OMA-ER-UCD-V1_0-20140923-D
Page 18 V(105)

	[image: image59.emf]
	

	Unified Cloud Disk (UCD)

	Draft Version 1.0 – 23 Sep 2014

	Open Mobile Alliance

	OMA-ER-UCD-V1_0-20140923-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
4.1
Version 1.0
8
5.
Requirements (Normative)
10
5.1
High-Level Functional Requirements
10
5.2
Management Requirements
10
5.3
File Management Requirements
11
5.4
Network API Requirements
12
5.5
Application Management Requirements
13
5.6
Security Requirements
13
6.
Architectural Model
14
6.1
Architectural Diagram
14
6.2
Functional Components and Interfaces/reference points definition
14
6.2.1
UCD Enabler Functional Components
14
6.2.2
Entities External to the UCD Enabler (Informative)
16
6.2.3
Interfaces Definitions
16
7.
Procedures
17
7.1
Common Procedures
17
7.1.1
Batched retrieval
17
7.2
Client Procedures
18
7.2.1
User Account Information
18
7.2.2
Folder operations
20
7.2.3
File operations
21
7.2.4
Folder/File common operation
23
7.3
Server Procedures
24
7.3.1
User Account Information
24
7.3.2
Folder operations
26
7.3.3
File operations
28
7.3.4
Folder/File common operation
30
8.
Protocol Binding
32
8.1
HTTP Binding
32
8.1.1
General
32
8.1.2
Security
34
9.
Interface Definitions
35
9.1
UCD-1
35
9.1.1
Common Structures
35
9.1.2
User Account Information
41
9.1.3
Folder Operation
52
9.1.4
File Operation
59
9.1.5
Folder/File Common Operation
75
9.2
UCD-2
80
10.
Release Information
81
10.1
Supporting File Document Listing
81
10.2
OMNA Considerations
81
Appendix A.
Change History (Informative)
82
A.1
Approved Version History
82
A.2
Draft/Candidate Version 1.0 History
82
Appendix B.
Use Cases (Informative)
87
B.1
Federated cloud storage service
87
B.1.1
Short Description
87
B.1.2
Market benefits
87
B.2
File backup/recovery using cloud storage of different providers
87
B.2.1
Short Description
87
B.2.2
Market benefits
87
B.3
open APIs to applications
88
B.3.1
Short Description
88
B.3.2
Market benefits
88
Appendix C.
Static Conformance Requirements (Normative)
89
C.1
ERDEF for UCD - Client Requirements
89
C.2
ERDEF for UCD - Server Requirements
89
C.3
SCR for UCD Client
89
C.3.1
SCR for User Account Information
89
C.3.2
SCR for Folder Operation
89
C.3.3
SCR for File Operation
90
C.3.4
SCR for Folder/File Common Operation
90
C.4
SCR for UCD Server
90
C.4.1
SCR for User Account Information
90
C.4.2
SCR for Folder Operation
90
C.4.3
SCR for File Operation
91
C.4.4
SCR for Folder/File Common Operation
91
Appendix D.
Flows (Informative)
92
D.1
Identity federation request initiated from Master UCD Server
92
D.2
Identity federation request initiated from Slave UCD Server
93
D.3
Identity defederation request initiated from Master UCD Server
95
D.4
Identity defederation request initiated from Slave UCD Server
97
D.5
Single Sign-On (SSO)
99
D.6
Single Logout Initiated at Master UCD Server
101
D.7
Single Logout Initiated at Slave UCD Server
102
Appendix E.
Architectural deployments (Informative)
104

1. Scope

This Enabler Release (ER) document is a combined document of requirements, architecture and technical specification for Unified Cloud Disk (UCD) Enabler. The UCD Enabler attempts to optimize the current cloud storage service by providing a unified cloud storage system for Service Providers and new storage-as-a-service APIs. Mobile users or applications can use standard storage-as-a-service APIs to store files in the federated cloud storage of mobile operators.
The UCD Enabler is expected to provide functions of application/service management, storage resource pooling and management, account management, interfaces between UCD Client and UCD Server, interfaces between UCD Server and UCD Server, an interworking function (protocol translation is out of scope) with external cloud storage Service Providers.

To enable developer access the UCD Enabler in consistent manner, this specification also defines uniform and easy to use API exposing services of UCD Enabler to arbitrary applications.
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ERP-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[OSE]
	“OMA Service Environment”, Open Mobile Alliance™,
URL:http://www.openmobilealliance.org/

	[REST_NetAPI_UCD]
	“RESTful Network API for Unified Cloud Disk”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_UCD-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC3174]
	"US Secure Hash Algorithm 1(SHA1)", Eastlake, D. and P. Jones,September 2001,

URL: http://tools.ietf.org/html/rfc3174.txt

	[RFC3530]
	“Network File System (NFS) version 4 Protocol”, S. Shepler, April 2003, URL:http://www.ietf.org/rfc/rfc3530.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[LibertyBindProf]
	Cantor, Scott, Kemp, John, Champagne, Darryl, eds. "Liberty ID-FF Bindings and Profiles Specification", Version 1.2-errata-v2.0, Liberty Alliance Project (12 September 2004). URL: http://www.projectliberty.org/specs/

	[LibertyProtSchema]
	Cantor, Scott, Kemp, John, eds. "Liberty ID-FF Protocols and Schema Specification", Version 1.2-errata-v3.0, Liberty Alliance Project (12 September 2004). URL: http://www.projectliberty.org/specs/

	[SAML: Assertions and Protocol]
	Maler, Eve, Mishra, Prateek, Philpott, Rob, eds. (27 May 2003). "Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V1.1," OASIS Committee Specification, version 1.1, Organization for the Advancement of Structured Information Standards, URL:http://www.oasis-open.org

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[LibertyGlossary]
	"Liberty Technical Glossary," Version 1.4, Liberty Alliance Project (14 Dec 2004).

http://www.projectliberty.org.

