1.2]
	OMA MMS v1.2 conformance document, Open Mobile Alliance™, OMA-MMS-CONF-v1_2, http://www.openmobilealliance.org

	[OMA MWS Guidelines]
	“OMA Web Services Enabler (OWSER): Core Specifications”, Open Mobile Alliance™, OMA-OWSER-Core-Specification-V1_0, http://www.openmobilealliance.org

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2392]
	“Content-ID and Message-ID Uniform Resource Locators”, E. Levinson, August 1998, URL: http://www.ietf.org/rfc/rfc2392.txt

	[SDP]
	SDP, Session Description Protocol – RFC 2327, http://www.ietf.org/rfc/rfc2327.txt

	[SMIL]
	“Synchronized Multimedia Integration Language (SMIL 2.0)”, W3C Recommendation 07 August 2001, URL: http://www.w3.org/TR/smil20/

	[TCP]
	Braden, R., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC 1122, October 1989.

Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981

	[UAProf]
	WAP User Agent Profiling, http://www1.wapforum.org/tech/documents/WAP-248-UAProf-20011020-a.pdf

	[UTF-8]
	UTF-8, a transformation format of ISO 10646 – RFC 2279, http://www.ietf.org/rfc/rfc2279.txt

	[WAPWSP]
	"Wireless Application Protocol, Wireless Session Protocol Specification", WAP-203-WSP-20000504-a, WAP Forum(. URL: http://www.openmobilealliance.org.

	[WSI-1]
	Web Services Interoperability Organization, http://www.ws-i.org/

	[WS-I Attachment Profile 1.0]
	Web Services Interoperability, Attachment Profile, Version 1.0,

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-06-11.html

	[WS-I Basic Profile 1.1, Draft]
	Web Services Interoperability, Basic Profile 1.1,

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-06-11.html

	[XML]
	XML Media Type – RFC 2279, http://www.ietf.org/rfc/rfc2376.txt

	[XML Schema Part 2: Datatypes]
	“XML Schema Part 2: Datatypes”, W3C Recommendation 02 May 2001, http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

2.2 Informative References

None.

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Application Platform
	Combination of hardware and software that provide the functionality of an application. Note that rather than implementing all components to provide the functionality of an application the implementation can integrate the necessary components from other platforms.

	Content
	Subject matter or information that is processed, stored, or transmitted electronically. It includes such things as text, presentation, audio, images, video, etc. Content may have properties such as media type, mime type, etc.

	Job Result
	Part of the Response Transaction that corresponds to one individual transcoding, i.e. one transcoded content (which may contain one or more media elements) and the parameters corresponding to the particular transcoding as returned to the Application Platform

	Multipart Content
	A set of media elements that can be transcoded as a whole, in a single transcoding job

	Policy
	A set of rules that are specified by the Application Platform to the Transcoding Platform, that can be used to give general limitations and preferences as well as specific variations of the transcoding parameters up to the transcoding job granularity.

	Profile
	Set of parameters and constraints that define the transcoding target. Those parameters come from the User Equipment characteristics, combined with the specific Application needs and describe the format, resolution, file size…etc. that the transcoded Content should conform to.

	Request Body
	List of Transcoding Jobs.

	Request Transaction
	Transcoding request, as issued by the Application Platform. The Request Transaction can contain one or more Transcoding Job(s) and one or more content attachment(s)

	Response Body
	List of Job Results.

	Response Transaction
	Transcoding Platform response that can contain the results of one or more Transcoding Job(s), i.e. parameters and, optionally, content attachments.

	Terminal Equipment
	Equipment that provides the functions necessary for the operation of the access protocols by the user. A functional group on the user side of a user-network interface.

	Transcoding Job
	Part of the Request Transaction that corresponds to one individual transcoding, i.e. one input content (which may contain more media elements in case of multipart content) and the parameters corresponding to the particular transcoding as given by the Application Platform.

	Transcoding Platform
	Combination of hardware and software that provide transcoding functionality.

	Transcoding Service

	Functionality for transcoding of Content offered as a service to an application.

	User Equipment

	A device allowing a user access to network services. For the purpose of OMA specifications the interface between the UE and the network is the radio interface

3.3 Abbreviations

	13k
	or QCELP or Q13: QualComm Code Excited Linear Predictive Coding at 13k

	AAC
	Advanced Audio Coding

	AAC-LC
	Advanced Audio Coding – Low Complexity

	AMR
	Adaptive Multi Rate

	AMR-NB
	Adaptive Multi Rate - Narrow Band

	AMR-WB
	Adaptive Multi Rate - Wide Band

	ASCII
	American Standard Code for Information Interchange

	BMP
	Bit Map

	DRM
	Digital Rights Management

	EVRC
	Enhanced Variable Rate Coder

	FTP
	File Transfer Protocol

	GIF
	Graphics Interchange Format

	GIF 87a/89a
	GIF with animations

	HTTP
	HyperText Transfer Protocol

	JPEG
	Joint Photographic Experts Group

	JPEG-P
	Joint Photographic Experts Group – Progressive

	MIDI
	Musical Instrument Digital Interface

	MIME
	Multipurpose Internet Mail Extension

	MM
	Multimedia Message

	MMS
	Multimedia Messaging Service

	MMSC
	Multimedia Messaging Service Center

	MPEG
	Moving Picture Experts Group

	MP3
	MPEG-1 Audio Layer 3

	OMA
	Open Mobile Alliance

	PC
	Personal Computer

	PDA
	Personal Digital Assistant

	PNG
	Portable Network Graphics

	Q13
	or 13k or QCELP: QualComm Code Excited Linear Predictive Coding at 13k

	QCELP
	or 13k or Q13: QualComm Code Excited Linear Predictive Coding at 13k

	RFC
	Request For Comments

	SDP
	Session Description Protocol

	SMIL
	Synchronized Multimedia Integration Language

	SMV
	Selectable Mode Vocoders

	SOAP
	Simple Object Access Protocol

	SP-MIDI
	Scalable Polyphony - Musical Instrument Digital Interface

	SVG
	Scalable Vector Graphics

	TCP
	Transmission Control Protocol

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	UTF
	Unicode Translation Format

	WAP
	Wireless Application Protocol

	WBMP
	Wireless Bit Map

	XML
	eXtensible Mark-up Language

4. Introduction

(Informative)

The deployment of multimedia applications (MMS, WAP (2), e-mail, web browsing… etc.) may require some Content adaptations, due to the diversity of the phone specifications (memory, screen size, resolution, colour depth…etc. and supported media formats) and of the media formats as distributed by the Content industry (JPEG, GIF, all AMR modes, 13K vocoder, EVRC, MPEG-1, MPEG-4, H.263…etc.).

Content Adaptation is largely independent on the type of service that delivers the data to the end-users.

STI 1.0 is the first specification of a standard interface between the Multimedia Application Platforms and the Transcoding Platform and is meant to resolve some of the integration and testing problems when deploying multimedia services towards mobile devices.

This document describes a proposal for the standard interface, to be used for OMA STI 1.0.

5. Transcoding Interface
(Normative)

5.1 Interface Overview

5.1.1 Architecture

Figure 1 provides a high level overview of the interaction between an Application Platform and a Transcoding Platform
.

[image: image2.wmf]Transcode

Application

Platform

Transcoding

Platform

Request

Response

Figure 1
Transcoding transaction
The communication between the Application Platform and the Transcoding Platform SHALL be transactional, that is, a transcoding session is always a request followed by a response. A session is closed only when a response has been received. The Application Platform requests transcoding from the Transcoding Platform. The Transcoding Platform receives the request, parses it, handles it and generates a response to the originating Application Platform.

Note:

This figure shows two separate logical entities – The Application Platform and the Transcoding Platform. These entities may share the same physical machine, or even be parts of the same software.

5.1.2 Protocol choice

The interface between the Application Platform and the Transcoding Platform SHALL rely on SOAP 1.1 over HTTP(S) (according to the SOAP guidelines as defined in the [OMA MWS Guidelines], section 6)..

The SOAP request SHALL be sent as the body of a HTTP(S) POST request, as defined in SOAP 1.1 [OMA MWS Guidelines].

The SOAP response SHALL be sent as a body of the HTTP(S) POST response.

Both the request and the response SHALL contain a single SOAP envelope, conformant with SOAP 1.1 [OMA MWS Guidelines].

The attachment structure SHALL be conformant to the definition of SOAP with attachments [OMA MWS Guidelines] but the recommended ‘start parameter’ SHALL be compulsory, to permit more robust error detection.

5.1.3 Data types

The datatypes of the STI parameters used in this specification are defined in the section “Built-in datatypes” of [XML Schema Part 2: Datatypes] specification by the W3C, as adapted by SOAP 1.1 [OMA-MWS-Guidelines]. The datatypes discussed there are computer representations of well known abstract concepts such as integer and date.

Following are informative examples of built-in dataypes. For their full definition refer to [XML Schema Par 2: Datatypes]:

· nonNegativeInteger represents the standard mathematical concept of the non-negative integers.

· string represents character strings in XML, i.e. the set of finite-length sequences of characters.

· token represents tokenized strings, i.e. strings that do not contain the line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces.

Wherever applicable, STI implementations SHALL use the canonical lexical representation of these datatypes, as defined in [XML Schema Par 2: Datatypes].

Following are informative examples of the canonical lexical representation of built-in dataypes. For their full definition refer to [XML Schema Par 2: Datatypes]:

· The canonical representation for integer is defined by prohibiting certain options from the Lexical representation. Specifically, the preceding optional "+" sign is prohibited and leading zeroes are prohibited: so ‘+00012’ becomes ‘12’

· The canonical representation for unsignedLong is defined by prohibiting certain options from the Lexical representation. Specifically, leading zeroes are prohibited: so ‘0000321323’ becomes ‘321323’

5.1.4 Transactions structure and elements

5.1.4.1 Request Transaction

Figure 2 shows an overview of the request components. Multiple bulk transcoding within a single Request Transaction is allowed by the proposed interface: therefore we will distinguish between Transcoding Job (individual media transcoding) and Request Body, which can contain one or several Jobs as part of one single request to the Transcoding Platform.

For each single Transcoding Job within a Request Body, the transcoding parameters, if any, SHALL be specified within the SOAP context. In case a Transcoding Job contains the Content files themselves, they SHALL be attached inside the HTTP(S) POST message, but outside the SOAP envelope.

The figure shows two configurations for the STI Request Transaction structure within a HTTP POST Request. The first one is a HTTP Request with a MIME Multipart body containing the SOAP Message and the content attachments in each part of the body. The second is a HTTP Request with a simple xml body which is the SOAP Message containing the STI Request. In this request there are no content attachments, but rather references to external content items.

[image: image3.wmf]HTTP POST Request

HTTP Headers

SOAP-Envelope

SOAP Header

SOAP Body

STI Request Body

HTTP MIME Multipart Body

Content Attachment 1

Content Attachment M

. . .

Transcoding Job 1

Transcoding Job N

. . .

HTTP POST Request

HTTP Headers

SOAP-Envelope

SOAP Header

SOAP Body

STI Request Body

HTTP Body

Transcoding Job 1

Transcoding Job N

. . .

Figure 2
Two configurations of the STI Request Transaction structure within a HTTP POST Request

Note:

The SOAP Header (first part of the SOAP Envelope) is not mandatory.

SOAP provides a flexible mechanism for extending a message in a decentralized and modular way without prior knowledge between the communicating parties. Typical examples of extensions that can be implemented as SOAP header entries are authentication, transaction management, payment etc. SOAP also defines a few attributes that can be used to indicate who should deal with a feature and whether it is optional or mandatory. Refer to the SOAP guidelines as defined in the [OMA MWS Guidelines], section 6 for more details.
Each Transcoding Job in a Request Body SHALL contain source and target parameters, as presented in Figure 3.

Figure 3
Transcoding Job structure

For a complete list of the parameters of the transcoding job structure, please refer to section 5.2.2
The proposed Request Transaction structure supports all the Content types within the scope of STI 1.0: images, audio, video, text, presentation formats and multipart.

5.1.4.2 Response Transaction

The Response Transaction (response of the Transcoding Platform to the Request Transaction) SHALL contain the Jobs Results (the Transcoding Jobs’ results), as presented in Figure 4.

Figure 4
Response Transaction structure

In this Response Body, parameters either concern the whole Transaction or the individual Transcoding Jobs’ results. For example, the total duration parameter corresponds to the complete Transaction duration. In the Job Results, there are parameters describing the particular transcoding that was performed (e.g. the specific job’s return code, return message, duration).

The proposed interface supports reporting of statistical data gathered during the transcoding at the Job and Transaction levels.

The Job Results contained in the Transaction are detailed in Figure 5.

Figure 5
Job Result structure
For a complete list of the parameters of the job result structure, please refer to section 5.3.3
5.1.4.3 Source and Target Dependencies

The Source block of each Transcoding Job MAY specify the source type, format and parameters.

The Target block of each Transcoding Job SHALL specify the desired transcoding parameters and/or capability profile information and MAY specify a URL for Policy parameters.

5.1.4.4 Support for multipart Transcoding

The proposed interface also supports transcoding jobs having multipart Content, i.e. a set of media elements can be transcoded as a whole.

In this case, it is expected that the Transcoding Platform receives a multipart file, performs combined transcoding of the different media elements (including any logical decisions between the different media elements) and recombines the elements into one transcoded multipart file as a response of the transcoding job.

Figure 6
Example of Multipart Format

The multipart (both input and output) MAY be transferred as a MIME-Multipart content item (see [MIME]), using the appropriate MIME types, as defined in [MIME] (e.g. multipart/related, multipart/mixed).

The multipart (both input and output) MAY also be transferred in the WAP binary form of the MIME Multipart using the appropriate MIME types, as defined in [WAPWSP].

Figure 6 illustrates the structure of a multipart (with a presentation part).

5.1.5 Content attachments

The Content data (either multipart or individual media parts) SHALL be referenced from within the SOAP Request Body (and Response Body), and SHALL reside either on a storage that can be accessed by the Transcoding Platform, or attached as part of the Transaction itself.

The proposed interface provides two methods of supporting media attachments:

· Self contained requests, in which the Content data resides within the Transaction jobs themselves

· References to external Content elements, in which case a Transcoding job only contains a pointer to a remote location from where the Content elements can be pulled by the Transcoding Platform

The following two sections describe each of the methods. Note that the two options can be combined within a single Transaction: one Transaction can contain job(s) having references (URLs) to external Content elements and job(s) having attached Content elements.

5.1.5.1 References to external Content Elements

In the case that references to external Content elements are used, the SOAP Request/Response Body SHALL contain the URLs, pointing to the relevant files.

The Transcoding Platform SHALL support retrieval and upload of external content via HTTP(S). The Transcoding Platform MAY also support other protocols, for example, FILE and FTP (or any of its secured variants).

In case the required upload protocol (specified in the externalLocation parameter of the target element) is HTTP(S), the Transcoding Platform SHOULD use the HTTP(S) PUT method in order to upload the content.
Note that in this case, the HTTP server specified in the URL must also support the PUT upload method.

5.1.5.2 Self contained requests

In the case of self-contained requests, the SOAP Request/Response Body SHALL contain references to the attachments. The attachments SHALL be sent along with the Transaction, as MIME parts according to the SOAP with attachments definition (refer to the SOAP with Attachments guidelines as defined in the [OMA MWS Guidelines], section 6.8). Each content attachment SHALL be identified by its MIME Content ID. The SOAP Request/Response Body SHALL refer to the content, using the Content IDs. See section 5.2.1.2 for the details.

5.1.6 Transcoding Profiles, Parameters, Policies and Adaptation Classes

To specify the transcoding request details, the Application Platform SHALL use predefined capability profile information, and/or explicit transcoding parameters, and/or Policy parameters.

Upon receiving the transcoding request, the Transcoding Platform SHALL use the provided capability profile information, explicit transcoding parameters, and Policy parameters in the order defined in this specification.

5.1.6.1 Using a predefined Capability Profile

The transcoding parameters MAY be indicated using the profileID parameter to reference a pre-defined Capability Profile.

The Capability Profile represents information to be considered when performing transcoding. Often, the Capability Profile will describe the User Equipment characteristics.

The Capability Profile can be referenced using the User-Agent header, the UAProf string (URL) [UAProf], or a proprietary string. The User-Agent header is normally part of HTTP/WSP transactions between User Equipment and Application servers. This header is widely used. UAProf information is expressed as a link (URL) to the location of the terminal information details. The UAProf URL reference MAY be a reference to a UAProf database that both the Transcoding and Application Platforms share.

If the User-Agent or the UAProf of the target device is given in the request, the Transcoding Platform SHOULD recognize it.

The profileID parameter MAY be complemented by the ApplicationType parameter, in order to refer the Transcoding Platform to specific capabilities within the Capability Profile (e.g. if MMS capabilities or browsing capabilities of the UAProf are to be used)
The definition of a profile, and its content are out of the scope of this specification.

5.1.6.2 Using Transcoding Parameters

The transcoding parameters MAY also be indicated using an explicit list of parameters, which will reflect the characteristics of the target device and/or the specific requirements from the Application.

When a ProfileID is indicated and explicit parameters are added, the explicit parameters SHALL override the corresponding parameters in the referenced Profile.

See section 5.2.6 for a list of all the supported Transcoding Parameters.

5.1.6.3 ProfileID and Transcoding Parameters Hierarchy

It is possible to specify a capability profile (profileID parameter) and/or transcoding parameters (TranscodingParams parameter) both in the transaction level and the job level.

If a profileID parameter is specified in the job level (lower level), then the profileID in the transaction level, if given, SHALL be ignored for this job.

If a transcodingParams parameter is specified in the job level (lower level), then the transcodingParams in the transaction level, if given, SHALL be ignored for this job.

If both a profileID parameter and a transcodingParams parameter exist, in either the transaction or the job level, the parameters in the transcodingParams SHALL take precedence over the corresponding parameters in the referenced profile.

In case the transcodingParams are not compatible with the capability profile (e.g. the content-type requested in the transcodingParams is not supported according to the capability profile), the Transcoding Platform SHOULD perform the requested transcoding but issue a warning in the response.