	[LibertyID-FF1.2SCR]
	“Liberty ID-FF 1.2 Static Conformance Requirements”, Version 1.0, Liberty Alliance Project (14 Dec 2004). http://www.projectliberty.org

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Network API
	See [OMADICT].

	Identity Federation
Identity Defederation

Identity Provider (IdP)
	Creating associations between a given system entity’s identifiers or accounts [LibertyGlossary].
Identity Federation termination [LibertyID-FF1.2SCR].

A system entity that manages identity information on behalf of users and provides assertions of users’
authentication to other Service Providers [LibertyGlossary].

	Master UCD Server
	A UCD Server which has the functions of identity provider and is chosen by the end user to register a

Master UCD account.

	Slave UCD Server
	A UCD Server which may has the functions of identity provider and is chosen by the end user to register

a Slave UCD account.

	ssoToken

	A piece of data produced by a Master UCD Server regarding an act of authentication performed on a UCD user or UCD Client.

3.3
Abbreviations

	ACE
	Access Control Entries

	ACL
	Access Control List

	API
	Application Programming Interface

	Autho4API
	Authorization Framework for Network APIs

	HTTP
	HyperText Transfer Protocol

	OMA
	Open Mobile Alliance

	SNeW
	Social Network Web

	SP
	Service Provider

	SSO
	Single Sign On

	TLS
	Transport Layer Security

	UCD
	Unified Cloud Disk

	UVE
	Unified Virtual Experience

4. Introduction

Cloud storage is a model of networked online storage where data is stored in virtualized pools of storage. Service Providers operate large data centers, and users who require their data to be hosted buy or lease storage capacity from them. The Service Providers, in the background, virtualize the resources according to the requirements of the customer and expose them as storage pools, which the customers can themselves use to store files or data objects. Physically, the resource may span across multiple nodes.

The existing cloud storage services on the Internet are based on centralised isolated private systems or built on special public system, work standalone or bundle tightly coupled, implementing a “walled garden” approach. Users on one Service Provider cannot (easily) access data or files on another Service Provider, and users will often have to sign up for accounts on multiple Service Providers to avoid lost data or files if the Service Provider is crashed. And in mobile cloud computing environment, users also need to access cloud storage service through mobile devices. But now some cloud storage Service Providers don’t fit this requirement rapidly developed in mobile internet.

To solve these problems, the Unified Cloud Disk (UCD) enabler provides unified cloud storage system in mobile cloud computing environment for mobile operators. Furthermore, the UCD could optimize the current cloud storage service, mobile users or applications can use standard storage-as-a-service APIs to store files in the federated cloud storage of mobile operators.

Figure 1 shows the overall ecosystem related to Unified Cloud Disk Enabler. In particular, the user (through the UCD client or UCD compliant application) accesses a specific OMA compliant cloud storage Service Provider (through UCD Server), and interacts with another OMA compliant cloud storage Service Provider, or to an external non-OMA compliant cloud storage Service Provider through the gateway functionality. UCD Server can also interact with other network enablers for more integrated services.

[image: image2.png]
Figure 1: Unified Cloud Disk ecosystem

4.1 Version 1.0

Version 1.0 of the UCD Enabler covers:

· The interoperability between clients and servers and server-to-server of OMA compliant cloud storage Service Providers, supporting at least features such as:

· Elasticity data or files storage service
· User account management including identity federation/defederation and SSO log in and log out
· Access data or files

· Sharing
· Search
· A set of Network APIs to allow external applications to access UCD cloud services , as well as the authorization framework defined in [Autho4API_10] to control access to information through these APIs

5. Requirements
(Normative)

This section captures the requirements for UCD V1.0.

5.1 High-Level Functional Requirements
This section contains the High Level requirements for UCD.
	Label
	Description
	Release

	UCD-HLF-001
	The UCD Enabler SHALL support different types of devices to access UCD services, such as PC, mobile phone, tablet.
	1.0

	UCD-HLF-002
	The UCD Enabler SHALL allow end users to use the UCD services using UCD Client on the device or the Web browser.
	1.0

	UCD-HLF-003
	The UCD Enabler SHALL support interaction between cloud storage server to server interfaces that are compliant to this Enabler.
	1.0

	UCD-HLF-004
	The UCD Enabler MAY support interaction between a cloud storage server interface that is compliant to this Enabler and an external non-OMA compliant cloud storage server interface through a gateway function.

	1.0

	UCD-HLF-005
	The UCD Enabler SHOULD support single sign on between different cloud storage services, including OMA compliant 3rd party cloud storage service and non-OMA compliant 3rd party cloud storage service.
	1.0

	UCD-HLF-006
	The UCD Enabler SHALL support file management operations.
	1.0

	UCD-HLF-007
	The UCD Enabler SHOULD support charging modes (e.g. time, space)
	1.0

	UCD-HLF-008
	The UCD Enabler SHALL support files in any format.
	1.0

	UCD-HLF-009
	The UCD Enabler SHALL support log management.
	1.0

	UCD-HLF-010
	The UCD Enabler SHALL support policy management in different aspects (including system, application, user, etc.).
	1.0

	UCD-HLF-011
	The UCD Enabler SHALL support traffic management (e.g. frequency of access, transfer rate).
	1.0

	UCD-HLF-012
	The UCD Enabler SHALL support logical and physical data isolation for applications and users.
	1.0

5.2 Management Requirements

This section contains the Management requirements for UCD.
	Label
	Description
	Release

	UCD-MG-001
	The UCD Enabler SHALL support end user account management.
	1.0

	UCD-MG-002
	The UCD Enabler SHALL support the differentiation of end user accounts (one master account and other slave accounts) including: home UCD account, 3rd party UCD compliant Service Provider account, 3rd party non-UCD compliant Service Provider account.
	1.0

	UCD-MG-003
	The UCD Enabler SHALL support differentiation of enterprise user accounts including: admin account, group & sub-group account, user account.
	DELETED

	UCD-MG-004
	The UCD Enabler SHALL support the ability to manage different levels of enterprise user accounts and privileges.
	DELETED

	UCD-MG-005
	The UCD Enabler SHALL support the system level policies which are applicable to all the applications and the users by default, including but not limited to:
- whether to support deletion duplicated files or not.
- whether to support compressing inactive files or not.

	1.0

	UCD-MG-006
	The UCD Enabler SHALL support to manage the profiles of the enterprise users and the end users during and after service subscription , the profile could include:

- user credentials (e.g. user name and password)

- quota
- policies information

	1.0

	UCD-MG-007
	The UCD Enabler SHALL support Service Provider admin account to manage enterprise user account and end user account, including but not limited to:
- create user account
- modify user account
- delete user account
- display user account information

- suspend and resume user account
- list user accounts
	DELETED

	UCD-MG-008
	The UCD Enabler SHALL support enterprise admin account to manage enterprise group /sub-group/ user account, including but not limited to:
- create group/ sub-group/ user account
- modify group/ sub-group/ user account
- delete group/ sub-group/ user account
- display group/ sub-group/ user account information

- suspend and resume group/ sub-group/ user account
- list group/ sub-group/ user accounts
	DELETED

	UCD-MG-009
	The UCD Enabler SHALL support to manage the user policies, including but not limited to:

- flow control (including upload and/or download traffic rate)

- automatic revision generation for the updated file option
- retention option

	1.0

5.3 File Management Requirements

	Label
	Description
	Release

	UCD-FM-001
	The UCD Enabler SHALL support to manage files, including but not limited to:

- upload and download
- delete

- rename

- copy

- move
- list sharing
The maximum size of the file SHALL be configurable.
	1.0

	UCD-FM-002
	The UCD Enabler SHALL support to manage the file revisions, including but not limited to:

- create a revision of a file

- list all the revisions of a file

- delete specified revisions of a file
	1.0

	UCD-FM-003
	The UCD Enabler SHALL support to retrieve the file metadata, including but not limited to:

- size

- type

- create time

- modify time
	1.0

	UCD-FM-004
	The UCD Enabler SHALL support to search the files/folders (recursively) using key words.
	1.0

	UCD-FM-005
	The UCD Enabler SHALL support to manage file folders, including but not limited to:

- create

- delete

- list

- rename

- copy

- move

	1.0

	UCD-FM-006
	The UCD Enabler SHALL support to retrieve the file folder metadata, including but not limited to:

- size

- number of files

- number of sub folders

- create time

- modify time
	1.0

	UCD-FM-007
	The UCD Enabler SHOULD support the recycle bin functions:
- put the specified files/folders into recycle bins

- list the files in the recycle bin
- restore the specified files or folders from the recycle bin
- delete the specified files/folders in the recycle bin
- clean the recycle bin
	1.0

	UCD-FM-008
	The UCD Enabler SHALL support to set the metadata of the files or file folders, including but not limited to:

- access control information of files/file folders (e.g. the principals and the authorized operations)

- read only option
	1.0

	UCD-FM-009
	The UCD Enabler SHOULD support to upload/download/update files in segments.

	1.0

	UCD-FM-010
	The UCD Enabler SHOULD support to provide file thumbnails.
	1.0

	UCD-FM-011
	The UCD Enabler SHOULD support files/file folders retention function. During retention period, the files/file folders can not be deleted or modified. The retention start time and duration are configurable.
	1.0

	UCD-FM-012
	The UCD Enabler SHOULD support file/file folder auto-deletion function. The system automatically deletes files/file folders after the life time of the file/file folder expires. The life time is configurable.
	1.0

	UCD-FM-013
	The UCD Enabler SHOULD support file operations log information (e.g. upload filename, upload user, upload time).
	1.0

	UCD-FM-014
	The UCD Enabler SHOULD support file sharing operation to allow any user to access the shared file. The sharing operations include create sharing, list file sharing and delete file sharing.
	1.0

	UCD-FM-015
	The UCD Enabler SHALL support revision control function (e.g. automatic or manual).