5.1.6.4 Using Policy parameters

Policy parameters are a mean for the Application Platform to specify general rules for the Request Transaction (e.g. priority order between the different media elements, …).

To specify the Policy parameters, the Application Platform SHALL use predefined Policy directed by a URL (PolicyRef).

The Transcoding Platform SHALL support policy retrieval via HTTP(S). The Transcoding Platform MAY also support other protocols, for example, FILE and FTP (or any of its secured variants).

5.1.6.5 Using Adaptation Classes

There are situations where an Application Platform needs to describe to the Transcoding Platform certain classes of adaptations and specify if they are allowed or not. For instance, in the MMS application, the MMS proxy/relay may need to describe to the Transcoding Platform what constitutes “major” adaptations (in the context of MMS) and specify that they are not allowed. The MMS proxy/relay may also want to learn if minor adaptations were performed. STI provides a mechanism that allows the Application Platform to control which Adaptation Classes are allowed and which are not, and to find out from which adaptation classes were the adaptations that were performed.

The detailed description of the Adaptation Classes (XML schema) is not covered in STI 1.0.

The STI Transaction Request contains parameters to specify which Adaptation Classes are of interest to the Application Platform and control which ones are allowed (e.g. MMS minor or major adaptations are of interest and major is not allowed).

The Transaction Response contains a list of Adaptation Classes which are associated with the actual transcoding operation performed (e.g. if minor, major or both classes of adaptations have been performed).

A Transcoding Platform SHALL not perform any disallowed adaptation.

Examples of the usage of Adaptation Classes are presented in Appendix D.

5.1.6.6 Using Size Limit Parameters

It is possible to specify a size limit parameter at the following levels:

a) Transaction (sizeLimit parameter in transcodingParams)

b) Transcoding job (sizeLimit parameter in transcodingParams)

c) Media (sizeLimit parameter in the respective media structures)

d) Application (applicationSizeLimit parameter in transcodingParams)

If present at the Transaction level, it does not represent the sum of the sizes from all the transcoding jobs within the Transaction; it represents a guideline to be followed separately by each transcoding job within this Transaction. Having a sizeLimit at the Transaction level avoids having to specify the parameter for each individual transcoding job within the Transaction.

If there is one at the transcodingJob level, it SHALL take precedence over the one (if any) specified at the Transaction level. Having a sizeLimit at the transcodingJob level also avoids having to specify the parameter for each individual media within the transcodingJob.

If there is one at the media level, it SHALL take precedence over the one (if any) specified at the Transaction level and/or the one (if any) specified at the transcodingJob level. The sizeLimit at the media level is per element, not for the total allowed for all the elements of the same type.

The “resulting” sizeLimit will be derived from the following hierarchy:

1. sizeLimit at the Transaction level

Can be overwritten by:

2. sizeLimit at the transcodingJob level

Can be overwritten by:

3. sizeLimit at the media level

As for multipart elements, note that sizeLimit specified for the media elements within a multipart SHALL be complementary to the sizeLimit specified for the multipart. For example, it is possible to set the sizeLimit of a multipart to 100KB and limit any audio part of the multipart to 50KB. Following are more examples:

1.
Multipart sizeLimit: 100KB

Image sizeLimit: 10KB

Audio sizeLimit: 30KB

If there are 3 images and 2 audio files (for example), everything should fit in the 100KB, since the maximum allowed is 90KB (3 x 10KB + 2 x 30KB = 90KB)

2.
Multipart sizeLimit: 50KB

Image sizeLimit: 10KB

Audio sizeLimit: 30KB

If there are 3 images and 2 audio files (for example), the total size of all the combined elements may exceed the allowed size at the Multipart level after the initial transcoding, so additional adaptation in the form of truncating, deleting, quality reduction, bit rate reduction, etc may have to be performed.

3.
Multipart sizeLimit: 30KB

Image sizeLimit: 10KB

Audio sizeLimit: 50KB

The allowed size at the Multipart level will take precedence and it will not be possible to have audio files of 50KB. Similar to example 2 above, some additional adaptation in the form of truncating, deleting, quality reduction, bit rate reduction, etc may have to be performed.

Finally, if the applicationSizeLimit is specified, it SHALL be complementary to the result from the above sizeLimit parameters so that the final size SHALL NOT exceed the minimum of the “resulting” sizeLimit and the applicationSizeLimit. For example, an operator may decide to never have messages bigger than 300KB go through his network, no matter what the terminal capabilities are and therefore set the applicationSizeLimit to 300KB. In such a case, even if the target terminal capabilities allow for media larger than that, the final size of the media will not exceed the applicationSizeLimit of 300KB.

Note that applicationSizeLimit can be specified both at the Transaction and transcodingJob levels. If present at the transcodingJob level, it SHALL take precedence over the one (if any) specified at the Transaction level. Having applicationSizeLimit at the Transaction level avoids having to specify the parameter for each individual transcodingJob within the Transaction.
5.1.7 Overall UML Diagram

The following UML diagram gives an overview of all the data structures used for the STI Request and Response Transactions.

[image: image4.wmf]+stiVersion[0..1]

+originatorID[1..1]

+transactionID[1..1]

+extensionData[0..*]

Transaction

+profileID[0..1]

+applicationType[0..1]

+transcodingParams[0..1]

+transcodingJob[1..*]

+policyRef[0..1]

+adaptationClass[0..*]

RequestTransaction

+mainReturnResult[1..1]

+additionalReturnResult[0..*]

+totalDuration[0..1]

+jobResult[1..*]

ResponseTransaction

+contentType[1..1]

+contentTypeParam[0..*]

+location[1..1]

+extensionData[0..*]

Source

+source[1..1]

+target[1..1]

+policyRef[0..1]

+adaptationClass[0..*]

TranscodingJob

+mainReturnResult[1..1]

+additionalReturnResult[0..*]

+duration[0..1]

+output[1..1]

+adaptationPerformed[0..*]

JobResult

1

+transcodingJob

1..*

1

+jobResult

0..*

1

+source

1

1

+transcodingParams

0..1

+(...)

TranscodingParams

+name[1..1]

+value[0..1]

Property

1

+extensionData

0..*

1

+extensionData

0..*

+jobID[1..1]

+extensionData[0..*]

Job

1

+contentTypeParam

0..*

+externalLocation[0..1]

+profileID[0..1]

+applicationType[0..1]

+transcodingParams[0..1]

+extensionData[0..*]

Target

1

+target

1

+location[1..1]

+mediaSize[0..1]

+extensionData[0..*]

Output

1

+output

1

1

+transcodingParams

0..1

+major[0..1] = 1

+minor[0..1] = 0

+versionString[0..1] = 1.0

STIVersion

1

+stiVersion

0..1

1

0..*

+name[1..1]

+value[0..1]

Property

1

+extensionData

0..*

1

+extensionData

0..*

+returnCode[1..1]

+returnString[0..1]

ReturnResult

1

1..1

1

0..*

1

0..*

1

1..1

+

m

a

i

n

R

e

t

u

r

n

R

e

s

u

l

t

+

a

d

d

i

t

i

o

n

a

l

R

e

t

u

r

n

R

e

s

u

l

t

+

m

a

i

n

R

e

t

u

r

n

R

e

s

u

l

t

+

a

d

d

i

t

i

o

n

a

l

R

e

t

u

r

n

R

e

s

u

l

t

+className[1..1]

+allowed[0..1]

+classRef[0..1]

AdaptationClass

1

0..*

+

a

d

a

p

t

a

t

i

o

n

C

l

a

s

s

1

0..*

+adaptationClass

+extensionData

+path[1..1]

+name[0..1]

ExternalLocation

1

0..1

+externalLocation

Figure 7
Overall UML Diagram

5.2 Request Transaction

5.2.1 High-level Format

As mentioned above, the Request Transactions SHALL contain a SOAP Envelope, made of Transcoding Jobs and MAY contain one or several Content attachments (if some Content elements are contained in the Transaction itself). All Content elements to be transcoded SHALL be referenced in the Transcoding Jobs (pointing to an attachment or an external source).

The Request Transaction SHALL contain at least one Transcoding Job and MAY contain several Transcoding Jobs.

Figure 8 shows the structure of a Request Transaction.

[image: image5.wmf]HTTP MIME Multipart Body

SOAP-Envelope

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

</soapenv:Envelope>

SOAP Header

<soapenv:Header>

 . . .

</soapenv:Header>

SOAP Body

<soapenv:Body>

</soapenv:Body>

STI Request Message

 <RequestTransaction>

<stiVersion>

 . . .

 </stiVersion>

 <originatorID>AppABC</originatorID>

 <transactionID>xxx</transactionID>

 . . .

 </RequestTransaction>

Content Attachment 1

Content Attachment M

. . .

Transcoding Job 1

(external reference URL)

 <

transcodingJob

>

 … (job Id, source, target, transcoding params, etc.)

 </

transcodingJob

>

Transcoding Job N

(internal attachment reference M)

 <

transcodingJob

>

 … (job Id, source, target, transcoding params, etc.)

 </

transcodingJob

>

. . .

Transcoding Job 2

(internal attachment reference 1)

 <

transcodingJob

>

 … (job Id, source, target, transcoding params, etc.)

 </

transcodingJob

>

Transcoding Job 3

(internal attachment reference 1)

 <

transcodingJob

>

 … (job Id, source, target, transcoding params, etc.)

 </

transcodingJob

>

Figure 8
STI Request Transaction structure

The following sub-sections explain each one of the possible structures in more details.

5.2.1.1 References to external Content elements

Request Transactions that do not contain attachments (all the files are referenced using a URLs pointing to external storage) have HTTP headers and a single SOAP-based Request Body (contained in a SOAP-Envelope). These HTTP headers SHALL specify the target host, the length, the content type and the SOAP action. It may optionally include the transfer encoding.

The following insert gives an example of the structure in that case:

POST /RequestTransaction1 HTTP/1.1

Host: the.host.url
Content-Type: text/xml; charset=charset
Content-Length: nnnn

Content-Transfer-Encoding: 8bit

SOAPAction: “”

SOAP-based Request Message (SOAP-Envelope) comes here (see section 5.2.2)

Notes:

a) A SOAP envelope MAY contain SOAP headers and SHALL contain a SOAP body.

b) The character set for the SOAP message SHALL be either UTF-8 or UTF-16. As a consequence of this, in conjunction with SOAP 1.1's requirement to use the text/xml content type (which has a default character encoding of "us-ascii"), the charset parameter SHALL always be present on the SOAP envelope's content type. A further consequence of this is that the encoding pseudo-attribute of XML declaration within the message SHALL always be ignored (i.e. the one in the following line, if present in the request: <?xml version="1.0" encoding="UTF-8" ?>)
c) The empty string "" SHOULD be used for SOAPAction, but implementations should allow for any value to be placed there so long as the receiving node does not process the contents beyond checking for its presence. The SOAPAction header is being discontinued in future versions of SOAP since it can misrepresent the actual content in the SOAP envelope. All current tools should be ignoring this header, and be using the information in the SOAP envelope instead.

5.2.1.2 References to Content Elements contained in the Request

Request Transactions with Content attachments SHALL follow the definition of SOAP with attachments (see [OMA MWS Guidelines], section 6.8).

Request Transactions with Content attachments SHALL contain the HTTP headers as defined in 5.2.1.1 and a string that will indicate the boundary between each Content attachment, as defined in MIME (see [MIME]). These HTTP headers SHALL specify the target host, the content-length (total content-length of the request), the content type and the SOAP action. It may optionally include the transfer encoding.

Each Content attachment SHALL contain its own header (using MIME).

Each Content attachment header SHALL contain the unique ID (Content ID according to [RFC 2392]) of the content, the content-type, and the content-transfer-encoding (e.g. base64,binary).

The first content attachment SHALL contain the SOAP-based Request Body (SOAP-Envelope). All other content attachments SHALL contain media element(s) to transcode.

The following insert gives an example of the structure in that case:

POST /RequestTransaction2 HTTP/1.1

Host: the.host.url
Content-Type: multipart/related; boundary=<the_boundary_string>; type=text/xml; start=”<first-part>”

Content-Length: nnnn

SOAPAction: “”

--<the_boundary_string>

Content-Type: text/xml; charset=”charset”

Content-ID: <first-part>

Content-Length: nnnn

Content-Transfer-Encoding: 8bit

SOAP-based Request Message (SOAP-Envelope) comes here (see section 5.2.2)

--<the_boundary_string>

Content-Type: image/png

Content-ID: <image1>

Content-Transfer-Encoding: binary

Content Attachment Image comes here

--<the_boundary_string>

Note:

a) The empty string "" SHOULD be used for SOAPAction, but implementations should allow for any value to be placed there so long as the receiving node does not process the contents beyond checking for its presence. The SOAPAction header is being discontinued in future versions of SOAP since it can misrepresent the actual content in the SOAP envelope. All current tools should be ignoring this header, and be using the information in the SOAP envelope instead.

b) The character set for the SOAP envelope SHALL be either UTF-8 or UTF-16. As a consequence of this, in conjunction with SOAP 1.1's requirement to use the text/xml content type (which has a default character encoding of "us-ascii"), the charset parameter SHALL always be present on the SOAP envelope's content type. A further consequence of this is that the encoding pseudo-attribute of XML declaration within the message SHALL always be ignored (i.e. the one in the following line, if present in the request: <?xml version="1.0" encoding="UTF-8" ?>)
5.2.2 Request Body

5.2.2.1 Detailed Structure

The SOAP-based Request Body SHALL be structured as shown by the following table.

Table 1: Request Transaction - Detailed Structure

	No.
	Parent
	Name
	Type
	Possible Values
	Mandatory/

Optional
	Comments

	1.
	
	RequestTransaction
	
	
	Mandatory

(1..1)
	Several Transcoding Jobs can be sent within one request.

	2.
	Request Transaction
	stiVersion
	
	
	
	The STI version of the request.

	3.
	Request

Transaction
	originatorID
	Token
	
	Mandatory

(1..1)
	A unique ID which represents the Application Platform that the request originated from. This parameter MAY be used for tracking, and it SHOULD NOT affect the transcoding process.

	4.
	Request

Transaction
	transactionID
	Token
	
	Mandatory

(1..1)
	A unique ID that is given by the Application Platform. IDs are not necessarily unique across all Application Platforms.

	5.
	Request

Transaction
	profileID

	String
	
	Optional

(0..1)
	The pre-defined Profile to be used for all the Transcoding Jobs within this Transaction unless overwritten by TranscodingParams or by profileID at the Transcoding Job level (see section 5.1.6.3).

The User-Agent string, UAProf string (URL), or a proprietary string may be used.

If the User-Agent or the UAProf of the target device are given in the request, the Transcoding Platform SHOULD recognize them.

The profileID MAY be complemented by the applicationType parameter (see section 5.1.6.1).

	6.
	Request

Transaction
	applicationType
	String
	“MMS”, “Browsing”
	Optional

(0..1)
	The application for which the transcoding is to be performed. This parameter MAY be used to complement the profileID parameter (see section 5.1.6.1).

It can possibly lead to some application-specific transcoding behaviour.

	7.
	Request

Transaction
	policyRef

	anyURI
	URI
	Optional

(0..1)
	The URL of a pre-defined Policy to be used for the Transaction. If this field appears, then policyRef SHALL NOT be specified for single Transcoding Jobs.

	8.
	Request

Transaction
	adaptationClass
	
	
	Optional (0..n)
	Information about Adaptation Classes; which are of interest and if they are allowed or not.

	9.
	Request

Transaction
	transcodingParams

(see Table 7)

	
	
	Optional

(0..1)
	The transcoding parameters to be used for all the Transcoding Jobs within this Transaction. When a predefined Profile is also specified, the values specified within the transcodingParams override the corresponding ones in the Profile (see section 5.1.6.3).

	10.
	Request Transaction
	extensionData (see Table 7)
	
	
	Optional (0..n)
	Proprietary extension data.

	11.
	Request

Transaction
	transcodingJob
	
	
	Mandatory

(1..n)
	The transcoding request. This element may appear multiple times.

	

	12.
	stiVersion
	major
	unsignedShort
	
	Mandatory (1..1)
	The major version number.

This value is fixed to “1”.

	13.
	stiVersion
	minor
	unsignedShort
	
	Mandatory (1..1)
	The minor version number.

This value is fixed to “0”.

	14.
	stiVersion
	versionString
	Token
	
	Optional (0..1)
	A string describing the version. This value is fixed to “1.0”.

	

	15.
	adaptationClass
	className
	Token
	
	Mandatory

(1..1)
	Name of Adaptation Class of interest to the application.

	16.
	adaptationClass
	allowed
	Boolean
	
	Optional

(0..1)
	Specifies if, in a given job, a set of adaptations belonging to the given Adaptation Class is allowed or not. If allowed parameter is not present, the adaptation class is allowed by default.

For a given job, in case of contradiction between allowed and non-allowed adaptations, non-allowed adaptations takes precedence. That is, an adaptation operation is forbidden if it would make the resulting transcoding job fall in an adaptation class which is forbidden (e.g. an operation allowed in minor but forbidden in major would be forbidden).

	17.
	adaptationClass
	classRef
	URI
	
	Optional

(0..1)
	The URI of a pre-defined Adaptation Class definition.

	

	18.
	transcodingJob
	jobID

	Token
	
	Mandatory

(1..1)
	A unique ID that is given by the Application Platform to uniquely identify the Transcoding Job within a Transaction.

The globablly unique identifier of a job is a combination of originatorID, transactionID, and jobID

	19.
	transcodingJob
	source
	
	
	Mandatory

(1..1)
	The source for the Transcoding Job.

	20.
	transcodingJob
	target
	
	
	Mandatory

(1..1)
	The Target of this Transcoding Job.

	21.
	transcodingJob
	policyRef
	anyURI
	URI
	Optional

(0..1)
	The URI of a pre-defined Policy to be used for the Transcoding Job.

	22.
	transcodingJob
	adaptationClass
	
	
	Optional (0..n)
	Information about Adaptation Classes; which are of interest and if they are allowed or not. If adaptationClass is present at the transcodingJob level, it SHALL take precedence over the one (if any) specified at the Transaction level.

	23.
	transcodingJob
	extensionData (see Table 7)
	
	
	Optional (0..n)
	Proprietary extension data.

	

	24.
	source
	contentType
	Token
	According to the content types naming (see section 5.2.4)

don’t forget multipart mapping.
	Mandatory

(1..1)
	The content type of the Source.

	25.
	source
	contentTypeParam (see Table 7)
	
	
	Optional

(0..n)
	The content type parameters of the source (e.g. codec, input charset).

	26.
	source
	location
	anyURI
	URI
	Mandatory

(1..1)
	For referenced Sources: The full-path (URL) to an external storage including the name of the resource.

For Sources included in the request: the Content ID (cid) of the attachment within the request [RFC 2392].

	27.
	source
	extensionData (see Table 7)
	
	
	Optional (0..n)
	Proprietary extension data.

	

	28.
	target
	externalLocation

	
	
	Optional

(0..1)
	The path to an external storage.
The Transcoding Platform SHALL return the full URI of the transcoded media in the output element of the jobResult (see Table 8).

If this field is not present, the transcoded content will be returned as an attachment included in the Response (even if the Source element is referenced).

	29.
	target
	profileID

	String
	
	Optional

(0..1)
	A predefined Profile to use for this Transcoding Job. The profileID MAY be complemented by the applicationType parameter (see section 5.1.6.1).When a profileID is present at the Transaction level, the profileID at the Target level SHALL take precedence (see section 5.1.6.3).

	30.
	target
	applicationType

	String
	“MMS”, “Browsing”
	Optional

(0..1)
	The application for which the transcoding is to be performed. This parameter MAY be used to complement the profileID parameter (see section 5.1.6.1). It can possibly lead to some application-specific transcoding behaviour.

When an applicationType is also present at the Transaction level, the applicationType at the Target level SHALL take precedence.

	31.
	target
	transcodingParams

(see Table 7)

	
	
	Optional

(0..1)
	The transcoding parameters to be used for this Transcoding Job. See section 5.1.6.3 for details on profileID and transcodingParams hierarchy.

	32.
	target
	extensionData (see Table 7)
	
	
	Optional (0..n)
	Proprietary extension data.

	

	33.
	externalLocation
	path
	anyURI
	
	Mandatory (1..1)
	The path (URI) to an external storage where the target media is to be placed, excluding the name of the media.

	34.
	externalLocation
	name
	Token
	
	Optional (0..1)
	The name of the target media, without an extension.
The Transcoding Platform SHOULD add an appropriate extension to the name of the output media, if such an extension exists.

If this parameter is not present, the final name of the result media SHOULD be constructed from the specified path and the name of the source media, with an appropriate result extension.

Notes:

· The structures are written in bold.

5.2.3 Supported Media Types

The following table describes supported media types.

Table 2: Supported Media Types

	No.
	Media Type
	Description

	1.
	Image
	An image file.

Transcoding Parameters SHALL be specified under the Image element.

	2.
	Video
	A video file, which may also contain audio.

Transcoding Parameters SHALL be specified under the Video element.

	3.
	Text
	A text file.

Transcoding Parameters SHALL be specified under the Text element.

	4.
	Audio
	An audio file.

Transcoding Parameters SHALL be specified under the Audio element.

	5.
	Multipart
	A multipart file.

Transcoding parameters SHALL be specified under the Multipart element.

5.2.4 Content Types and Codecs

5.2.4.1 Content Type

Content types for which a registered MIME type exists SHOULD be represented using the registered MIME type (e.g. multipart/related, multipart/mixed, image/jpeg, image/gif, audio/amr, etc. See [IANA]).

STI SHALL support other proprietary Content-Types that will be defined between the Application Platform and the Transcoding Platform.

The content type field SHOULD NOT contain any parameters. The Transcoding Platform SHOULD ignore any parameters in the content type field.

If the Transcoding Platform does not recognize the Content-Type it SHALL return an error.

5.2.4.2 Content Type Parameters

Content Type parameters generally relate to file format parameters. Content type parameters SHALL be supplied using a Name-Value format. For content types that have registered parameters, the parameters’ Name and Value SHOULD be used as specified (e.g., Name = ‘charset’, Value = ‘ISO-8859-1’ for content-type text/plain). The following table lists additional possible parameters and their possible values.

STI SHALL also support other content type parameters that will be defined between the Application Platform and the Transcoding Platform.

This table should be properly filled in the future
Table 3: Content Type Parameters

	No.
	Content Type
	Parameter Name
	PossibleValues

	1.
	video/3gpp, audio/3gpp
	brand
	“3gp4”,“3gp5”, “3gp6”,“3g2a”, "mp42", ...

	2.
	application/smil
	subset
	“SMIL-CONF-1_2”, “SMIL-3GPP-R4”, “SMIL-3GPP-R5”, …

	3.
	
	
	

5.2.4.3 Codec

Codecs for which a registered MIME type exists SHOULD be represented using the registered MIME type (e.g. video/h263, audio/amr-wb, audio/g723 etc. See [IANA]). The following table lists additional possible codecs.

STI SHALL also support other proprietary Codecs that will be defined between the Application Platform and the Transcoding Platform.

If the Transcoding Platform does not recognize the codec it SHALL return an error.

This table should be updated in the future.
Table 4: Codecs

	No.
	Codec string
	Codec Description

	1.
	“audio/aac-ltp”
	AAC Long Term Prediction

	2.
	“video/h264”
	H.264

	3.
	…
	

5.2.4.4 Codec Parameters

Codec parameters SHALL be supplied using a Name-Value format. For codecs that have registered codec parameters, the parameters’ Names and Values SHOULD be used as specified (e.g. Name = profile, Value = 3 for codec video/h263-2000). The following table lists additional codec parameters and their possible values.

STI SHALL also support other codec parameters that will be defined between the Application Platform and the Transcoding Platform.

This table should be updated in the future.
Table 5: Codec Parameters

	No.
	Codec
	Parameter
	Possible Values

	
	
	
	

5.2.5 Transformations

In order to perform transformations on the media the Application Platform SHALL specify, for each requested transformation, the type of the transformation, and the attributes for the transformation.

The following table lists the set of standard transformation algorithms, each with a non-extensible list of attributes, and the type (or types) of media elements on which these transformations can be applied to. The extensionData element MAY be used for proprietary transformations.

Support of the transformation algorithms in the following table is optional.

When a transformation (which is supported by the Transcoding Platform) fails to be executed – the Job MAY either succeed with an appropriate warning in the jobResult, or fail with an error code. This behaviour need not be consistent for all transformation algorithms.

Table 6: Transformations

	No.
	Transformation Type
	Media Types
	Attribute Name
	Possible attribute values
	Mandatory / Optional attribute
	Value Constraints
	Description

	1.
	LevelCorrection
	Image, Video
	No attribute
	
	
	
	Perform level correction.

	2.
	Mirror
	Image, Video
	axis
	“UD”, “LR”
	M
	Exact
	“UD” (Up-Down) - vertical mirror

“LR” (Left-Right) - horizontal mirror.*

	3.
	NoiseReduction
	Image, Video
	No attribute
	
	
	
	Perform noise reduction.

	4.
	Rotation
	Image, Video
	clockwiseAngle
	90

180

270

auto
	M
	Exact (Except for the ‘auto’ value)
	Perform Image rotation. “auto” rotation allows rotation based on aspect ratio. Automatic rotation allows the Transcoding Platform to perform a 90 degrees clockwise rotation, in order to maintain aspect ratio as close as possible to the original image (e.g. transcoding image of 176x144 to 144x176 with “auto” clockwiseAngle will invoke the rotation). The “auto” rotation is meaningful only when requested aspect ratio is well defined (in TranscodingParams, profile or policy)*.

	5.
	Sharpen
	Image, Video
	No attribute
	
	
	
	Perform image sharpening.

	6.
	DurationLimit
	Video, Audio,

Multipart
	limit
	a positive integer value
	M
	Maximum
	Truncate the media if its duration exceeds <limit> milliseconds.

	7.
	AGC
	Audio
	No attribute
	
	
	
	Perform Automatic Gain Control

	8.
	Offset
	Audio, Video
	startTime
	a positive integer value
	
	
	The offset from the beginning of the source media to start the transcoding from, in milliseconds.

	9.
	FrameRateSample
	Video, Multipart
	fps
	a positive float value
	
	Exact
	Change the frame sampling rate (without changing the speed and the duration of the media). Changes the number of frames/slides.

	10.
	FrameRateOutput
	Video, Multipart
	fps
	a positive float value
	
	Exact
	Change the frame rate in the output (and thus change also the speed and the duration of the media, e.g. to create slow/fast motion effects/adjustments). Does not change the number of frames/slides.

	11.
	NumberOfFrames
	Video, Multipart
	totalFrames
	a positive integer value
	
	Exact
	Change the number of frames/slides in the output.

	12.
	Cropping
	Image, Video
	
	Perform image cropping. A parameter list defines a rectangular region in source image coordinates*.

	13.
	
	
	top
	a non negative integer value
	M
	Exact
	Top Y coordinate of the rectangle.

	14.
	
	
	left
	a non negative integer value
	M
	Exact
	Left X coordinate of the rectangle.

	15.
	
	
	bottom
	a non negative integer value
	M
	Exact
	Bottom Y coordinate of the rectangle.

	16.
	
	
	right
	a non negative integer value
	M
	Exact
	Right X coordinate of the rectangle.

	13
	FrameFill
	Image, Video
	
	Indicates if the target image frame should be filled while source image aspect ratio will be maintained, overriding either target height or width (when applicable).

The parameters, if exists, define the chosen color, using RGB values.

	35.
	
	
	R
	integer in range 0..255
	M
	Exact
	Value of Red component

	36.
	
	
	G
	integer in range 0..255
	M
	Exact
	Value of Green component

	37.
	
	
	B
	integer in range 0..255
	M
	Exact
	Value of Blue component

	14
	Brightness
	Image, Video
	level
	integer in the range

-50..50
 (inclusive)
	M
	Desired
	Brightness correction for output image. 0 indicates no correction.

	15
	Contrast
	Image, Video
	level
	integer in the range

-50..502 (inclusive)
	M
	Desired
	Contrast correction for output image. 0 indicates no correction.

	16
	Color
	Image, Video
	level
	integer in the range

-50..502 (inclusive)
	M
	Desired
	Color correction for output image. 0 indicates no correction.

* Unless specifically defined otherwise, the Mirror, Rotation, and Cropping transformations SHOULD be applied prior to the actual transcoding.

5.2.6 TranscodingParams structure

5.2.6.1 UML Diagram

The following UML diagram gives an overview of the data structure used for the TranscodingParams part of the request and the response.

[image: image6.wmf]+audio[0..1]

+image[0..1]

+video[0..1]

+text[0..1]

+multipart[0..1]

+sizeLimit[0..1]

+applicationSizeLimit[0..1]

+extensionData[0..*]

TranscodingParams

+codec[0..1]

+codecParam[0..*]

+bitRate[0..1]

+samplingRate[0..1]

+samplingResolution[0..1]

+channels[0..1]

+synthetic[0..1]

Audio

+codec[0..1]

+codecParam[0..*]

+colorScheme[0..1]

+width[0..1]

+height[0..1]

+resizeDirective[0..1]

Image

+videoVisual[0..1]

+videoAudio[0..1]

Video

Text

+presentation[0..1]

+audio[0..1]

+image[0..1]

+video[0..1]

+text[0..1]

Multipart

+type[1..1]

+attribute[0..1]

+order[0..1]

Transformation

+name[1..1]

+value[0..1]

Property

+channelToUse[0..1]

+channelsPriority[0..1]

+instrument[0..1]

Synthetic

+codec[0..1]

+codecParam[0..*]

+width[0..1]

+height[0..1]

+frameRate[0..1]

+bitRate[0..1]

+resizeDirective[0..1]

+transformation[0..*]

+sizeLimit[0..1]

VideoVisual

+codec[0..1]

+codecParam[0..*]

+bitRate[0..1]

+samplingRate[0..1]

+samplingResolution[0..1]

+channels[0..1]

+transformation[0..*]

+sizeLimit[0..1]

VideoAudio

+contentType[0..1]

+contentTypeParam[0..*]

+template[0..1]

+layout[0..1]

Presentation

1

+audio

0..1

1

+synthetic

0..1

1

+videoVisual

0..1

1

+videoAudio

0..1

1

+presentation

0..1

1

+transformation

0..*

1

+audio

0..1

1

+image

0..1

1

+text

0..1

+contentType[0..1]

+contentTypeParam[0..*]

+sizeLimit[0..1]

+transformation[0..*]

+extensionData[0..*]

Media

1

+extensionData

0..*

+name[1..1]

+value[0..1]

Property

1

+contentTypeParam

0..*

1

+extensionData

0..*

+scheme[1..1]

+depth[1..1]

ColorScheme

1

+colorScheme

0..1

1

+contentTypeParam

0..*

1

+multipart

0..1

1

+image

0..1

1

+video

0..1

1

+text

0..1

1

+video

0..1

1

+codecParam

0..*

1

+codecParam

0..*

1

+codecParam

0..*

{XOR}

{XOR}

{XOR}

1

+codecParam

0..*

+type[1..1]

+attribute[0..1]

+order[0..1]

Transformation

1

+transformation

0..*

1

+transformation

0..*

1

0..1

+attribute

Figure 9
Transcoding Params UML Diagram
5.2.6.2 Detailed Structure

The following table contains the TranscodingParams structure used by a request transaction and by a successful response transaction.

For each parameter, the specified value may have one of the following constraints:

Desired= The desired value.

Exact=The exact value that must be met. If not met there will be an error.

Maximum=The value can’t be exceeded. If exceeded an error will be issued.

Minimum= The value must be met or exceeded. If not an error will be issued.

Desired+Maximum= The desired value, which cannot be exceeded. If exceeded an error will be issued.

Table 7: Transcoding Parameters - Detailed Structure

	No.
	Parent
	Name
	Type
	Possible Values
	Mandatory/

Optional
	Value Constraints
	Comments

	1.
	
	transcodingParams
	
	
	Optional

(0..1)
	
	The transcoding parameters to be used for all the Transcoding Jobs within this Transaction. When a predefined Profile is specified and this tag appears, the values specified within this tag override the ones in the Profile.

The transcodingParams element SHALL contain at most one of the elements audio / video / image / text / multipart.

	

	2.
	transcodingParams
	sizeLimit
	Integer
	In bytes
	Optional

(0..1)
	Maximum
	The limit of the file sizes for the Transaction or the TranscodingJob. Default is unlimited. 0 = reduce to zero. Covered by multipart and separate media size limits.

	3.
	transcodingParams
	applicationSizeLimit
	Integer
	In bytes
	Optional

(0..1)
	Maximum
	An upper limit for each of the file sizes of the Transaction or the TranscodingJob. The Transcoding Platform SHALL adapt to meet the size limitations associated with the ProfileID and/or SizeLimit(s) parameters as long as they don’t exceed applicationSizeLimit. Otherwise the applicationSizeLimit SHALL be used as the size limit.

	4.
	transcodingParams
	audio
	
	
	Optional

(0..1)

(These elements are mutually exclusive)

	
	The audio transcoding parameters.

	5.
	transcodingParams
	image
	
	
	
	
	The image transcoding parameters (also graphics).

	6.
	transcodingParams
	video
	
	
	
	
	The video transcoding parameters.

	7.
	transcodingParams
	text
	
	
	
	
	The text transcoding parameters.

	8.
	transcodingParams
	multipart
	
	
	
	
	The multipart transcoding parameters.

	9.
	transcodingParams
	extensionData
	
	
	Optional

(0..n)
	
	Proprietary extension data.

	

	10.
	extensionData
	name
	Token
	
	Mandatory

(1..1)

	
	The name of the extension parameter. The possible extension parameter names SHALL be defined between the Application Platform and the Transcoding Platform. If the Transcoding Platform does not recognize the Extension parameter’s name it SHALL ignore the parameter and include a warning in the response.

	11.
	extensionData
	value
	anyType
	
	Optional

(0..1)
	
	The value of the extension parameter. Could also be a reference to external data structure or attachment

The possible extension parameters’ values SHALL be defined between the Application Platform and the Transcoding Platform. If the Transcoding Platform does not recognize the Extension parameter’s value it SHALL ignore the parameter and include a warning in the response.

	

	12.
	transformation
	type
	Token
	According to the Transformations naming (see section 5.2.5)
	Mandatory

(1..1)
	Exact
	Type of transformation

	13.
	transformation
	attribute
	
	According to the supported attributes specified for the transformation (see section 5.2.5).
	Optional

(0..1)
	
	The attributes of the transformation. Standard transformations SHALL support only those attributes that are listed in section 5.2.5.

	14.
	transformation
	order
	Unsigned Integer
	
	Optional

(0..1)
	
	In the case of multiple transformations of the same media object – the transformations that do include an order value SHOULD be performed by order of this value (starting with lower order values). The order of transformations with the same order value is undefined. So is the order of transformations that do not specify their order. In these cases the Transcoding Platform MAY choose the order as it sees best.

	

	15.
	attribute
	name
	String
	The name of the attribute
	Mandatory

(1..1)
	Exact
	For a list of supported attributes for standard transformations see section 5.2.5.

	16.
	attribute
	value
	String
	The value of the attribute
	Optional

(0..1)
	Exact
	For a list of supported attributes’ values for standard transformations see section 5.2.5.

	

	17.
	audio
	contentType
	Token
	According to the content types naming (see section 5.2.4)
	Optional

(0..1)
	Exact
	The requested content type for the target (see section 5.2.4.1).

	18.
	audio
	contentTypeParam
	
	
	Optional

(0..n)
	Exact
	Specific content type parameters (see section 5.2.4.2)

	19.
	audio
	codec
	Token
	
	Optional (0..1)
	Exact
	See section 5.2.4.3

	20.
	audio
	codecParam
	
	
	Optional (0..n)
	Exact
	See section 5.2.4.4

	21.
	audio
	bitRate
	NonNegativeInteger
	
	Optional

(0..1)
	Desired+maximum
	The desired bit-rate. Restricted by the codec

	22.
	audio
	samplingRate
	NonNegativeInteger
	
	Optional

(0..1)
	Desired+maximum (where are the discrete supported rates defined?)
	The desired sampling rate. Restricted by the codec

	23.
	audio
	samplingResolution
	NonNegativeInteger
	
	Optional

(0..1)
	Desired+maximum
	The desired sampling resolution in bits/sample. Restricted by the codec

	24.
	audio
	channels
	Token
	“Mono”, “Stereo”, “DualMono”, “IntensityStereo”
	Optional

(0..1)
	Exact
	

	25.
	audio
	synthetic
	
	
	Optional

(0..1)
	
	Synthetic audio related parameters.