	1.0

	UCD-FM-016
	The UCD Enabler SHALL support duplicated file deletion function. The UCD Enabler keeps one copy of the files of interest and deletes the other duplicated files.
	1.0

	UCD-FM-017
	The UCD Enabler SHOULD support automatic replication of files (created or modified) subject to policy management.
	1.0

	UCD-FM-018
	The UCD Enabler SHALL support compression of inactive files (i.e. files unused for certain period).
	1.0

5.4 Network API Requirements
This section defines the requirements on Network APIs for UCD Enabler.

	Label
	Description
	Release

	UCD-NAPI-001
	The UCD Enabler SHALL ensure the third-party applications are authorized before interacting through the UCD Network API.
	1.0

	UCD-NAPI-002
	The UCD Enabler SHALL support user or application using UCD Network API storing files in more than one cloud storage service without interacting with each Service Provider.
	1.0

	UCD-NAPI-003
	The UCD Enabler SHALL support authorization for network API based on [Autho4API_10].
	1.0

5.5 Application Management Requirements
This section defines the requirements on application management for UCD Enabler.

	Label
	Description
	Release

	UCD-AM-001
	The UCD Enabler SHALL support to manage UCD compliant 3rd party applications, including but not limited to:

- create the application with application name, quota requested etc.
- modify the application

- delete the application

- display the application information

- suspend and resume the application

- list the applications
	1.0

	UCD-AM-002
	The UCD Enabler SHALL support to manage the profiles of the applications, including but not limited to:

- application credentials (e.g. application name ,application id and secret)

- quota
- policies information
	1.0

	UCD-AM-003
	The UCD Enabler SHALL support to manage the application policies, including but not limited to:

- duplicated files deletion option
- compress inactive files option

- physically isolated storage option
- number of redundant copies of files and distribution on different storage node option

- flow control information (including upload and/or download traffic rate)

	1.0

	UCD-AM-004
	The UCD Enabler SHOULD support retrieval of the operation logs for the specified application.
	1.0

5.6 Security Requirements

.

	Label
	Description
	Release

	UCD-SEC-001
	The UCD Enabler SHALL support mutual authentication between entities (e.g. UCD Client and UCD Server).
	1.0

	UCD-SEC-002
	The UCD Enabler SHALL prevent data (e.g. files and user profiles) from unauthorized access.
	1.0

	UCD-SEC-003
	The UCD Enabler SHALL implement confidentiality and integrity for data transportation between entities (e.g UCD Client and UCD Server, UCD Server and UCD Server). However, its use is subject to user’s requirement and Service Provider’s policy.
	1.0

	UCD-SEC-004
	The UCD Enabler SHOULD support confidentiality for data storage.
	1.0

6. Architectural Model

6.1 Architectural Diagram

The following diagram illustrates the Functional Components and Interfaces of the Unified Cloud Disk Enabler.

[image: image3.wmf]UCD

Server

UCD Client

Component in scope of UCD

Component out of scope of UCD

Interface in scope of UCD

Interface out of scope of UCD

UCD

-

2

UCD

-

1

External Storage

Server

Storage Resource

Figure 2: Unified Cloud Disk Architectural Diagram

6.2 Functional Components and Interfaces/reference points definition
6.2.1 UCD Enabler Functional Components
6.2.1.1 UCD Server

The UCD Server is an UCD Enabler component resident in the network (outside the device) and is the entry point to the enabler for all the requests coming from an UCD Client. It represents the central node of an OMA Compliant cloud storage system that federates or interacts with other cloud storage systems (e.g. other UCD Servers or external storage servers).
The UCD Server exposes interfaces including UCD-1and UCD-2.
The UCD Server supports the following functions:

· Basic storage service: the UCD Server handles the service requests from the UCD Client through UCD-1 interface or external entities (e.g. third party applications) through UCD-2 interface and invokes the storage resource of its own to access user’s data/files. The UCD Server is responsible for managing files including uploading/downloading files on to appropriate storage services, updating and deleting files. The UCD Server also maintains the attributes of the files being stored on its local storage, including (not limited to) name, size, owner, storage location etc.

· Federated cloud storage service: when the peer entity is an OMA compliant storage system (e.g. other UCD Server), the UCD Server interacts with other UCD Servers when requested by the user to exchange the data/files (e.g. copy/move files) between the UCD Servers through UCD-2 interface. The UCD Server also handles the request from other UCD Server to access its local data of the user. This enables the user to manipulate the files cross different UCD Servers.

· Gateway function: the gateway function is an optional functionality responsible for interacting with External Storage Servers. It enables users to interconnect with external storage servers on which they already have an account using the proprietary interfaces of such networks. The gateway function implements the required protocol & data format translation capabilities in relation with the supported cloud storage systems.
· Management function: the UCD Servers provides application/service management, user account management and profile management.

· Storage resource management and access: the UCD Server supports storage resource management and uses different APIs or proprietary interfaces to access storage resource.

· Functions to support Autho4API: UCD Server has logical functions which act as Autho4API Authorization Server and Autho4API Access Control Server [Autho4API_10] to enable authorized application to access storage resource.

· User identity federation and defederation: Identity federation enables users to manage multiple cloud storage servers by using one username/password. End user chooses which UCD Server is the MMaster UCD Server to manage identity federation/defederation for him/her. The Master UCD Server maintains the mapping of user accounts for Slave UCD Servers which are not responsible for identity federation/defederation for this end user.
· Log management: UCD Server should provide the system log records, which at least including system error alarm information, etc. And user log function, also provide the log management functions and reporting features.
The prerequisites of identity federation/defedration are listed as following, but not limited to:

· The end user chooses which UCD Server is the Master UCD Server to manage identity federation/defederation for him/her.