	26.
	audio
	sizeLimit
	Integer
	In bytes
	Optional

(0..1)
	Maximum
	Size limit for the audio. Value 0 means remove the element.

	27.
	audio
	transformation

	
	
	Optional (0..n)
	
	A transformation that the content should go through.

Multiple transformations can be specified.

	28.
	audio
	extensionData
	
	
	Optional

(0..n)
	
	Proprietary extension data.

	

	29.
	synthetic
	channelToUse
	NonNegativeInteger
	
	Optional

(0..1)
	Exact
	Number of the input channel to be used in case the output contains only one channel.

	30.
	synthetic
	channelsPriority
	Token
	
	Optional

(0..1)
	Exact
	A comma separated permutation of 0-15. The priority of the channels, from the most important to the least important. White spaces are not allowed.

Default is 0 – 15.

	31.
	synthetic
	instrument
	NonNegativeInteger
	
	Optional

(0..1)
	Exact
	The instrument to use, when transcoding to midi. Irrelevant for other formats, default is piano.

	

	32.
	contentTypeParam
	name
	String
	
	Mandatory

(1..1)
	
	The name of the content type parameter (see section 5.2.4.2).

	33.
	contentTypeParam
	value
	String
	
	Optional

(0..1)
	
	The value of the content type parameter (see section 5.2.4.2).

	

	34.
	codecParam
	name
	String
	
	Mandatory

(1..1)
	
	The name of the codec parameter (see section 5.2.4.4).

	35.
	codecParam
	value
	String
	
	Optional

(0..1)
	
	The value of the codec parameter (see section 5.2.4.4).

	

	36.
	image
	contentType
	Token
	According to the content types naming (see section 5.2.4)
	Optional

(0..1)
	Exact
	The requested content type for the target (see section 5.2.4.1).

	37.
	image
	contentTypeParam
	
	
	Optional

(0..n)
	Exact
	Specific content type parameters (e.g. Codec). See section 5.2.4.2.

	38.
	image
	codec
	Token
	
	Optional (0..1)
	Exact
	See section 5.2.4.3

	39.
	image
	codecParam
	
	
	Optional (0..n)
	Exact
	See section 5.2.4.4

	40.
	image
	colorScheme
	
	
	Optional

(0..1)
	Exact
	The desired color scheme

	41.
	image
	width
	NonNegativeInteger
	
	Optional

(0..1)
	Exact or Desired+Maximum??
	The target width.

The default is the original width.

	42.
	image
	height
	NonNegativeInteger
	
	Optional

(0..1)
	Exact or Desired+Maximum??
	The target height.

The default is the original height.

	43.
	image
	resizeDirective
	Token
	“AspectRatio”, “Crop”, “Stretch”
	Optional

(0..1)
	Exact.
	Maintain the aspect ratio when resizing (the new dimensions are set to fit into the desired dimensions while aspect ratio is maintained) – the default, crop when shrinking (do not scale the image – take its central rectangle), or just stretch.

	44.
	image
	sizeLimit
	Integer
	In bytes
	Optional

(0..1)
	Maximum
	Size limit for the image.

Default is unlimited

	45.
	image
	transformation

	
	
	Optional (0..n)
	
	A transformation that the content should go through.

Multiple transformations can be specified.

	46.
	image
	extensionData
	
	
	Optional

(0..n)
	
	Proprietary extension data.

	

	47.
	colorScheme
	scheme
	Token
	“True”,

“PaletteColor”

“PaletteGrey”
	Mandatory

(1..1)
	Exact
	

	48.
	colorScheme
	depth
	NonNegativeInteger
	
	Mandatory

(1..1)
	Exact
	If Scheme is “True”: number of bits per pixel

If Scheme is “Palette”: maximum number of colors in palette

	

	49.
	video
	contentType
	Token
	According to the content types naming (see section 5.2.4)
	Optional

(0..1)
	Exact
	The requested content type for the target (see section 5.2.4.1).

	50.
	video
	contentTypeParam
	
	
	Optional

(0..n)
	Exact
	Specific content type parameters (e.g. Codec). See section 5.2.4.2.

Do we need a separate ContentTypeParam for VideoVisual and VideoAudio?

	51.
	video
	videoVisual
	
	
	Optional

(0..1)
	
	Video visual parameters.

	52.
	video
	videoAudio

	
	
	Optional

(0..1)
	
	Video Audio parameters.

	53.
	video
	sizeLimit
	Integer
	In bytes
	Optional

(0..1)
	Maximum
	Size limit for the video.

Value 0 means remove the element.

	54.
	video
	transformation

	
	
	Optional (0..n)
	
	A transformation that the content should go through.

Multiple transformations can be specified.

	55.
	video
	extensionData
	
	
	Optional

(0..n)
	
	Proprietary extension data.

	

	56.
	videoVisual
	codec
	Token
	
	Optional (0..1)
	Exact
	See section 5.2.4.3

	57.
	videoVisual
	codecParam
	
	
	Optional (0..n)
	Exact
	See section 5.2.4.4

	58.
	videoVisual
	sizeLimit
	Integer
	In bytes
	Optional

(0..1)
	Maximum
	Size limit for the video’s visual part.

Value 0 means remove the visual part.

	59.
	videoVisual
	width
	NonNegativeInteger
	
	Optional

(0..1)
	Exact or Desired+maximum???
	Target maximum video width

	60.
	videoVisual
	height
	NonNegativeInteger
	
	Optional

(0..1)
	Exact or Desired+maximum???
	Target video height

	61.
	videoVisual
	frameRate
	Float
	
	Optional

(0..1)
	Maximum
	The maximum frame rate. Sub 1 fps and non-rounded values are enabled.

	62.
	videoVisual
	bitRate
	Integer
	
	Optional

(0..1)
	Maximum
	The target maximum bit rate.

	63.
	videoVisual
	resizeDirective
	Token
	“AspectRatio”, “Crop”, “Stretch”
	Optional

(0..1)
	Exact.
	Maintain the aspect ratio when resizing (the new dimensions are set to fit into the desired dimensions while aspect ratio is maintained) – the default, crop when shrinking, or just stretch.

	64.
	videoVisual
	transformation

	
	
	Optional (0..n)
	
	A transformation that the content should go through.

Multiple transformations can be specified.

	

	65.
	videoAudio
	codec
	Token
	
	Optional (0..1)
	Exact
	See section 5.2.4.3

	66.
	videoAudio
	codecParam
	
	
	Optional (0..N)
	Exact
	See section 5.2.4.4

	67.
	videoAudio
	sizeLimit
	Integer
	In bytes
	Optional

(0..1)
	Maximum
	Size limit for the video’s audible part.

Value 0 means remove the audio.

	68.
	videoAudio
	bitRate
	NonNegativeInteger
	
	Optional

(0..1)
	Desired+maximum
	The maximum bit-rate. Restricted by the codec

	69.
	videoAudio
	samplingRate
	NonNegativeInteger
	
	Optional

(0..1)
	Desired+maximum (where are the discrete supported rates defined?)
	The desired sampling rate. Restricted by the codec

	70.
	videoAudio
	samplingResolution
	NonNegativeInteger
	
	Optional

(0..1)
	Desired+maximum
	The desired sampling resolution in bits/sample. Restricted by the codec

	71.
	videoAudio
	channels
	Token
	“Mono”, “Stereo”, “DualMono”, “IntensityStereo”
	Optional

(0..1)
	Exact
	

	72.
	videoAudio
	transformation

	
	
	Optional (0..n)
	
	A transformation that the content should go through.

Multiple transformations can be specified.

	

	73.
	text
	contentType
	Token
	According to the content types naming (see section 5.2.4)
	Optional

(0..1)
	Exact
	The requested content type for the target (see section 5.2.4.1).

	74.
	text
	contentTypeParam
	
	
	Optional

(0..n)
	Exact
	Specific content type parameters (see section 5.2.4.2).

	75.
	text
	sizeLimit
	Integer
	In Bytes
	Optional

(0..1)
	Maximum
	Size limit for the text part.

Value 0 means remove the element.

	76.
	text
	transformation

	
	
	Optional (0..n)
	
	A transformation that the content should go through.

Multiple transformations can be specified.

	77.
	text
	extensionData
	
	
	Optional

(0..n)
	
	Proprietary extension data.

	

	78.
	multipart
	contentType
	Token
	According to the content types naming (see section 5.2.4)
	Optional

(0..1)
	Exact
	The requested content type for the target (see section 5.2.4.1).

	79.
	multipart
	contentTypeParam
	
	
	Optional

(0..n)
	Exact
	Specific content type parameters (see section 5.2.4.2).

	80.
	multipart
	presentation

	
	
	Optional

(0..1)
	
	Parameters for the target presentation.

	81.
	multipart
	audio
	
	
	Optional

(0..1)
	
	Audio Transcoding Parameters for all audio parts of the multipart.

	82.
	multipart
	image
	
	
	Optional

(0..1)
	
	Image Transcoding Parameters for all image parts of the multipart.

	83.
	multipart
	video
	
	
	Optional

(0..1)
	
	Video Transcoding Parameters for all video parts of the multipart.

	84.
	multipart
	text
	
	
	Optional

(0..1)
	
	Text Transcoding Parameters for all text parts of the multipart.

	85.
	multipart
	sizeLimit

	Integer
	In Bytes
	Optional

(0..1)
	Maximum
	Size limit for the whole multipart.

 Value 0 means remove the element.

	86.
	multipart
	transformation

	
	
	Optional (0..n)
	
	A transformation that the content should go through.

Multiple transformations can be specified.

	87.
	multipart
	extensionData
	
	
	Optional

(0..n)
	
	Proprietary extension data.

	

	88.
	presentation
	contentType
	Token
	According to the content types naming (see section 5.2.4), or “none”
	Optional

(0..1)
	Exact
	The requested content type for the target (see section 5.2.4.1).

“none” will remove the presentation.

	89.
	presentation
	contentTypeParam
	
	
	Optional

(0..n)
	Exact
	Specific content type parameters (see section 5.2.4.2).

	90.
	presentation
	template
	anyURI
	
	Optional

(0..1)
	
	Template for presentation to be used in case of presentation format change. Used as a complement to the existing presentation or may replace it based on policies.

This is either a URL, or a content ID of the attachment

	91.
	presentation
	layout
	Token
	“Portrait”,

“Landscape”
	Optional

(0..1)
	Exact
	Target layout. Precedence:

1) Presentation Layout,

2) Layout inside Presentation Template

3) Layout of the source input presentation file.

4) Default: Portrait.

Notes:

· Since a Profile ID can be specified, all the Transcoding Parameters related tags are optional. If a Profile ID is not specified, then all the Transcoding Parameters relevant to the Transcoding Job SHOULD be specified.

· The structures are written in bold.

5.3 Response Transaction

A STI Transaction SHALL be considered successful unless there was one or many errors during the handling of the transaction that prevented the completion of the whole Transaction. Note that the triggering of a transaction failure MAY be different from one Transcoding Platform to another.

Errors in specific transcoding jobs SHALL NOT affect the success value of the entire transaction result. That is, a transaction SHALL be successful even though some (or all) of the Transcoding Jobs failed. Note that since this behavior is not defined by STI specifications, it MAY be different from one Transcoding Platform to another.

The result of a transaction is returned to the request sender using a ResponseTransaction structure embedded in the body of a SOAP response message. The same ResponseTransaction structure is used for a successful transaction result and for a failure transaction result.

5.3.1 Successful Response Transaction – high-level overview

The structure of a successful Response Transaction is quite similar to the Request Transaction – HTTP headers, a SOAP-Envelope containing one or more Job Results and optionally the Content attachments. The ResponseTransaction structure is located inside the SOAP message body part.

5.3.1.1 HTTP Successful Response

Since STI is a basic Web Services using SOAP messages over HTTP protocol to send requests and return responses asynchronously, its error handling mechanism at HTTP level must be compliant with the requirements described in the Web Services Interoperability Organization document “Basic Profile Version 1.0” as referred in [OMA MWS Guidelines] and “Attachments Profile 1.0” [WS-I Attachment Profile 1.0] documents as defined by the WebServices-Interoperability organization [WS-I]. This is a recommendation of the OMA-MWS group.

The HTTP headers and header values that SHOULD be or MUST be returned are defined in the Web Services Interoperability Organization document “Basic Profile Version 1.0” as referred in [OMA MWS Guidelines] and available on the WS-I web site [WS-I]. More specifically, for the requirements related to a successful response, see sections 4.3.2 and 4.3.6 of that document.

Most of the time, the HTTP return code returned with a successful SOAP response message is “200 OK”. But the Web server MAY respond with other warning or redirect codes according to the scenarios described in the Web Services Interoperability Organization document “Basic Profile Version 1.0” as referred in [OMA MWS Guidelines].

Following is an example of an HTTP/SOAP successful response message that does not contain any attachment:

HTTP/1.1 200 OK

Content-Type: text/xml; charset=UTF-8
Content-length: nnnn

. . .

{SOAP-based Successful Response Message (SOAP-Envelope) comes here (see sections 5.3.1.2 and 5.3.3)}
Following is an example of an HTTP/SOAP successful response message that contains some attachments:

HTTP/1.1 201 OK

Content-Type: multipart/related; boundary=<the_boundary_string>; type=text/xml; start=”<first-part-id>”
Content-length: nnnn

. . .

--<the_boundary_string>

Content-Type: text/xml; charset=UTF-8

Content-ID: <first-part-id>

Content-Length: nnnn

Content-Transfer-Encoding: 8bit

{SOAP-based Successful Response Message (SOAP-Envelope) comes here (see sections 5.3.1.2 and 5.3.3)}
--<the_boundary_string>

Content-Type: image/jpg

Content-ID: <content-name>

Content-Length: nnnn

Content-Transfer-Encoding: binary

{Content attachment data comes here}

--<the_boundary_string>--

Note:

The character set for the SOAP envelope SHALL be either UTF-8 or UTF-16. As a consequence of this, in conjunction with SOAP 1.1's requirement to use the text/xml content type (which has a default character encoding of "us-ascii"), the charset parameter SHALL always be present on the SOAP envelope's content type. A further consequence of this is that the encoding pseudo-attribute of XML declaration within the message SHALL always be ignored (i.e. the one in the following line, if present in the response: <?xml version="1.0" encoding="UTF-8" ?>)
5.3.1.2 SOAP-based Successful Response Message

The XML representation of a successful SOAP response message has some constraints similar to a request transaction message as defined in the Web Services Interoperability Organization document “Basic Profile Version 1.0” as referred in [OMA MWS Guidelines].

The successful response message SHALL contain references to either external content elements or self-contained content elements. The same differences between a Request Transaction with contained content elements, and without contained content elements, as discussed in the RequestTransaction, apply for a successful ResponseTransaction.

Figure 10 shows an example of the structure for a ResponseTransaction within a SOAP-Envelope. This SOAP-Envelope is returned as part of the HTTP response main body when no attachments are provided with the response or as part of the HTTP response first body part when some attachments are provided with the response.

The data specific to a successful response transaction SHALL be contained directly under the SOAP Body element of the SOAP envelope.

[image: image7.wmf]HTTP MIME Multipart Body

SOAP-Envelope

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

</soapenv:Envelope>

SOAP Header

<soapenv:Header>

 . . .

</soapenv:Header>

SOAP Body

<soapenv:Body>

</soapenv:Body>

STI Response Message

 <ResponseTransaction>

 <stiVersion>

 . . .

 </stiVersion>

 <originatorID>AppABC</originatorID>

 <transactionID>

xxx

</transactionID>

 . . . (return code, message, etc.)

 </ResponseTransaction>

Content Attachment 1

Content Attachment M

. . .

Job Result 1

(external reference URL)

 <

jobResult

>

 … (return code,

 duration, etc.)

</

jobResult

>

Job Result N

(internal attachment reference M)

 <j

obResult

>

 … (return code, duration

, etc.)

 </

jobResult

>

. . .

Job Result 2

(internal attachment reference 1)

<j

obResult

>

 … (return code,

duration, etc.)

 </j

obResult

>

Figure 10
Response Transaction Structure

5.3.2 Failure Response Transaction - High-level Overview

A failure response transaction is returned in a situation where the whole Transaction could not be handled. This may happen if there was a problem with the Transaction parameters, or any other problem, which relates to the whole Transaction (and not only to one or more of the transcoding jobs).

The structure of a failure ResponseTransaction is quite similar to the RequestTransaction and to a successful ResponseTransaction – HTTP headers, a SOAP-Envelope containing one or more Job Results and optionally the Content attachments. However, a failure ResponseTransaction structure is located inside the <detail> element of the special SOAP Fault body part. For more details about the SOAP Fault element, refer to the SOAP guidelines as defined in [OMA MWS Guidelines], section 6.3.
5.3.2.1 HTTP Failure Response

The HTTP headers and header values that SHOULD or MUST be returned with error messages are defined in the Web Services Interoperability Organization document “Basic Profile Version 1.0” as referred in [OMA MWS Guidelines]. More specifically, for the requirements related to a failure response, see sections 4.3.2, 4.3.8, and 4.3.9 of that document.

Most of the time, the HTTP return code returned with a failure SOAP response message is “500 Internal Server Error”. But the Web server MAY respond with other client error codes or server error code according to the scenarios described in the Web Services Interoperability Organization document “Basic Profile Version 1.0” as referred in [OMA MWS Guidelines].

Also, in some situations, it is possible that the failure response returned to the Application Platform MAY not contain any SOAP Body element and even possibly no SOAP Message Envelope at all. This MAY happen for example when the request contains an invalid body (message) causing a parsing error. See again the Web Services Interoperability Organization document “Basic Profile Version 1.0” as referred in [OMA MWS Guidelines] for more details.

Following is an example of an HTTP/SOAP failure response message that does not contain any attachment:

HTTP/1.1 500 Internal Server Error

Content-Type: text/xml; charset=UTF-8
Content-length: nnnn

. . .