· The CSPs of Master UCD Server and Slave UCD Server should have service agreement including security policy, name and location of UCD Servers, etc.

· The end user registers with the Master UCD Server and Slave UCD Servers.

NOTE: different end users may or may not choose the same Master UCD Server to manage identity federation/defedration.
6.2.1.2 UCD Client
The UCD Client is a UCD Enabler component resident on the device or terminal side, which interacts with UCD Server using UCD-1.
The end users use the UCD services through UCD Client on the devices such as PC, smart phone, tablet, STB (Set Top Box) or clients with UCD Client embedded, such as UVE client, SNeW Client.
The UCD Client supports following functions:
· User information handling, such as user account registration and update

· Files/file folders management services on local device and request of file management services via UCD-1 including upload/download/copy/delete files, list file folders etc.

· Unified cloud storage service which enables the users to access data on different UCD Servers or External Storage Servers through interaction between the UCD Client and the UCD Servers.
· User authentication and authorization

6.2.2 Entities External to the UCD Enabler (Informative)

6.2.2.1 External Storage Server
The External Storage Server is a peer entity that is not--OMA compliant and is made available through either proprietary or non-proprietary mechanism and/or interfaces .

6.2.2.2 Storage resource

Storage resources are the storage infrastructure (physical or virtualized) used by UCD Server to store the data. The storage resources can provide different mechanisms (APIs or proprietary interfaces) for other network entities to access it.
6.2.3 Interfaces Definitions
6.2.3.1 UCD-1
This interface is exposed by the UCD Server to handle requests from UCD Client. It is used by the UCD Client to interact with the OMA Compliant Cloud storage Service Provider for performing some core functionalities related to mobile cloud storage service, covering:
· user authentication, authorization
· user account management and service management
· access of data or files, sharing
6.2.3.2 UCD-2
This interface is exposed by the UCD Server through Network APIs. It can be used by either 3rd party applications or other UCD Servers.
When it is used by other UCD Servers, this interface is exposed, and used, by UCD Servers. This enables federation between OMA compliant cloud storage Service Providers.

It supports:

· user authentication, authorization using Autho4API.

· access of data or files of users

7. Procedures
7.1 Common Procedures

7.1.1 Batched retrieval

Some operations, for example, list folder, list file sharinmg, search for files/folders and log info, allow the client to retrieve a list of entries,. The lists of entries might be larger than the server or the client is prepared to handle at one time, and so these operations provide a mechanism for batched retrieval.

Batched retrieval uses the following elements of the request and response data types:

· In the initial requests, the client supplies a maximum number of entries in the “maxEntries” element.

1. The maxEntries element indicates the maximum number of entries the client is prepared to accept in a single batch.

2. The server MUST NOT return more than this many entries in the response. It MAY choose to return fewer entries.

· In the responses, in addition to the batch of entries the server can also supply a cursor value (in the cursor element).

1. If the cursor element is present, it indicates that there may be further entries in the list beyond the end of this batch. (It does not indicate that there certainly are further entries. It may in fact be the case that there are no further matches beyond this point, but because the server has not yet determined this it cannot omit the cursor.)
2. If the cursor element is absent, it indicates that there are no further entries, i.e., that the list is now complete.

3. The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.
· In subsequent requests, the client can supply a cursor value (in the “fromCursor” element) indicating the previous batch to be continued, in addition to the maximum number of entries (in the maxEntries element).

1. If the fromCursor element is absent, the batch starts from the first matching entry.

2. If the fromCursor element is present:

i. It MUST contain a cursor value obtained from a previous response.

ii. This subsequent request MUST be the same as the initial request except the “fromCursor” element.

iii. The batch is a continuation of the previous batch, i.e., it starts from the first matching entry after the last entry of the previous response. The server SHOULD make best efforts to start the response from at or near this position, or from the start of the matches if this is not possible.

3. Since the cursor encapsulates server state information which might be volatile, especially in a multi-device environment, the server is not required to ensure that each batch is a precise continuation of the previous batch. However, the server must make best efforts to ensure this is so. The cursor mechanism guarantees that:

i. If there are no intervening changes to the files/folders/file sharing (such as file/folder or file sharing creations or deletions), the batch MUST be a precise continuation of the previous batch.

ii. If this is a list folder, list file sharing or file/folder search with default selection criteria (i.e., the searchKey, searchScope and sortCriterion are all absent), then every file/folder which existed at the point of the first request and still exists at the point of the final response MUST appear at least in one of the batches (i.e. if the client retrieves all the batches it will not miss any stored object).
4. If the fromCursor is invalid (e.g., it has been modified by the client, or it came from a request with different selection criteria), the server MAY return either an HTTP error response or an arbitrary subset of matches.
7.1.2 Policy handling
There are 3 types of the policy supported in UCD Enabler:
· System policy

· Application policy
· User policy
The system policy is managed by SPs and is inherited by the applications and users automatically.

The application policy is managed by service agreement between application and the SP. The application policy overwrites the system policy when overlaping.

When the policy exists both for the application and the user, both policies are applied respectively..

 The following table provides the detailed information of the policies supported in UCD Enabler.
	Name
	Type
	Parameters
	Description

	Deduplication
	System,Application
	None
	To delete the duplicated files and keep only one copy of the content.

	Compression
	System,Application
	Inactive period in days.
Compression algorithm,(e.g,,”ZIP”, “GZIP”)
	To compress the inactive file automatically.