{SOAP-based Failure Response Message (SOAP-Envelope) comes here (see sections 5.3.2.2 and 5.3.3)}
Following is an example of an HTTP/SOAP failure response message that contains some attachments:

HTTP/1.1 500 Internal Server Error

Content-Type: multipart/related; boundary=<the_boundary_string>; type=text/xml; start=”<first-part-id>”
Content-length: nnnn

. . .

--<the_boundary_string>

Content-Type: text/xml; charset=UTF-8

Content-ID: <first-part-id>

Content-Length: nnnn

Content-Transfer-Encoding: 8bit

{SOAP-based Failure Response Message (SOAP-Envelope) comes here (see sections 5.3.2.2 and 5.3.3)}
--<the_boundary_string>

Content-Type: image/jpg

Content-ID: <content-name>

Content-Length: nnnn

Content-Transfer-Encoding: binary

{Content attachment data comes here}

--<the_boundary_string>--

Note that in those examples, there is no SOAPAction header since it is not required for a response.

5.3.2.2 SOAP-based Failure Response Message

The XML representation of a SOAP failure response message has some constraints as defined in the Web Services Interoperability Organization document “Basic Profile Version 1.0” as referred in [OMA MWS Guidelines] and also available on the WS-I web site [WS-I]. More specifically, for the requirements related to a failure response, see sections 4.1.2 to 4.1.6, and 4.2.3 of that document.

The response message MAY contain references to either external content elements or self-contained content elements.

The same differences between a Request Transaction with contained content elements, and without contained content elements, as discussed in the RequestTransaction and successful ResponseTransaction, apply for a failure ResponseTransaction.

Figure 11 shows an example of the structure for a failure ResponseTransaction within a SOAP-Envelope. This SOAP-Envelope is returned as part of the HTTP response main body when no attachments is provided with the response or as part of the HTTP response first body part when some attachments are provided with the response.

The data specific to a failure response transaction SHALL be contained under the <detail> element of the SOAP Fault element of a SOAP Envelope. For more details about the SOAP Fault element, refer to the SOAP guidelines as defined in [OMA MWS Guidelines], section 6.3.

[image: image8.emf]HTTP Failure Response

HTTP/1.1 500 Internal Server Error

Content-Type: text/xml; charset= UTF-8

Content-length: nnnn

HTTP Body

SOAP-Envelope

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

</soapenv:Envelope>

SOAP Header

<soapenv:Header>

 . . .

</soapenv:Header>

SOAP Body

<soapenv:Body>

</soapenv:Body>

SOAP Fault

 <soapenv:Fault>

 <faultcode>soap code</faultcode>

 <faultstring>any error message</faultstring>

 <faultactor>sti actor URI</faultactor>

 <detail>

 </detail>

</soapenv:Fault>

STI Response Transaction

 <ResponseTransaction>

 …

</ResponseTransaction>

Figure 11
A failed transaction within a SOAP Fault
5.3.2.3 SOAP Fault Body Usage

Please see the Web Services Interoperability Organization document “Basic Profile Version 1.0” as referred in [OMA MWS Guidelines] and “Basic Profile Version 1.1” (draft) [WS-I Basic Profile 1.1 Draft] for details about how to use the SOAP Fault body.

Possible fault codes for STI:

soapenv:VersionMismatch

soapenv:MustUnderstand

soapenv:Client

soapenv:Server

Possible fault strings for STI:

Any message that describes the problem. It could be for example the same message returned within the mainReturnResult parameter in the ResponseTransaction structure.

Possible fault actor for STI:

A URI to represent the Transcoding Platform (see example below).

Content of the detail element:

The detail element in the SOAP Fault Body SHOULD be an instance of the ResponseTransaction structure.

Example:

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >

 <soap:Header>

. . .

 </soap:Header>

 <soap:Body>

<soap:Fault xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' >

 <faultcode>soap:Client</faultcode>

 <faultstring>Any error message.</faultstring>

 <faultactor>http://www.TranscodingPlatformCompany.com/sti/v1_0</faultactor>

 <detail>

<sti_xsd:ResponseTransaction

xmlns:sti_xsd='http://www.openmobilealliance/schema/sti/v1_0' >

<originatorID>originator name</originatorID>

<transactionID>101<transactionID>

. . .

</sti_xsd:ResponseTransaction >

 </detail>

</soap:Fault>

 </soap:Body>

</soap:Envelope>

5.3.2.4 Transcoding Job Failure

The result of each transcoding job is returned using one instance of the jobResult structure per requested transcoding job. A failure transcoding job does not necessarily mean that the whole transaction failed. A transaction MAY still be successful (with warnings) even if some of its transcoding jobs have failed. However for performance reasons, a Transcoding Platform MAY decide to fail an entire transaction even if only one transcoding job failed.

5.3.3 Transaction Response –Detailed Structure

The SOAP-based Response body SHALL be structured as shown by the following table. This structure reflects the content of the XML Schema (.xsd) which can be found at A link to the xsd document will be inserted here.

NOTE: The ReturnResult structure in the table below (Response Transaction and jobResult structures) allows the Transcoding Platform to return multiple error or warning codes and messages per transaction.

Table 8: Response Transaction - Detailed Structure

	No.
	Parent
	Name
	Type
	Possible Values
	Mandatory / Optional
	Comments

	1.
	
	ResponseTransaction
	
	
	Mandatory

(1..1)
	The response

	2.
	Response Transaction
	stiVersion (see Table 1)
	
	
	Mandatory (1..1)
	The STI version of the response

	3.
	Response

Transaction
	originatorID

	Token
	
	Mandatory

(1..1)
	The unique originator ID that was received from the Application Platform in the request.

	4.
	Response

Transaction
	transactionID

	Token
	
	Mandatory

(1..1)
	The unique ID that was received from the Application Platform in the request

	5.
	Response

Transaction
	mainReturnResult

	
	
	Mandatory

(1..1)
	The return result of the Transaction

	6.
	Response

Transaction
	additionalReturnResult (See mainReturnResult structure)
	
	
	Optional

(0..n)
	In addition to the mainReturnResult, a Response Transaction can contain additional return results. additionalReturnResult uses the the same strucute as mainReturnResult.

	7.
	Response

Transaction
	totalDuration

	Integer
	Milliseconds
	Mandatory

(1..1)
	The time it took the Transcoding Platform to perform the entire transcoding Transaction in milliseconds. This number is the duration of the whole transaction from the time it reached the Transcoding Platform to the time the response was sent. It may be different than the sum of durations of all the jobs (either a higher value, reflecting the overall transaction overhead, or a lower value if multiple jobs were processed in parallel).

	8.
	Response

Transaction
	jobResult
	
	
	Mandatory

(1.. n)
	The Job Results. May be more than one (one per each Transcoding Job)

	9.
	Response

Transaction
	extensionData (see Table 7)
	
	
	Optional

(0..n)
	Proprietary extension data.

	

	10.
	mainReturnResult
	returnCode
	Integer
	
	Mandatory

(1..1)
	Code can be of type info, success, warning, client error, or server error. See section 5.3.4

	11.
	mainReturnResult
	returnString
	String
	
	Optional

(0..1)
	Message string associated with the return code.

	

	12.
	jobResult
	jobID

	Token
	
	Mandatory

(1..1)
	A unique ID that is given by the Application Platform to uniquely identify the Transcoding Job.

	13.
	jobResult
	mainReturnResult

	
	
	Mandatory (1..1)
	The return result of the Transcoding Job.

	14.
	jobResult
	additionalReturnResult
	
	
	Optional

(0..n)
	In addition to the mainReturnResult, a transcoding job can contain additional return results. additionalReturnResult uses the same structure as mainReturnResult.

	15.
	jobResult
	adaptationPerformed
	Token
	
	Optional

(0..n)
	An Adaptation Class associated with the actual content adaptation performed.

The Transcoding Platform SHALL return the list of all Adaptation Classes present in the job request that were encountered in the transcoding process, each in a separate adaptationPerformed element.

	16.
	jobResult
	duration
	Integer
	
	Optional (0..1)
	The time it took the Transcoding Platform to perform the Transcoding Job in milliseconds.

	17.
	jobResult
	extensionData (see Table 7)
	
	
	Optional

(0..n)
	Proprietary extension data.

	18.
	jobResult
	output
	
	
	Mandatory

(1..1)
	Details about the result target.

	

	19.
	output
	location

	anyURI
	URI
	Mandatory

(1..1)
	For external outputs: The full-path (URI) to an external storage including the file name of the converted resource. This name MAY include a proper extension of the transcoded content.

The location SHALL be composed of the path and name specified in the target’s externalLocation parameter. The Transcoding Platform SHOULD add an appropriate extension to the name of the output media, if such an extension exists.

In case the name parameter in the target’s externalLocation parameter was not specified, the name of the result media SHOULD be the name of the source media, with an appropriate extension (see Table 1).

For outputs included in the response this parameter is the Content ID (cid) of the attachment [RFC 2392].

	20.
	output
	mediaSize
	Integer
	In Bytes.
	Optional

(0..1)
	The actual size of the media.

	21.
	output
	extensionData (see Table 7)
	
	
	Optional

(0..n)
	Proprietary extension data.

5.3.4 Return Codes

When returning a code, if a situation matches a predefined code in the tables below, the Transcoding Platform SHALL use the following info, success, warning, client error and server error return codes in a response transaction or a job result. When a warning code is returned, this means that the transaction was executed, but with some restriction(s) and/or additional information, as defined by the return code and its message.

Additional details about the return code SHOULD also be provided as part of the return message to give more information to the Application Platform.

In the following tables, the first column contains the possible result codes. The second column contains the name of the structures which typically returns the result code (RT = ResponseTransaction, JR = JobResult). The third column contains the message associated to the result code. These info messages are only recommendations - the Transcoding Platform MAY use different descriptive strings if it finds appropriate. And finally, the fourth column contains some additional information and examples about the result code.
Table 9: Informational Codes (1000-1999)

	Result Code
	Ret. by
	Info Message
	Additional Info

	1001
	JR
	Info – Result content saved to an external location.
	The result content was saved to an external location as specified in the transcoding job of the request.

	1002
	JR
	Info – Default profile used.
	No profile ID specified in the request and in the transcoding job, a default profile configured on the Transcoding Platform was used instead.

	1003
	JR
	Info – No transcoding performed - original content returned.
	The content returned by the Transcoding Platform was not modified during the transaction since no transcoding were necessary.

	1004
	JR
	Info – No content returned along with the result.
	The Transcoding Platform did not return any content with the response of a transcoding job. There are many reasons why a Transcoding Platform MAY decide not to return any content along with the job result:

- No modification performed on the source content while transcoding.

- Content was resized to zero.

- Any error occurred while transcoding.(this code would be in addition to the error code)

- No source content to transcode was provided along with the request or was accessible from the Transcoding Platform, (this code would be in addition to the error code).

	1005-1499
	
	STI – reserved for future use
	

	1500-1999
	
	Other– Reserved for any other non-defined (or proprietary) info message.
	

Table 10: Success / Warning Codes (2000-2999)

	Result Code
	Ret. by
	Success/Warning Message
	Additional Info

	2000
	RT

JR
	Success – Successful result.
	A transaction or a transcoding job was performed successfully.

Some additional info or warning result codes/messages MAY be added to the response.

	2001
	RT
	Warning – One or more transcoding jobs failed.
	The transaction was considered successful even if some of its transcoding jobs failed.

	2002
	RT
	Warning – Multiple Transcoding Jobs not supported, only one job processed successfully.
	The Transcoding Platform does not support multiple transcoding jobs per transaction. Only one job performed successfully.

	2003
	RT

JR
	Warning – Unsupported parameter ignored, not used by the Transcoding Platform.
	A given request parameter which is not supported by the Transcoding Platform was ignored, but the Transaction or the transcoding job was performed successfully.

	2004
	RT

JR
	Warning – Unsupported parameter value ignored,.
	A valid request parameter value which is not supported by the Transcoding Platform was ignored, transcoding was performed.

	2005
	RT

JR
	Warning – Unknown parameter value ignored.
	A given request parameter value which is unknown to the Transcoding Platform was ignored, transcoding was performed.

	2006
	JR
	Warning – Content truncated to meet sizeLimit.
	The content had to be truncated to meet the sizeLimit.

	2007
	JR
	Warning – Content removed to meet sizeLimit.
	One or more elements were removed to meet the sizeLimit.

	2008
	JR
	Warning – Unable to transcode DRM protected content.
	DRM protection was found on one or more elements. No transcoding performed on these elements.

	2009
	JR
	Warning – DRM protected content transcoded.
	Even if the content was DRM protected, it was transcoded by the Transcoding Platform.

	2010
	JR
	Warning – Incompatibility between transcodingParams and profileID ignored.
	One or more requested transcodingParams element not compatible with profile associated with profileID, transcoding performed as requested

	2011
	JR
	Warning – Neither profileID nor transcodingParams specified
	Neither profileID nor transcodingParams were specified in the request, default profile was used for transcoding.

	2012-2499
	
	STI – reserved for future use
	

	2500-2999
	
	Other– Reserved for any other non-defined (or proprietary) warning result.
	

Table 11: Client Error codes (4000-4999)

	Result code
	Ret. by
	Error Message
	Additional Info

	4000
	RT
	Client Error
	Generic client error

	4001
	RT

JR
	Client Error – Parsing error
	Generic parsing error

	4002
	RT
	Client Error – Parsing error: Invalid SOAP message.
	The format of the SOAP Message received appears to be invalid. The Transcoding Platform is unable to process the request.

	4003
	RT
	Client Error – Parsing error: Invalid STI Request Transaction (in SOAP message body)
	The format of the SOAP Message received is valid but the format of the STI Request Transaction in the message body appears to be invalid. The Transcoding Platform is unable to process the request.

	4004
	RT

JR
	Client Error – Unknown parameter value.
	The value of a given parameter is unknown by the Transcoding Platform which is unable to continue processing the request.

	4005
	RT
	Client Error – Unauthorized request.
	When a request is not authorized to be processed based on one of the request parameters, like the originatorID, applicationType, , etc.

	4006
	RT

JR
	Client Error – Unable to get the specified external resource
	The external resource could be an input media located at an external location, the policy reference, or a profile for example.

	4007
	RT

JR
	Client Error – Unable to get the specified external resource: Location forbidden.
	The Transcoding Platform does not have the permission to access the resource at the given external location.

The external resource could be an input media located at an external location, the policy reference, or a profile for example.

	4008
	RT

JR
	Client Error – Unable to get the specified resource: Location not found.
	No resource found at the given location.

The resource could be an attached or external input media, the policy reference, or a profile for example.

	4009
	JR
	Client Error – Error while reading the specified resource.
	A resource referenced (internal or external) by the request has been found but an error occurred while reading it.

	4010
	JR
	Client Error – Failed to save the target content
	

	4011
	JR
	Client Error – Failed to save the target content: External location forbidden.
	

	4012
	JR
	Client Error – Failed to save the target content: External location URI not found.
	

	4013
	JR
	Client Error – Failed to save the target content: External location URI invalid.
	

	4014
	JR
	Client Error - Adaptation not Allowed
	The adaptation of a specific adaptation class is not allowed and was encountered.

	4015
	JR
	Client Error – Non-Unique jobID
	Two or more transcoding jobs within the same transaction have the same jobID.

	4016
	JR
	Client Error – Neither profileID nor transcodingParams specified
	Neither profileID nor transcodingParams were specified in the request, and no default profile was used. No transcoding was performed.

	4017-4499
	
	STI – reserved for future use
	

	4500-4999
	
	Other – Reserved for any other non-defined (or proprietary) client error result.
	

Table 12: Server Error Codes (5000-5999)

	Result code
	Ret. by
	Error string
	Additional Info

	5000
	RT

JR
	Server Error – Internal Server Error.
	General error code to represent any error caused internally by the Transcoding Platform.

	5001
	RT

JR
	Server Error – Unsupported parameter.
	A given request parameter which is not supported by the Transcoding Platform forced it to stop the processing of the transaction or the transcoding job.

	5002
	RT

JR
	Server Error – Unsupported parameter value.
	A given request parameter value which is not supported by the Transcoding Platform forced it to stop the processing of the transaction or the transcoding job.

	5003
	JR
	Server Error – Transcoding service temporary unavailable.
	A transcoding job cannot be performed because the Transcoding Platform is temporary unavailable for any reason (could be busy, in maintenance state, etc.)

	5004
	RT

JR
	Server Error – Timeout.
	The transaction or a transcoding job was stopped because of an internal system timeout.

	5005
	RT
	Server Error – STI Version not supported.
	The provided request is for an STI version which is not supported by the Transcoding Platform.

Note that this error code does not stand for an invalid STI version since that should normally be returned as a parsing error.

	5006
	JR
	Server Error – Unable to perform transcoding: Insufficient transcoding parameters provided.
	This can happen whenever no profile ID and no transcoding parameters are provided with the request, or if the information provided is insufficient.

	5007
	JR
	Server Error – Cannot meet sizeLimit.
	The Transcoding Platform is unable to meet the sizeLimit.

	5008
	JR
	Server Error – DRM content – No transcoding performed.
	DRM protection was found on one or more elements. No transcoding performed.

	5009
	RT
	Server Error – Too many transcoding jobs failed.
	Too many transcoding jobs failed within a given transaction which was interpreted as a transaction failure by the Transcoding Platform. Some Transcoding Platform MAY decide to never consider that as a failure unless all transcoding jobs failed for example.

	5010
	RT
	Server Error – License prohibits the request
	When a licensing agreement would be exceeded.

	5011
	RT
	Server Error – Resource Limit Exceeded
	Resource could be memory, CPU, etc.

	5012
	RT
	Server Error – Multiple Transcoding Jobs not supported.
	The Transcoding Platform does not support multiple transcoding jobs per transaction. None of the transcoding job was performed.

	5013-5499
	
	STI – reserved for future use
	

	5500-5999
	
	Other – Reserved for any other non-defined (or proprietary) server error result.
	