	Geographic_placement
	Application
	One or more geopolitical identifiers.
	To store the files on permitted geographic regions.

	Redundancy
	Application
	The number of complete copies of the data.
	To provide the redundant copies of the data stored.

	Infrastructure_redundancy
	Application
	The number of independent storage infrastructures supporting the multiple copies of data.
	To store the multiple copies of data (as specified in Redundancy policy) on the desired independent storage infrastructures.

	Data_dispersion
	Application
	The minimum distance (in km) between the infrastructures supporting the multiple copies of data.
	To store the the multiple copies of data (as specified in Redundancy policy) on the seperate storage infrastructures (as specified on Data_dispersion policy) by a minimum geographic distance to prevent data loss due to site disasters.

	Retention
	Application
	Retention period (including start time and end time) the files are protected by retention.

Automatic deletion flag when retention expires
	Deletion the files under retention is prohibited. No changes to the files are allowed, even after the retention period has expired

	Throughput
	Application,User
	Upload data rate (in bytes per second) .
Download data rate (in bytes per second) .
	To restrict the maximum data rate on retrieval and write. The UCD Server checks the upload (including upload in segment and update file in range) and download rate during file upload and download operations

	Encryption
	Application,User
	Encryption algorithm: e.g. “AES" or "3DES" .

Mode: e.g. XTS", "CBC", or "CTR".

Length: e.g. “128”,”192”,”256”.
	To encrypt the data when stored. If encrypted, all data and attributes related to the file shall be encrypted.

	IntegrityCheck
	Application,User
	None
	To provide the integrity check of the files to prevent data error (e.g. due to transmission error).

	Version
	User
	Maximun number of versions of the files.
	To automatically generate a new revision of the file when the file is modified or overwritten.

7.2 Client Procedures

7.2.1 User Account Information
7.2.1.1 User Registration

The objective of the UCD user registration is applying to the UCD Server for creating a user account.

Upon receiving the user registration request, the UCD Client SHALL progress this request to the UCD Server, including user ID, password, status, quota, contact information, message signature.

Upon receiving confirmation from the UCD Server of the successful registration, the UCD Client SHALL inform the user about the result.
7.2.1.2 User Login
The user logs in before accessing the files on the UCD Server.

The UCD Client sends the user log in request to the UCD Server including the user identifier and optionally the user authentication information if a challenge is available following the HTTP basic authentication [RFC2617], The UCD Client receives a 200 OK message if the authentication information is correct or otherwise receives a 401 Unauthorized message with a new challenge. If a 401 Unauthorized is received, the UCD Client sends the log in request to the UCD Server with the authentication information generated by using the challenge received in the 401 Unauthorized message, the UCD Client receives the authentication result from the UCD Server.
7.2.1.3 User Identity Federation

End user has selected which UCD Server as her/his Master UCD Server and which UCD Server as her/his Slave UCD Server.

End user wants to make her/his account in Slave UCD Server federate with her/his account in Master UCD Server.

End user has logged in Master UCD Server or Slave UCD Server.

If end user logs in Master UCD Server, identity federation request is initialled at Master UCD Server:

· UCD Client SHALL send the message IdentityFederationRequest to Master UCD Server defined in section 9.1.2.6.1 including user identifier.
· After receiving the message IdentityFederationResponse defined in section 9.1.2.6.1, UCD Client SHALL extract the parameter result to verify if this identity federation request is successful. If successful, UCD Client SHALL extract the parameter ssoToken and keep it for SSO request later.
If end user logs in Slave UCD Server, identity federation request is initialled at Slave UCD Server:

· UCD Client SHALL send the message IdentityFederationRequest to Slave UCD Server defined in section 9.1.2.6.1 including user identifier.
After receiving the message IdentityFederationResponse defined in section 9.1.2.6.1, UCD Client SHALL extract the parameter result to verify if this identity federation request is successful. If successful, UCD Client SHALL extract the parameter ssoToken and keep it for SSO request later.
7.2.1.4 User Identity Defederation
End user wants to defederate his/her account in Slave UCD Server from his/her account in Master UCD Server.

If end user has logged in Master UCD Server, identity defederation request is initialled at Master UCD Server:

· UCD Client SHALL send the message IdentityDefederationRequest to Master UCD Server defined in section 9.1.2.7.1 includes user identifier.
· UCD Client SHALL receive the message IdentityDefederationResponse defined in section 9.1.2.7.1 from Master UCD Server to confirm the defederation.
If end user has logged in Slave UCD Server, identity federation request is initialled at Slave UCD Server:

· UCD Client SHALL send the message IdentityDefederationRequest to Slave UCD Server defined in section 9.1.2.7.1 includes user identifier.
UCD Client SHALL receive the message IdentityDefederationResponse defined in section 9.1.2.7.1 from Slave UCD Server to confirm the defederation.
7.2.1.5 User SSO Login
End user wants to access Slave UCD Servers with a valid ssoToken.

UCD Client SHALL send SSOLoginRequest defined in section 9.1.2.4.1 to Slave UCD Server to access services. This message includes user identifier in Slave UCD Server. This message may also include a valid ssoToken.

UCD Client SHALL receive the message SSOLoginResponse defined section 9.1.2.4.1from Slave UCD Server. UCD Client can access Slave UCD Server successfully with a valid ssoToken.
7.2.1.6 User Single Logout
End user has logged in UCD Servers with SSO service.

End user wants to single log out from all UCD Servers.

If single log out request is initialled at Master UCD Server:

· UCD Client SHALL send the message SingleLogoutRequest to Master UCD Server defined in section 9.1.2.5.1 includes user identifier.
· UCD Client SHALL receive SingleLogoutResponse defined in section 9.1.2.5.1 from Master UCD Server to confirm that UCD Client log out from all Slave UCD Servers.
If single log out request is initialled at Slave UCD Server:

· UCD Client SHALL send the message SingleLogoutRequest to Slave UCD Server defined in section 9.1.2.5.1 includes user identifier.
· UCD Client SHALL receive SingleLogoutResponse defined in section 9.1.2.5.1 from Slave UCD Server to confirm that UCD Client log out from all Slave UCD Servers.
7.2.2 Folder operations
7.2.2.1 List Folder
The UCD Client sends ListFolderRequest to the UCD Server including the user identifier, the folder reference and without cursor element for the first time and receives the folder information and the cursor if the list is not completed or with the complete list of folder information without cursor.

If the cursor is received in the response message, the UCD Client sends ListFolderRequest with the cursor element to request the remaining entries of the list until no cursor is received.
7.2.2.2 Create a Folder
The UCD Client sends the CreateFolderRequest including the user identifier and the folder reference to the UCD Server and receives the response from the UCD Server about the result.
7.2.2.3 Delete a Folder
The UCD Client sends the DeleteFolderRequest including the user identifier, the folder reference and the delete mode based on the available user setting or the user selection per request to the UCD Server and receives the response from the UCD Server with the result of the operation.
7.2.2.4 Rename a Folder
The UCD Client sends the RenameFolderRequest including the user identifier,the source folder reference, the new folder name and optionally the merge element based on the user setting if available to the UCD Server and receives the response from the UCD Server with the result of the operation.

If the UCD Client receives the result of the operation indicating that the new folder name already exists and no corresponding user setting available, the UCD Client SHOULD prompt the user to select whether to merge the source folder with the existing folder which has the same folder name as the source folder, if the user selects to merge, the UCD Client SHALL send the RenameFolderRequest including the user identifier, the source folder reference, the new folder name and the merge element which is set to true to the UCD Server and receives the response from the UCD Server with the result of operation.
7.2.2.5 Copy a Folder
The UCD Client sends the CopyFolderRequest including the user identifier, the source folder reference, the target folder path and optionally the merge element based on the user setting if available to the UCD Server and receives the response from the UCD Server with the result of the operation.

If the UCD Client receives the result of the operation indicating that the source folder already exists in the target folder path and no corresponding user setting available, the UCD Server SHOULD prompt the user to select whether to merge the source folder with the folder which has the same folder name as the source folder in the target path, if the user selects to merge, the UCD Client SHALL send the CopyFolderRequest including the user identifier,the source folder reference, the target folder path and the merge element which is set to true to the UCD Server and receives the response from the UCD Server with the result of operation.
7.2.2.6 Move a Folder
The UCD Client sends the MoveFolderRequest including the user identifier,the source folder reference, the target folder path and optionally the merge element based on the user setting if available to the UCD Server and receives the response from the UCD Server with the result of the operation.

If the UCD Client receives the result of the operation indicating that the source folder name already exists in the target folder path, the UCD Client SHOULD prompt the user to select whether to merge the source folder with the folder which has the same folder name as source folder in the target path, if the user selects to merge, the UCD Client SHALL send the MoveFolderRequest including the user identifier,the source folder reference, the target folder path and the merge element which is set to true to the UCD Server and receives the response from the UCD Server with the result of operation.
7.2.2.7 Set Folder Attributes
The UCD Client sends the SetFolderAttributeRequest including the user identifier, the file reference and the folder access control list to be set/updated to the UCD Server and receives the response from the UCD Server with the result of the operation.
7.2.2.8 Get Folder Attributes
The UCD Client sends the GetFolderAttributeRequest including the user identifier and the file reference to the UCD Server and receives the response from the UCD Server with the result of the operation.

7.2.3 File operations
7.2.3.1 Initiate Segment Upload

Before uploading a file based on segment uploading method, the UCD Client sends InitiateSegmentUpload request to the UCD Server including the user ID and the file information. Once the UCD Server responds the UCD Client, the UCD Client will receive an upload ID as the identification of this segment uploading.

7.2.3.2 Upload File

The UCD Client sends UploadFile request to the UCD Server including the user ID, the file information and the share status. Once the UCD Server responds the UCD Client, the UCD Client will receive the result and the link to share this file.
When the file content is included in the request message, the media type of the message SHALL conform to 8.1.1.1.

7.2.3.3 Segment Upload

The UCD Client sends UploadSegment request to the UCD Server including the user ID, the file reference, the file upload ID and the file segments upload ID. Once the UCD Server respond the UCD Client, the UCD Client will receive the result of this segment uploading operation and start segments uploading.

When the file segment content is included in the request message, the media type of the message SHALL conform to 8.1.1.1.
7.2.3.4 Finish Segment Upload
The UCD Client sends FinishSegmentUpload request to the UCD Server including the user identifier, the file reference ,the file segments upload identification and the segments identification of the file, and receives the response from the UCD Server with the result of the operation and the file information.
7.2.3.5 Get Segment List
The UCD Client sends GetSegmentList request to the UCD Server including the user ID, the file reference and the upload ID. Once the UCD Server responds the UCD Client, the UCD Client will receive the result and get segments list.