6. Charging
(Informative)

STI 1.0 does not include any specific charging parameters such as money amount, etc. The Transcoding Platform will however return basic information such as Transaction ID, return code, total duration, and file size which can be used by the requesting application to perform rating and charging operations. Note that the Application Platforms and the Transcoding Platform can either be within the same network (i.e. trusted nodes) or in different networks (untrusted nodes).

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-STI-V1_0
	15 Jan 2004
	All
	First Draft

	
	25 Jan 2004
	All
	

	
	27 Jan 2004
	All
	

	
	25 Feb 2004
	All
	

	
	10 Mar 2004
	All
	

	
	22 Apr 2004
	All
	

	
	17 May 2004
	5.1.3.1, 5.1.4, 5.2.2.2, 5.2.6.2, 5.3.2.2, 5.5, Appendix F
	Changed parameters’ names and locations, made some clarifications and corrections, removed section 5.5 (service discovery).

	
	11 Jul 2004
	5.2.3, 5.2.4, 52.5, 5.2.6.2, 5.3, Appendix C, Appendix E, Appendix H, UML Diagrams
	Sections 5.2.3, 5.2.4 rewritten (media types, content types and codecs), 5.3 revised – failureResponse merged with TransactionResponse, added content type examples, added SCR tables, new UMLs, new xsd.

	
	12 Aug 2004
	5.1.2, Appendix H, All tables
	Added reference to OWSER document, Numbered tables, added applicationSizeLimit, changed originatorID comment, some fixes to SCR tables.

	
	23 Sep 2004
	3, 5.1.3.4, 5.1.5, 5.5, All tables, UML diagrams
	Added URI to abbreviations, Changed multipart description, Added explanations about ProfileID and TranscodingParams hierarchy, Added section 5.5, Updated all tables and UML diagrams and other minor clerical changes.

	
	1 0ct 2004
	Appendices
	Removed xsd schema, which will be uploaded in a separate document, removed examples until they are appropriately updated.

	
	18 0ct 2004
	5.1.3, 5.1.6, 5.2.5, 5.3, Table 1, Tables 6-12, Appendix D.
	Added Data Types section, added sections about adaptation classes and size limit heirarchy, revision of Transformations section, revision of Response Transaction section, return codes and errors codes. Added appendix D for adaptation classes examples.

	
	11 Nov 2004
	5.1.2, 5.1.5.1, 5.1.6.4, Figure 7, 5.2.1.1, 5.2.1.2, 5.2.2.1, 5.3.1.1, 5.3.3, 6
	Some changes regarding protocols to referenced resources, changed externalLocation structure in Target, small changes according to MWS recommendations, removed section 6 about DRM.

	
	28 Nov 2004
	
	Made public.

Appendix B. Policy
(Informative)

The following table describes a list of optional items supported by the Policy mechanism. The Policy mechanism is activated by calling the PolicyRef URL. The implementation is specific and has to be defined between the Application Platform and the Transcoding Platform. Additional items may be supported per the specific implementation and then have to be defined between the Application Platform and the Transcoding Platform.

This table may be updated in the future and will be available in …

In case the Transcoding Platform receives a PolicyRef but it does not recognize or support it, it SHALL return an error.

The mechanisms to fetch policy data are the same as to access content (see 5.1.5). The proposed interface provides two methods of supporting policy data:

· Self contained requests, in which the policy data resides within the Transaction jobs themselves.
· References to external policy data, in which case a Transcoding job only contains a pointer to a remote location from where the policy data can be pulled by the Transcoding Platform.
The same mechanisms described in 0 and 5.1.5.1 are used to obtain external and self-contained policy data.

Policies may be defined in 3 levels:

1) Media type level: text, video, image, audio,

2) Format level: text/*, video/3gpp, image/jpeg, image/gif, audio/amr, …

3) Component level: part 3 more important, part 2 then, part 1 after.

Issue of listing priority order. Maybe put a priority order for each transformation which specifies the order in which they shall be performed. Or in the policies you list transformations in the order in which they have to be performed.

Note: We may need to separate ProfileID into 2 parts: ProfileID (e.g. UserAgent or UAProf link) and ApplicationID (e.g. MMS, browsing, etc.) ---> Actually ApplicationID would be a generic parameter that could be used for policies as well as for context of profile ID. ApplicationID could be placed at transaction or job level (optional) with same precedence a other parameters.
Table 13: Policy Parameters

	No.
	Policy item name
	Description
	Comments

	1.
	PriorityOrder
	The priority in which the elements should be inserted in the output (Note: assumed to be desired output formats).

The Transcoding Platform may decide to first compress or delete elements with lower priority.
	

	2.
	PreserveList
	A list of media which should be conserved in the output (adapted or not).
	

	3.
	DontTouchList
	A list of media which should not be transcoded (don’t touch).
	

	4.
	DeleteList
	A list of media that should be deleted.
	

	5.
	AllowedTruncationList

	A list of media types/formats that can be truncated. Time truncation may be performed for video, audio and animation (e.g. animated GIF to 1 image GIF). Also applies to truncating text. Default=false.
	

	6.
	DeleteOnDRMcomponents

	If this flag is set, then if a DRM component is encountered it is deleted (default is false).
	

	7.
	DeleteUnknownMediaComponent

	If this flag is set, then whenever the Transcoding Platform encounters a media component which it can’t handle, the component is deleted. Otherwise it is included according to priority list without any adaptation.

	

	8.
	UseDefaultProfile

	yes/no

If “no” and there is no default profile then an error is issued.
	

	9.
	ReturnContentIfNotChanged

	If this flag is set, the Transcoding Platform SHALL return the output even if it is identical to the input. Default=true.

	

	10.
	OverwritePresentation
	This flag detemines if input presentation, when present, should be altered by the template or not. Default=false (i.e. template used only when no input presentation is provided). The operation involves using information from the input presentation that is not present in the template.

	

	11.
	FailOnDRM Flag
	If this flag is set, then whenever one or many DRM protected content elements are encountered, the entire Transcoding Job SHALL fail. Otherwise, those elements are returned "as is", the others are transcoded as needed and a warning is issued.
	Default is false.

	12.
	AllowDifferentParam Flag
	If this flag is set, the Transcoding Platform MAY choose to perform the transcoding with different parameters if it finds appropriate. For instance, the parameters may be contradictory, impossible to meet, etc.. If the Transcoding Platform uses different parameters, it will issue a warning.
	Default is false.

	13.
	SpeedForQualityTradeoff flag
	If this flag is set, then the Transcoding Platform MAY perform the transcoding faster by using “short-cuts”. This may lead to lower quality but would increase the Transcoding Platform capacity.
	This feature is subjective and implementation specific. Default is false (i.e. quality more important than speed).

Appendix C. Content Type and Codec Examples
(Informative)

C.1 Audio

<Audio>

<ContentType>audio/3gpp</ContentType>

<ContentTypeParam>

<Name>brand</Name>

<Value>3gp2</Value>

</ContentTypeParam>

<Codec> audio/amr </Codec>

</Audio>

C.2 Video

<Video>

<ContentType>video/3gpp</ContentType>

<ContentTypeParam>

<Name>brand</Name>

<Value>3gp6</Value>

</ContentTypeParam>

<VideoVisual>

<Codec>video/h263</ContentType>

<CodecParam>

<Name>Profile</Name>

<Value>0</Value>

</CodecParam>

<CodecParam>

<Name>Level</Name>

<Value>10</Value>

</CodecParam>

</VideoVisual>

</Video>

C.3 Image

<Image>

<ContentType>image/gif</ContentType>

<ContentTypeParams>

<Name>subset</Name>

<Value>gif89a</Value>

</ContentTypeParam>

</Image>

C.4 Text

<Text>

<ContentType>text/plain</ContentType>

<ContentTypeParams>

<Name>charset</Name>

<Value>iso-8859-1</Value>

</ContentTypeParam>

</Text>

C.5 Multipart

<Multipart>

<ContentType>multipart/related</ContentType>

<ContentTypeParam>

<Name>start</Name>

<Value>cid:AAA.smil</Value>

</ContentTypeParam>

<ContentTypeParam>

<Name>type</Name>

<Value>application/smil</Value>

</ContentTypeParam>

<Presentation>

<ContentType>application/smil</ContentType>

<ContentTypeParam>

<Name>Subset</Name>

<Value>SMIL-CONF-1_2</Value>

</ContentTypeParam>

</Presentation>

</Multipart>

Appendix D. Example of Adaptation Classes
(Informative)

This section provides illustrative examples on the description and use of Adaptation Classes in the STI v1.0 interface.

D.1 MMS Major/Minor
The first example illustrates how an MMSC could describe minor and major adaptations to an STI-compliant transcoding platform. Both minor and major adaptations are allowed by default. In the transcoding request, we only present the part that relates to adaptation classes description and their control. The response contains a list of Adaptation classes that were matched.

Pre-conditions:

MMSC needs to know if minor and/or major adaptations were performed.

The MMS message contains a SMIL presentation along with a video encoded in video/h263-2000 format encapsulated in 3GPP file format.

The receiving phone only supports image/jpeg.

STI Request:

…

<adaptationClass>

 <className>major</className>

 <allowed>true</allowed>

 <classRef>file://Example1-file</classRef>

</adaptationClass>

<adaptationClass>

 <className>minor-or-none</className>

 <allowed>true</allowed>

 <classRef>file://Example1-file</classRef>

</adaptationClass>

…

STI Response:

…

<adaptationPerformed>major</adaptationPerformed>

…

Note: the Application Platform would distinguish between an MMS minor adaptation and no adaptation at all by considering warning codes returned (basically a warning telling that no adaptation was performed, see section 5.3.4).

D.2 Web Browsing Adaptation Classes
Another example would be for a Web Portal which wants to learn if layout conversion was performed to convert HTML to any other flavour or HTML, xHTML or any text; or if any video was converted to an image; or if images were deleted:

STI Request:

…

<adaptationClass>

 <className> LayoutAdaptation </className>

 <allowed>true</allowed>

 <classRef>Example2-file</classRef>

</adaptationClass>

<adaptationClass>

 <className> VideoToImage </className>

 <allowed>true</allowed>

 <classRef>Example2-file</classRef>

</adaptationClass>

STI Response (given that the content adapted met the first two conditions):

…

<adaptationPerformed>LayoutAdaptation</adaptationPerformed>

<adaptationPerformed>VideoToImage</adaptationPerformed>
…
Appendix E. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

E.1 Client Conformance Requirements

The table below enumerates the client conformance requirements assuming as the Client any Application Platform able to use the features and services offered by the Transcoding Platform

	Item
	Function
	Reference
	Status
	Requirements

	STI-CLI-001
	SOAP 1.1 protocol support
	5.1.2
	M
	Support of SOAP 1.1 [OMA MWS Guidelines] AND

STI-CLI-002 AND

STI-CLI-003 AND

STI-CLI-004 AND

STI-CLI-005 AND

STI-CLI-006

	STI-CLI-002
	SOAP content sent over HTTP used over TCP/IP
	5.1.2
	M
	Support of [HTTP] AND

support of [TCP]

	STI-CLI-003
	SOAP request sent as body of a HTTP POST
	5.1.2
	M
	

	STI-CLI-004
	SOAP request contain a single SOAP envelope
	5.1.2
	M
	

	STI-CLI-005
	Attachment structure conformant with SOAP with attachments [OMA MWS Guidelines]
	5.1.2
	M
	

	STI-CLI-006
	Compulsory use of the "start parameter" within SOAP protocol
	5.1.2
	M
	

	STI-CLI-007
	SOAP Header
	5.1.4.1
	O
	

	STI-CLI-008
	Support of multiple TranscodingJob within a single Request Transaction. At least one TranscodingJob must appear
	5.1.4.1
	M
	STI-CLI-009

	STI-CLI-009
	For each TranscodingJob requiring TranscodingParams, TranscodingParams within the SOAP context
	5.1.4.1
	M
	

	STI-CLI-0010
	Support of multipart transcoding
	5.1.4.4
	O
	STI-CLI-011 AND

STI-CLI-012 AND

STI-CLI-014

	STI-CLI-0011
	Multipart transferred as multipart/related if presentation exists
	5.1.4.4
	M
	STI-CLI-013

	STI-CLI-0012
	Multipart transferred as multipart/mixed if presentation does not exist
	5.1.4.4
	M
	

	STI-CLI-0013
	Start parameter of multipart refers to the presentation
	5.1.4.4
	O
	As defined in [MIME]

	STI-CLI-0014
	Multipart encoding method
	5.1.4.4
	O
	STI-CLI-015 OR

STI-CLI-016

	STI-CLI-0015
	Textual encoding
	5.1.4.4
	O
	Textual encoding as defined in [MIME]

	STI-CLI-0016
	Binary encoding
	5.1.4.4
	O
	Binary encoding as defined in [WAPWSP]

	STI-CLI-0017
	Content data referenced from within the SOAP Request body
	5.1.5
	M
	STI-CLI-018 OR

STI-CLI-022

	STI-CLI-0018
	Self contained content data
	5.1.5
	O
	STI-CLI-019 AND

STI-CLI-020 AND

STI-CLI-021

	STI-CLI-0019
	Content files included in the HTTP POST message but outside the SOAP message
	5.1.4.1
	O
	

	STI-CLI-0020
	Content referenced as attachment
	0, 5.2.1.2
	O
	

	STI-CLI-0021
	HTTP headers: Target host, content length (total content of the request), content type, SOAP action
	5.2.1.2
	O
	

	STI-CLI-0022
	References to external content elements
	5.1.5
	O
	STI-CLI-023
AND

STI-CLI-024

	STI-CLI-0023
	URL using HTTP, HTTPS, FTP or FILE
	5.1.5.1
	O
	

	STI-CLI-0024
	HTTP headers: Target host, content length, content type and SOAP action
	5.2.1.1
	O
	

	STI-CLI-0025
	Support of Capability profiles
	5.1.6.1
	O
	

	STI-CLI-0026
	Support of Transcoding parameters
	5.1.6.2
	O
	

	STI-CLI-0027
	Support of Policy reference
	5.1.6.4
	O
	

	STI-CLI-0028
	Request Transaction generation
	5.1.1, 5.2.2.1
	M
	

	STI-CLI-0029
	OriginatorID: Unique ID identifying the Application platform
	5.2.2.1
	M
	

	STI-CLI-0030
	TransactionID: Unique ID identifying the transaction
	5.2.2.1
	M
	

	STI-CLI-0031
	PolicyRef not specified for single Transcoding Jobs if PolicyRef is specified in Transaction level
	5.2.2.1
	M
	

	STI-CLI-0032
	JobID: Unique ID identifying the TranscodingJob within the Transaction
	5.2.2.1
	M
	

	STI-CLI-0033
	Support of Source element
	5.2.2.1
	M
	STI-CLI-035 AND

STI-CLI-036

	STI-CLI-0034
	Support of Target element
	5.2.2.1
	M
	STI-CLI-035 AND

STI-CLI-036

	STI-CLI-0035
	Location if Sources included: Content ID (cid) of the attachment within the request as in [RFC2392]
	5.2.2.1
	M
	

	STI-CLI-0036
	Location if Sources referenced: Full-path (URL) to an external storage
	5.2.2.1
	M
	

	STI-CLI-0037
	Support of proprietary Target Media Types
	5.2.3
	M
	To re-evaluate

	STI-CLI-0038
	Support of proprietary Formats
	5.2.4
	M
	To re-evaluate

	STI-CLI-0039
	Support of proprietary Transformations
	5.2.5
	M
	To re-evaluate

	STI-CLI-0040
	Response Transaction parsing
	5.1.1
	M
	To re-evaluate

E.2 Server Conformance Requirements
The table below enumerates the server conformance requirements assuming as the Server any Transcoding Platform able to offer transcoding services to the Applications Platforms.

	Item
	Function
	Reference
	Status
	Requirements

	STI-SERVER-001
	SOAP 1.1 protocol support
	5.1.2
	M
	Support of SOAP 1.1 [OMA MWS Guidelines] AND

STI-SERVER-002 AND

STI-SERVER-003 AND

STI-SERVER-004 AND

STI-SERVER-005 AND

STI-SERVER-006

	STI-SERVER-002
	SOAP content sent over HTTP used over TCP/IP
	5.1.2
	M
	Support of [HTTP] AND

support of [TCP]

	STI-SERVER-003
	SOAP response sent as body of a HTTP POST
	5.1.2
	M
	

	STI-SERVER-004
	SOAP response contains a single SOAP envelope
	5.1.2
	M
	

	STI-SERVER-005
	Attachment structure conformant with SOAP with attachments [OMA MWS Guidelines]
	5.1.2
	M
	

	STI-SERVER-006
	Use of the "start parameter" within SOAP protocol
	5.1.2
	O
	

	STI-SERVER-007
	Support of multiple Jobs Results within a single Response Transaction
	5.1.4.2
	M
	

	STI-SERVER-008
	Support of multipart content
	5.1.4.4
	O
	STI-SERVER-009 AND

STI-SERVER-010 AND

STI-SERVER-012

	STI-SERVER-009
	Multipart transferred as multipart/related if presentation exists
	5.1.4.4
	O
	STI-SERVER-011

	STI-SERVER-0010
	Multipart transferred as multipart/mixed if presentation does not exist
	5.1.4.4
	O
	

	STI-SERVER-0011
	Start parameter of multipart refers to the presentation
	5.1.4.4
	O
	

	STI-SERVER-0012
	Multipart encoding method
	5.1.4.4
	O
	STI-SERVER-013 OR

STI-SERVER-014

	STI-SERVER-0013
	Textual encoding
	5.1.4.4
	O
	Textual encoding as defined in [MIME]

	STI-SERVER-0014
	Binary encoding
	5.1.4.4
	O
	Binary encoding as defined in [WAPWSP]

	STI-SERVER-0015
	Content data referenced from within the SOAP Request body
	5.1.5
	O
	STI-SERVER-016 OR

STI-SERVER-019

	STI-SERVER-0016
	Self contained content data
	5.1.5
	O
	STI-SERVER-017 AND

STI-SERVER-018

	STI-SERVER-0017
	Content files included in the HTTP POST message but outside the SOAP message
	5.1.4.1
	O
	

	STI-SERVER-0018
	Content referenced as attachment
	0
	O
	MIME parts according to SOAP with attachments [OMA MWS Guidelines]

	STI-SERVER-0019
	References to external content elements
	5.1.5
	O
	STI-SERVER-020

	STI-SERVER-0020
	URL using HTTP, HTTPS, FTP or FILE
	5.1.5.1
	O
	

	STI-SERVER-0021
	Request Transaction parsing
	5.1.1, 5.2
	M
	

	STI-SERVER-0022
	Support of Capability profiles
	5.1.6.1
	O
	

	STI-SERVER-0023
	Support of Transcoding parameters
	5.1.6.2
	O
	

	STI-SERVER-0024
	Support of Policy reference
	5.1.6.4
	O
	

	STI-SERVER-0025
	Hierarchy of transcoding parameters (from most to least):

TranscodingParams (transaction job level)

ProfileID (transcoding job level)

TranscodingParams (transaction level)

Profile ID (transaction level)
	5.2.2.1
	M
	

	STI-SERVER-0026
	Support transaction priority indication
	5.2.2.1
	O
	

	STI-SERVER-0027
	Support of proprietary Target Media Types
	5.2.3
	M
	STI-SERVER-028 To re-evaluate

	STI-SERVER-0028
	Error returning if Target Media Type not recognized
	5.2.3
	M
	

	STI-SERVER-0029
	Support of proprietary Formats
	5.2.4
	M
	STI-SERVER-030 To re-evaluate

	STI-SERVER-0030
	Error returning if Format not recognized
	5.2.4
	M
	

	STI-SERVER-0031
	Support of proprietary Transformations
	5.2.5
	M
	STI-SERVER-032 To re-evaluate

	STI-SERVER-0032
	Error returning if Transformation not recognized
	5.2.5
	M
	

	STI-SERVER-0033
	Child transformations precede the execution of the parent transformation
	5.2.6
	M
	

	STI-SERVER-0034
	Target layout precedence:

Presentation layout

Layout inside Presentation Template

Layout of the source input presentation file

Default: Portrait
	5.2.6.2
	M
	

	STI-SERVER-0035
	Response Transaction generation
	5.1.1
	M
	

	STI-SERVER-0036
	Successful Response Transaction HTTP headers: Success code (200), content length, content type and SOAP action
	5.3.1
	M
	

	STI-SERVER-0037
	Content data referenced from within the SOAP Response body
	5.1.5
	M
	STI-SERVER-038 OR

STI-SERVER-042

	STI-SERVER-0038
	Self contained content data
	5.1.5
	O
	STI-SERVER-039 AND

STI-SERVER-040 AND

STI-SERVER-041

	STI-SERVER-0039
	Content files included in the HTTP message but outside the SOAP message
	5.1.4.1
	O
	

	STI-SERVER-0040
	Content referenced as attachment
	0, 5.2.1.2
	O
	MIME parts according to SOAP with attachments. [OMA MWS Guidelines]

	STI-SERVER-0041
	HTTP headers: Target host, content length (total content of the response), content type, SOAP action and boundary string
	5.2.1.2
	O
	

	STI-SERVER-0042
	References to external content elements
	5.1.5
	O
	STI-SERVER-043 AND

STI-SERVER-044

	STI-SERVER-0043
	URL using HTTP, HTTPS, FTP or FILE
	5.1.5.1
	O
	

	STI-SERVER-0044
	HTTP headers: Target host, content length, content type and SOAP action
	5.2.1.1
	O
	

	STI-SERVER-0045
	OriginatorID: Return the unique OriginatorID received in the RequestTransaction
	5.3
	M
	

	STI-SERVER-0046
	TransactionID: Return the unique TransactionID received in the RequestTransaction
	5.3
	M
	

	STI-SERVER-0047
	JobID: Return the unique ID given by the Application Platform to identify the TranscodingJob
	5.3
	M
	

	STI-SERVER-0048
	Support of the Output entity
	5.3
	M
	STI-SERVER-049 AND

STI-SERVER-050

	STI-SERVER-0049
	Output Location if Content included: Content ID (cid) of the attachment within the request as in [RFC2392]
	5.3
	M
	

	STI-SERVER-0050
	Output Location if Content referenced: Full-path (URL) to an external storage
	5.3
	M
	

	STI-SERVER-0051
	Support of Transaction Return Codes: Success and Warnings
	5.3.4
	M
	

	STI-SERVER-0052
	Support of Transcoding Job Return Codes: Success and Warnings
	5.3.4
	M
	STI-SERVER-054

	STI-SERVER-0053
	Support of Transcoding Job Return Codes: Errors
	5.3.4
	M
	

	STI-SERVER-0054
	Support of details about warnings
	5.3
	M
	

	STI-SERVER-0055
	Failure Transaction Response HTTP headers: Error code (HTTP/1.1 500 Internal Server Error), content type, content length and SOAP action
	5.3.2
	M
	

	STI-SERVER-0056
	STI Failure Transaction Response contained into the SOAP Fault element of a SOAP message
	5.3.2
	M
	[OMA MWS Guidelines] AND

STI-SERVER-057

	STI-SERVER-0057
	Specific data of STI Failure Transaction Response under <detail > element of the SOAP Fault element
	5.3.2
	
	

	STI-SERVER-0058
	Support of Transaction Failure Error Codes
	5.3.4
	M
	

	STI-SERVER-0059
	Transcoding Platform not performs any transcoding over DRM protected contents
	
	M
	STI-SERVER-060

	STI-SERVER-0060
	Transcoding platform including specific return code if DRM content found
	
	M
	

Transcoding Job

Source

ContentType

Location

Etc…

Target

ProfileID

Transcoding Parameters

Audio

Bitrate

…

External Location

Etc…

SOAP envelope

Response Body

Total Duration

Transaction Return Code

Return Message

Job Result 1

Job Result N

Content Attachment 1

Content Attachment P

Job Result

Transcoding Return code

Return Message

…

Output

Location

Size

Etc

Mime multipart

Presentation Media part (SMIL incl. Text, HTML…)

Media part (e.g., Image)

Media part (e.g., Audio)

Start

� For this kind of figures, the Unified Modeling Language (UML) is used

� The scale (-50..50) is a relative scale of intensity or level of the correction, and it is not defined by specific physical measure.

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-STI-V1_0-20041111-D]
 REF FootText1 \h

Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-STI-V1_0-20041111-D]

_1157205663.vsd
HTTP POST Request�

HTTP Headers�

SOAP-Envelope�

SOAP Header�

SOAP Body�

STI Request Body�

HTTP Body�

HTTP POST Request�

HTTP Headers�

SOAP-Envelope�

SOAP Header�

SOAP Body�

HTTP MIME Multipart Body�

STI Request Body�

Transcoding Job 1�

Transcoding Job N�

. . .�

Content Attachment 1�

Content Attachment M�

. . .�

Transcoding Job 1�

Transcoding Job N�

. . .�

_1159790515.vsd
�

Transcoding Job 2 (internal attachment reference 1)
 <transcodingJob>
 � (job Id, source, target, transcoding params, etc.)
 </transcodingJob>�

SOAP-Envelope
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

</soapenv:Envelope>�

SOAP Header
<soapenv:Header>
 . . .
</soapenv:Header>�

SOAP Body
<soapenv:Body>

</soapenv:Body>�

STI Request Message
 <RequestTransaction>
 <stiVersion>
 . . .
 </stiVersion>
 <originatorID>AppABC</originatorID>
 <transactionID>xxx</transactionID>
 . . .

 </RequestTransaction> �

HTTP MIME Multipart Body�

Content Attachment 1�

Content Attachment M�

. . .�

Transcoding Job 1 (external reference URL)
 <transcodingJob>
 � (job Id, source, target, transcoding params, etc.)
 </transcodingJob>�

Transcoding Job N (internal attachment reference M)
 <transcodingJob>
 � (job Id, source, target, transcoding params, etc.)
 </transcodingJob>�

. . .�

Transcoding Job 3 (internal attachment reference 1)
 <transcodingJob>
 � (job Id, source, target, transcoding params, etc.)
 </transcodingJob>�

_1161702920.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

�

+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]
+multipart[0..1]
+sizeLimit[0..1]
+applicationSizeLimit[0..1]
+extensionData[0..*]�

TranscodingParams�

�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+synthetic[0..1]�

Audio�

�

�

+codec[0..1]
+codecParam[0..*]
+colorScheme[0..1]
+width[0..1]
+height[0..1]
+resizeDirective[0..1]�

Image�

�

�

+videoVisual[0..1]
+videoAudio[0..1]�

Video�

�

�

�

Text�

�

�

+presentation[0..1]
+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]�

Multipart�

�

�

+type[1..1]
+parameter[0..1]
+order[0..1]�

Transformation�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

+channelToUse[0..1]
+channelsPriority[0..1]
+instrument[0..1]�

Synthetic�

�

�

+codec[0..1]
+codecParam[0..*]
+width[0..1]
+height[0..1]
+frameRate[0..1]
+bitRate[0..1]
+resizeDirective[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoVisual�

�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoAudio�

�

�

+contentType[0..1]
+contentTypeParam[0..*]
+template[0..1]
+layout[0..1]�

Presentation�

�

�

�

1�

+audio�

0..1�

�

�

1�

+synthetic�

0..1�

�

�

1�

+videoVisual�

0..1�

�

�

1�

+videoAudio�

0..1�

�

�

1�

+presentation�

0..1�

�

�

1�

+transformation�

0..*�

�

�

1�

+audio�

0..1�

�

�

1�

+image�

0..1�

�

�

1�

+text�

0..1�

�

+contentType[0..1]
+contentTypeParam[0..*]
+sizeLimit[0..1]
+transformation[0..*]
+extensionData[0..*]�

Media�

�

�

�

1�

+extensionData�

0..*�

�

�

�

�

�

�

�

�

�

�

{XOR}�

{XOR}�

{XOR}�

�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+contentTypeParam�

0..*�

�

�

1�

+extensionData�

0..*�

�

+scheme[1..1]
+depth[1..1]�

ColorScheme�

�

�

�

1�

+colorScheme�

0..1�

�

�

1�

+contentTypeParam�

0..*�

�

�

1�

+multipart�

0..1�

�

�

1�

+image�

0..1�

�

�

1�

+video�

0..1�

�

�

1�

+text�

0..1�

�

�

1�

+video�

0..1�

�

�

1�

+codecParam�

0..*�

�

�

1�

+codecParam�

0..*�

�

�

1�

+codecParam�

0..*�

1�

+codecParam�

0..*�

�

+type[1..1]
+parameter[0..1]
+order[0..1]�

Transformation�

�

�

�

1�

+transformation�

0..*�

�

�

1�

+transformation�

0..*�

Static Structure�

Static Structure�

�

Static Structure�

Static Structure�

�

+stiVersion[0..1]
+originatorID[1..1]
+transactionID[1..1]
+extensionData[0..*]�

Transaction�

�

Static Structure�

�

+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+transcodingJob[1..*]
+policyRef[0..1]
+adaptationClass[0..*]�

RequestTransaction�

�

�

+mainReturnResult[1..1]
+additionalReturnResult[0..*]
+totalDuration[0..1]
+jobResult[1..*]�

ResponseTransaction�

�

�

�

�

�

�

+contentType[1..1]
+contentTypeParam[0..*]
+location[1..1]
+extensionData[0..*]�

Source�

�

�

+source[1..1]
+target[1..1]
+policyRef[0..1]
+adaptationClass[0..*]�

TranscodingJob�

�

�

+mainReturnResult[1..1]
+additionalReturnResult[0..*]
+duration[0..1]
+output[1..1]
+adaptationPerformed[0..*]�

JobResult�

�

�

�

1�

+transcodingJob�

1..*�

�

�

1�

+jobResult�

0..*�

�

�

1�

+source�

1�

�

�

1�

+transcodingParams�

0..1�

�

+(...)�

TranscodingParams�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

0..*�

�

+jobID[1..1]
+extensionData[0..*]�

Job�

�

�

�

�

�

�

�

1�

+contentTypeParam�

0..*�

�

+externalLocation[0..1]
+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+extensionData[0..*]�

Target�

�

�

�

1�

+target�

1�

�

+location[1..1]
+mediaSize[0..1]
+extensionData[0..*]�

Output�

�

�

�

1�

+output�

1�

�

�

1�

+transcodingParams�

0..1�

�

+major[0..1] = 1
+minor[0..1] = 0
+versionString[0..1] = 1.0�

STIVersion�

�

�

�

1�

+stiVersion�

0..1�

�

�

1�

�

0..*�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

0..*�

�

+returnCode[1..1]
+returnString[0..1]�

ReturnResult�

�

�

�

1�

�

1..1�

�

�

1�

�

0..*�

�

�

1�

�

0..*�

�

�

1�

�

1..1�

+mainReturnResult�

+additionalReturnResult�

+mainReturnResult�

+additionalReturnResult�

�

+className[1..1]
+allowed[0..1]
+classRef[0..1]�

AdaptationClass�

�

�

1�

�

0..*�

+adaptationClass�

�

�

1�

�

0..*�

+adaptationClass�

+extensionData�

�

�

1�

�

0..1�

+externalLocation�

�

+path[1..1]
+name[0..1]�

ExternalLocation�

�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

�

+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]
+multipart[0..1]
+sizeLimit[0..1]
+applicationSizeLimit[0..1]
+extensionData[0..*]�

TranscodingParams�

�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+synthetic[0..1]�

Audio�

�

�

+codec[0..1]
+codecParam[0..*]
+colorScheme[0..1]
+width[0..1]
+height[0..1]
+resizeDirective[0..1]�

Image�

�

�

+videoVisual[0..1]
+videoAudio[0..1]�

Video�

�

�

�

Text�

�

�

+presentation[0..1]
+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]�

Multipart�

�

�

+type[1..1]
+attribute[0..*]
+order[0..1]�

Transformation�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

+channelToUse[0..1]
+channelsPriority[0..1]
+instrument[0..1]�

Synthetic�

�

�

+codec[0..1]
+codecParam[0..*]
+sizeLimit[0..1]
+width[0..1]
+height[0..1]
+frameRate[0..1]
+bitRate[0..1]
+resizeDirective[0..1]
+transformation[0..*]�

VideoVisual�

�

�

+codec[0..1]
+codecParam[0..*]
+sizeLimit[0..1]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+transformation[0..*]�

VideoAudio�

�

�

+contentType[0..1]
+contentTypeParam[0..*]
+template[0..1]
+layout[0..1]�

Presentation�

�

�

�

1�

+audio�

0..1�

�

�

1�

+synthetic�

0..1�

�

�

1�

+videoVisual�

0..1�

�

�

1�

+videoAudio�

0..1�

�

�

1�

+presentation�

0..1�

�

�

1�

+transformation�

0..*�

�

�

1�

+audio�

0..1�

�

�

1�

+image�

0..1�

�

�

1�

+text�

0..1�

�

+contentType[0..1]
+contentTypeParam[0..*]
+sizeLimit[0..1]
+transformation[0..*]
+extensionData[0..*]�

Media�

�

�

�

1�

+extensionData�

0..*�

�

�

�

�

�

�

�

�

�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

�

0..*�

�

�

1�

+extensionData�

0..*�

�

+scheme[1..1]
+depth[1..1]�

ColorScheme�

�

�

�

1�

+colorScheme�

0..1�

�

�

1�

+contentTypeParam�

0..*�

�

�

1�

+multipart�

0..1�

�

�

1�

+image�

0..1�

�

�

1�

+video�

0..1�

�

�

1�

+text�

0..1�

�

�

1�

+video�

0..1�

�

�

1�

+codecParam�

0..*�

�

�

1�

�

0..*�

�

�

1�

+codecParam�

0..*�

{XOR}�

{XOR}�

{XOR}�

�

�

1�

+codecParam�

0..*�

�

+type[1..1]
+attribute[0..*]
+order[0..1]�

Transformation�

�

�

�

1�

+transformation�

0..*�

�

�

1�

+transformation�

0..*�

�

�

1�

�

0..*�

+attribute�

+contentTypeParam�

+codecParam�

{XOR}�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

�

+stiVersion[0..1]
+originatorID[1..1]
+transactionID[1..1]
+extensionData[0..*]�

Transaction�

�

Static Structure�

�

+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+transcodingJob[1..*]
+policyRef[0..1]
+adaptationClass[0..*]�

RequestTransaction�

�

�

+mainReturnResult[1..1]
+additionalReturnResult[0..*]
+totalDuration[0..1]
+jobResult[1..*]�

ResponseTransaction�

�

�

�

�

�

�

+contentType[1..1]
+contentTypeParam[0..*]
+location[1..1]
+extensionData[0..*]�

Source�

�

�

+source[1..1]
+target[1..1]
+policyRef[0..1]
+adaptationClass[0..*]�

TranscodingJob�

�

�

+mainReturnResult[1..1]
+additionalReturnResult[0..*]
+duration[0..1]
+output[1..1]
+adaptationPerformed[0..*]�

JobResult�

�

�

�

1�

+transcodingJob�

1..*�

�

�

1�

+jobResult�

0..*�

�

�

1�

+source�

1�

�

�

1�

+transcodingParams�

0..1�

�

+(...)�

TranscodingParams�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

0..*�

�

+jobID[1..1]
+extensionData[0..*]�

Job�

�

�

�

�

�

�

�

1�

+contentTypeParam�

0..*�

�

+externalLocation[0..1]
+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+extensionData[0..*]�

Target�

�

�

�

1�

+target�

1�

�

+location[1..1]
+mediaSize[0..1]
+extensionData[0..*]�

Output�

�

�

�

1�

+output�

1�

�

�

1�

+transcodingParams�

0..1�

�

+major[0..1] = 1
+minor[0..1] = 0
+versionString[0..1] = 1.0�

STIVersion�

�

�

�

1�

+stiVersion�

0..1�

�

�

1�

�

0..*�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

0..*�

�

+returnCode[1..1]
+returnString[0..1]�

ReturnResult�

�

�

�

1�

�

1..1�

�

�

1�

�

0..*�

�

�

1�

�

0..*�

�

�

1�

�

1..1�

+mainReturnResult�

+additionalReturnResult�

+mainReturnResult�

+additionalReturnResult�

�

+className[1..1]
+allowed[0..1]
+classRef[0..1]�

AdaptationClass�

�

�

�

1�

�

0..*�

+adaptationClass�

�

�

1�

�

0..*�

+adaptationClass�

+extensionData�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+synthetic[0..1]�

Audio�

�

�

+codec[0..1]
+codecParam[0..*]
+colorScheme[0..1]
+width[0..1]
+height[0..1]
+resizeDirective[0..1]�

Image�

�

�

+videoVisual[0..1]
+videoAudio[0..1]�

Video�

�

�

�

Text�

�

�

+presentation[0..1]
+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]�

Multipart�

�

�

+type[1..1]
+parameter[0..1]
+order[0..1]�

Transformation�

�

TranscodingParams
Media Hierarchy View�

�

+channelToUse[0..1]
+channelsPriority[0..1]
+instrument[0..1]�

Synthetic�

�

�

+codec[0..1]
+codecParam[0..*]
+width[0..1]
+height[0..1]
+frameRate[0..1]
+bitRate[0..1]
+resizeDirective[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoVisual�

�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoAudio�

�

�

+contentType[0..1]
+contentTypeParam[0..*]
+template[0..1]
+layout[0..1]�

Presentation�

�

�

�

1�

+Synthetic�

0..1�

�

�

1�

+VideoVisual�

0..1�

�

�

1�

+VideoAudio�

0..1�

�

�

1�

+Presentation�

0..1�

�

�

1�

+transformation�

0..*�

�

+contentType[0..1]
+contentTypeParam[0..*]
+sizeLimit[0..1]
+transformation[0..*]
+extensionData[0..*]�

Media�

�

�

�

�

�

�

�

�

�

�

�

�

+scheme[1..1]
+depth[1..1]�

ColorScheme�

�

�

�

1�

+ColorScheme�

0..1�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

�

+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]
+multipart[0..1]
+sizeLimit[0..1]
+applicationSizeLimit[0..1]
+extensionData[0..*]�

TranscodingParams�

�

�

�

Audio�

�

�

�

Image�

�

�

�

Video�

�

�

�

Text�

�

�

+presentation[0..1]
+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]�

Multipart�

�

�

�

1�

+Audio�

0..1�

�

�

1�

+Image�

0..1�

�

�

1�

+Text�

0..1�

�

�

1�

+Video�

0..1�

�

�

1�

+Multipart�

0..1�

�

�

1�

+Audio�

0..1�

�

�

1�

+Image�

0..1�

�

�

1�

+Video�

0..1�

�

�

1�

+Text�

0..1�

TranscodingParams
Media Transcoding Parameters view�

Static Structure�

�

Static Structure�

Static Structure�

�

+stiVersion[1..1]
+originatorID[1..1]
+transactionID[1..1]
+extensionData[0..*]�

Transaction�

�

Static Structure�

�

+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+transcodingJob[1..*]
+policyRef[0..1]�

RequestTransaction�

�

�

+returnCode[1..1]
+returnString[0..1]
+totalDuration[0..1]
+jobResult[1..*]�

ResponseTransaction�

�

�

�

�

�

�

+location[1..1]
+contentType[1..1]
+contentTypeParam[0..*]
+extensionData[0..*]�

Source�

�

�

+source[1..1]
+target[1..1]
+policyRef[0..1]�

TranscodingJob�

�

�

+returnCode[1..1]
+returnString[0..1]
+duration[0..1]
+output[1..1]�

JobResult�

�

�

�

1�

+transcodingJob�

1..*�

�

�

1�

+jobResult�

0..*�

�

�

1�

+source�

1�

�

�

1�

+transcodingParams�

0..1�

�

+(...)�

TranscodingParams�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

0..*�

�

�

+jobID[1..1]
+extensionData[0..*]�

Job�

�

�

�

�

�

�

�

1�

+contentTypeParam�

0..*�

�

+major : <unspecified> = 1
+minor : <unspecified> = 0
+versionString : <unspecified> = 1.0�

stiVersion�

�

�

�

1�

+stiVersion�

1..1�

�

+externalLocation[0..1]
+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+extensionData[0..*]�

Target�

�

�

�

1�

+target�

1�

�

+location[1..1]
+mediaSize[0..1]
+extensionData[0..*]�

Output�

�

�

�

1�

+output�

1�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

�

�

1�

+transcodingParams�

0..1�

0..*�

�

1�

+extensionData�

0..*�

_1159791291.vsd
HTTP MIME Multipart Body�

SOAP-Envelope
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

</soapenv:Envelope>�

SOAP Header
<soapenv:Header>
 . . .
</soapenv:Header>�

SOAP Body
<soapenv:Body>

</soapenv:Body>�

STI Response Message
 <ResponseTransaction>
 <stiVersion>
 . . .
 </stiVersion>
 <originatorID>AppABC</originatorID>
 <transactionID>xxx</transactionID>
 . . . (return code, message, etc.)

 </ResponseTransaction> �

Content Attachment 1�

Content Attachment M�

. . .�

Job Result 1 (external reference URL)
 <jobResult>
 � (return code, duration, etc.)
</jobResult>�

Job Result N (internal attachment reference M)
 <jobResult>
 � (return code, duration, etc.)
 </jobResult>�

. . .�

Job Result 2 (internal attachment reference 1)
<jobResult>
 � (return code, duration, etc.)
 </jobResult>�

�

_1159790036.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

�

+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]
+multipart[0..1]
+sizeLimit[0..1]
+applicationSizeLimit[0..1]
+extensionData[0..*]�

TranscodingParams�

�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+synthetic[0..1]�

Audio�

�

�

+codec[0..1]
+codecParam[0..*]
+colorScheme[0..1]
+width[0..1]
+height[0..1]
+resizeDirective[0..1]�

Image�

�

�

+videoVisual[0..1]
+videoAudio[0..1]�

Video�

�

�

�

Text�

�

�

+presentation[0..1]
+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]�

Multipart�

�

�

+type[1..1]
+parameter[0..1]
+order[0..1]�

Transformation�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

+channelToUse[0..1]
+channelsPriority[0..1]
+instrument[0..1]�

Synthetic�

�

�

+codec[0..1]
+codecParam[0..*]
+width[0..1]
+height[0..1]
+frameRate[0..1]
+bitRate[0..1]
+resizeDirective[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoVisual�

�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoAudio�

�

�

+contentType[0..1]
+contentTypeParam[0..*]
+template[0..1]
+layout[0..1]�

Presentation�

�

�

�

1�

+audio�

0..1�

�

�

1�

+synthetic�

0..1�

�

�

1�

+videoVisual�

0..1�

�

�

1�

+videoAudio�

0..1�

�

�

1�

+presentation�

0..1�

�

�

1�

+transformation�

0..*�

�

�

1�

+audio�

0..1�

�

�

1�

+image�

0..1�

�

�

1�

+text�

0..1�

�

+contentType[0..1]
+contentTypeParam[0..*]
+sizeLimit[0..1]
+transformation[0..*]
+extensionData[0..*]�

Media�

�

�

�

1�

+extensionData�

0..*�

�

�

�

�

�

�

�

�

�

�

{XOR}�

{XOR}�

{XOR}�

�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+contentTypeParam�

0..*�

�

�

1�

+extensionData�

0..*�

�

+scheme[1..1]
+depth[1..1]�

ColorScheme�

�

�

�

1�

+colorScheme�

0..1�

�

�

1�

+contentTypeParam�

0..*�

�

�

1�

+multipart�

0..1�

�

�

1�

+image�

0..1�

�

�

1�

+video�

0..1�

�

�

1�

+text�

0..1�

�

�

1�

+video�

0..1�

�

�

1�

+codecParam�

0..*�

�

�

1�

+codecParam�

0..*�

�

�

1�

+codecParam�

0..*�

1�

+codecParam�

0..*�

�

+type[1..1]
+parameter[0..1]
+order[0..1]�

Transformation�

�

�

�

1�

+transformation�

0..*�

�

�

1�

+transformation�

0..*�

Static Structure�

Static Structure�

�

Static Structure�

Static Structure�

�

+stiVersion[1..1]
+originatorID[1..1]
+transactionID[1..1]
+extensionData[0..*]�

Transaction�

�

Static Structure�

�

+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+transcodingJob[1..*]
+policyRef[0..1]
+adaptationClass[0..*]�

RequestTransaction�

�

�

+mainReturnResult[1..1]
+totalDuration[0..1]
+jobResult[1..*]
+additionalReturnResult[0..*]�

ResponseTransaction�

�

�

�

�

�

�

+location[1..1]
+contentType[1..1]
+contentTypeParam[0..*]
+extensionData[0..*]�

Source�

�

�

+source[1..1]
+target[1..1]
+policyRef[0..1]
+adaptationClass[0..*]�

TranscodingJob�

�

�

+mainReturnResult[1..1]
+duration[0..1]
+output[1..1]
+additionalReturnResult[0..*]
+adaptationPerformed[0..*]�

JobResult�

�

�

�

1�

+transcodingJob�

1..*�

�

�

1�

+jobResult�

0..*�

�

�

1�

+source�

1�

�

�

1�

+transcodingParams�

0..1�

�

+(...)�

TranscodingParams�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

0..*�

�

+jobID[1..1]
+extensionData[0..*]�

Job�

�

�

�

�

�

�

�

1�

+contentTypeParam�

0..*�

�

+externalLocation[0..1]
+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+extensionData[0..*]�

Target�

�

�

�

1�

+target�

1�

�

+location[1..1]
+mediaSize[0..1]
+extensionData[0..*]�

Output�

�

�

�

1�

+output�

1�

�

�

1�

+transcodingParams�

0..1�

�

+major : <unspecified> = 1
+minor : <unspecified> = 0
+versionString : <unspecified> = 1.0�

stiVersion�

�

�

�

1�

+stiVersion�

1..1�

�

�

1�

+extensionData�

0..*�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

0..*�

�

+returnCode
+returnString�

ReturnResult�

�

�

�

1�

�

1..1�

�

�

1�

�

0..*�

�

�

1�

�

0..*�

�

�

1�

�

1..1�

+mainReturnResult�

+additionalReturnResult�

+mainReturnResult�

+additionalReturnResult�

�

+className[1..1]
+allowed[0..1]
+classRef[0..1]�

AdaptationClass�

�

�

1�

�

0..*�

+adaptationClass�

�

�

1�

�

0..*�

+adaptationClass�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

�

+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]
+multipart[0..1]
+sizeLimit[0..1]
+applicationSizeLimit[0..1]
+extensionData[0..*]�

TranscodingParams�

�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+synthetic[0..1]�

Audio�

�

�

+codec[0..1]
+codecParam[0..*]
+colorScheme[0..1]
+width[0..1]
+height[0..1]
+resizeDirective[0..1]�

Image�

�

�

+videoVisual[0..1]
+videoAudio[0..1]�

Video�

�

�

�

Text�

�

�

+presentation[0..1]
+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]�

Multipart�

�

�

+type[1..1]
+attribute[0..1]
+order[0..1]�

Transformation�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

+channelToUse[0..1]
+channelsPriority[0..1]
+instrument[0..1]�

Synthetic�

�

�

+codec[0..1]
+codecParam[0..*]
+width[0..1]
+height[0..1]
+frameRate[0..1]
+bitRate[0..1]
+resizeDirective[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoVisual�

�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoAudio�

�

�

+contentType[0..1]
+contentTypeParam[0..*]
+template[0..1]
+layout[0..1]�

Presentation�

�

�

�

1�

+audio�

0..1�

�

�

1�

+synthetic�

0..1�

�

�

1�

+videoVisual�

0..1�

�

�

1�

+videoAudio�

0..1�

�

�

1�

+presentation�

0..1�

�

�

1�

+transformation�

0..*�

�

�

1�

+audio�

0..1�

�

�

1�

+image�

0..1�

�

�

1�

+text�

0..1�

�

+contentType[0..1]
+contentTypeParam[0..*]
+sizeLimit[0..1]
+transformation[0..*]
+extensionData[0..*]�

Media�

�

�

�

1�

+extensionData�

0..*�

�

�

�

�

�

�

�

�

�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+contentTypeParam�

0..*�

�

�

1�

+extensionData�

0..*�

�

+scheme[1..1]
+depth[1..1]�

ColorScheme�

�

�

�

1�

+colorScheme�

0..1�

�

�

1�

+contentTypeParam�

0..*�

�

�

1�

+multipart�

0..1�

�

�

1�

+image�

0..1�

�

�

1�

+video�

0..1�

�

�

1�

+text�

0..1�

�

�

1�

+video�

0..1�

�

�

1�

+codecParam�

0..*�

�

�

1�

+codecParam�

0..*�

�

�

1�

+codecParam�

0..*�

{XOR}�

{XOR}�

{XOR}�

�

�

1�

+codecParam�

0..*�

�

+type[1..1]
+attribute[0..1]
+order[0..1]�

Transformation�

�

�

�

1�

+transformation�

0..*�

�

�

1�

+transformation�

0..*�

�

�

1�

�

0..1�

+attribute�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+synthetic[0..1]�

Audio�

�

�

+codec[0..1]
+codecParam[0..*]
+colorScheme[0..1]
+width[0..1]
+height[0..1]
+resizeDirective[0..1]�

Image�

�

�

+videoVisual[0..1]
+videoAudio[0..1]�

Video�

�

�

�

Text�

�

�

+presentation[0..1]
+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]�

Multipart�

�

�

+type[1..1]
+parameter[0..1]
+order[0..1]�

Transformation�

�

TranscodingParams
Media Hierarchy View�

�

+channelToUse[0..1]
+channelsPriority[0..1]
+instrument[0..1]�

Synthetic�

�

�

+codec[0..1]
+codecParam[0..*]
+width[0..1]
+height[0..1]
+frameRate[0..1]
+bitRate[0..1]
+resizeDirective[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoVisual�

�

�

+codec[0..1]
+codecParam[0..*]
+bitRate[0..1]
+samplingRate[0..1]
+samplingResolution[0..1]
+channels[0..1]
+transformation[0..*]
+sizeLimit[0..1]�

VideoAudio�

�

�

+contentType[0..1]
+contentTypeParam[0..*]
+template[0..1]
+layout[0..1]�

Presentation�

�

�

�

1�

+Synthetic�

0..1�

�

�

1�

+VideoVisual�

0..1�

�

�

1�

+VideoAudio�

0..1�

�

�

1�

+Presentation�

0..1�

�

�

1�

+transformation�

0..*�

�

+contentType[0..1]
+contentTypeParam[0..*]
+sizeLimit[0..1]
+transformation[0..*]
+extensionData[0..*]�

Media�

�

�

�

�

�

�

�

�

�

�

�

�

+scheme[1..1]
+depth[1..1]�

ColorScheme�

�

�

�

1�

+ColorScheme�

0..1�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

�

+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]
+multipart[0..1]
+sizeLimit[0..1]
+applicationSizeLimit[0..1]
+extensionData[0..*]�

TranscodingParams�

�

�

�

Audio�

�

�

�

Image�

�

�

�

Video�

�

�

�

Text�

�

�

+presentation[0..1]
+audio[0..1]
+image[0..1]
+video[0..1]
+text[0..1]�

Multipart�

�

�

�

1�

+Audio�

0..1�

�

�

1�

+Image�

0..1�

�

�

1�

+Text�

0..1�

�

�

1�

+Video�

0..1�

�

�

1�

+Multipart�

0..1�

�

�

1�

+Audio�

0..1�

�

�

1�

+Image�

0..1�

�

�

1�

+Video�

0..1�

�

�

1�

+Text�

0..1�

TranscodingParams
Media Transcoding Parameters view�

Static Structure�

�

Static Structure�

Static Structure�

�

+stiVersion[1..1]
+originatorID[1..1]
+transactionID[1..1]
+extensionData[0..*]�

Transaction�

�

Static Structure�

�

+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+transcodingJob[1..*]
+policyRef[0..1]�

RequestTransaction�

�

�

+returnCode[1..1]
+returnString[0..1]
+totalDuration[0..1]
+jobResult[1..*]�

ResponseTransaction�

�

�

�

�

�

�

+location[1..1]
+contentType[1..1]
+contentTypeParam[0..*]
+extensionData[0..*]�

Source�

�

�

+source[1..1]
+target[1..1]
+policyRef[0..1]�

TranscodingJob�

�

�

+returnCode[1..1]
+returnString[0..1]
+duration[0..1]
+output[1..1]�

JobResult�

�

�

�

1�

+transcodingJob�

1..*�

�

�

1�

+jobResult�

0..*�

�

�

1�

+source�

1�

�

�

1�

+transcodingParams�

0..1�

�

+(...)�

TranscodingParams�

�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

0..*�

�

�

+jobID[1..1]
+extensionData[0..*]�

Job�

�

�

�

�

�

�

�

1�

+contentTypeParam�

0..*�

�

+major : <unspecified> = 1
+minor : <unspecified> = 0
+versionString : <unspecified> = 1.0�

stiVersion�

�

�

�

1�

+stiVersion�

1..1�

�

+externalLocation[0..1]
+profileID[0..1]
+applicationType[0..1]
+transcodingParams[0..1]
+extensionData[0..*]�

Target�

�

�

�

1�

+target�

1�

�

+location[1..1]
+mediaSize[0..1]
+extensionData[0..*]�

Output�

�

�

�

1�

+output�

1�

�

+name[1..1]
+value[0..1]�

Property�

�

�

�

1�

+extensionData�

0..*�

�

�

1�

+extensionData�

�

�

1�

+transcodingParams�

0..1�

0..*�

�

1�

+extensionData�

0..*�

_1157295519.vsd
HTTP Failure Response�

HTTP/1.1 500 Internal Server Error
Content-Type: text/xml; charset=�UTF-8�
Content-length: nnnn�

HTTP Body�

SOAP-Envelope
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

</soapenv:Envelope>�

SOAP Header
<soapenv:Header>
 . . .
</soapenv:Header>�

SOAP Body
<soapenv:Body>

</soapenv:Body>�

SOAP Fault
 <soapenv:Fault>
 <faultcode>soap code</faultcode>
 <faultstring>any error message</faultstring>
 <faultactor>sti actor URI</faultactor>
 <detail>

 </detail>
</soapenv:Fault>�

STI Response Transaction
 <ResponseTransaction>
 �
</ResponseTransaction>�

_1123515970.vsd