7.2.3.6 Cancel Segment Upload
The UCD Client sends CancelSegmentUpload request to the UCD Server including the user identifier, the file reference ,the file segments upload identification, and receives the response from the UCD Server with the result of the operation.
7.2.3.7 Update a file in range
The UCD Client sends FileUpdateInRangeRequest to the UCD Server including the user identifier, the file reference , the startByte and the endByte of the file range and receives the response from the UCD Server with the result of the operation.

Editor note: content is missing in the request message.
7.2.3.8 Download File

The UCD Client sends DownloadFile request to the UCD Server including the user ID and the file reference to download file, file revision. Once the UCD Server responds the UCD Client, the UCD Client will receive the result of this downloading operation.

7.2.3.9 Delete a file
The UCD Client sends DeleteFileRequest to the UCD Server including the user identifier, the file reference and the delete mode based on the available user setting or the user selection to per request, and receives the response from the UCD Server with the result of the operation.
7.2.3.10 Move a file
The UCD Client sends MoveFileRequest to the UCD Server including the user identifier, the source file reference, the target file path, and receives the response from the UCD Server with the result of the operation.
7.2.3.11 Copy a File
The UCD Client sends CopyFile request to the UCD Server including the user identifier, the file reference, and the targetFilePath to the UCD Server and receives the response from the UCD Server with the result of the operation.
7.2.3.12 Rename a File
The UCD Client sends the RenameFileRequest including the user identifier, the source file reference, and the new file name to the UCD Server and receives the response from the UCD Server with the result of the operation.
7.2.3.13 Share a File
The UCD Client sends SharingFile request to the UCD Server including the user identifier, the file reference, the accessCode and optionally the expire time to the UCD Server and receives the response from the UCD Server with the result of the operation.
7.2.3.14 List FileSharing
The UCD Client sends ListFileSharing request to the UCD Server including the user identifier, the sortCriterion, the maxEntries and receives the response from the UCD Server with the result of the operation and the cursor if the list is not completed or with the complete list of files information without cursor.

The handling of batched retrieval refers to 7.1.1.

7.2.3.15 DeleteFileSharing
The UCD Client sends the DeleteFileSharingRequest including the user identifier and the file share information and receives the response from the UCD Server about the result.
7.2.3.16 Set File Attribute
The UCD Client sends the SetFileAttributeRequest including the user identifier, the file reference and file attributes to the UCD Server, and receives the response from the UCD Server with the result of the operation.
7.2.3.17 Get File Attribute
The UCD Client sends the GetFileAttributeRequest including the user identifier, the file reference to the UCD Server, and receives the response from the UCD Server with the result of the operations, the file reference and the corresponding file attributes.
7.2.4 Folder/File common operation
7.2.4.1 Search folder/file
The UCD Client sends SearchRequest to the UCD Server including the user identifier, the maximum number of searched folders/files, the search key, the search scope, the sort criterion of the searched folders/files and receives the list of folders/files information and the cursor if the list is not completed or with the complete list of folders/files information without cursor. The search key can be generated according to the index attribute inputted by the user.
The handling of batched retrieval refers to 7.1.1.

7.2.4.2 List recycle bin
The UCD Client sends the ListRecycleBinRequest including the user identifier and receives the response from the UCD Server about the result and the recycle bin items. The handling of batched retrieval refers to 7.1.1.
7.2.4.3 Delete recycle bin
The UCD Client sends the CleanRecycleBinRequest including the user identifier and the recycle bin items and receives the response from the UCD Server about the result.

7.2.4.4 Revoke recycle bin
The UCD Client sends the RevokeRecycleBinRequest including the user identifier and the recycle bin items and receives the response from the UCD Server about the result.

7.2.4.5 Log management
The UCD Client sends LogInfoRequest to the UCD Server including the user identifier and optionally the maximum number of fileURIs, the fromCursor, the startTime and endTime.

The UCD Client use the logURIList to access the log files.

The handling of the batched retrieval refers to 7.1.1.

7.3 Server Procedures
7.3.1 User Account Information
7.3.1.1 User Registration

Upon receiving the user registration request from the UCD Client, the UCD Server SHALL generate the user account and allocate the storage for the user. The UCD Server SHALL confirm the successful registration of the user.

7.3.1.2 User Login
Upon receiving the user log in request from the UCD Client, the UCD Server SHALL check whether the message includes a user authentication information e.g., digest of user credentials

If the user authentication information is received and correct, the UCD Server responds a 200 OK message to the UCD Client.
If no user authentication information is received or the user authentication information is incorrect, the UCD Server responds a 401 Unauthorized message to the UCD Client with a new challenge or random to be used for authentication.
7.3.1.3 UCD Identity Federation
End user has selected which UCD Server as her/his Master UCD Server and which UCD Server as her/his Slave UCD Server.

End user wants to make her/his account in Slave UCD Server federate with her/his account in Master UCD Server.

End user has logged in Master UCD Server or Slave UCD Server.

If end user has logged in Master UCD Server, identity federation request is initialled at Master UCD Server:

· Master UCD Server SHALL receive the message IdentityFederationRequest defined in section 9.1.2.6.1 includes user identifier from UCD Client.
· Master UCD Server SHALL redirect the message RegisterNameIdentifierRequest defined in section 9.1.2.6.2 from UCD Client to Slave UCD Server.
· Slave UCD Server SHALL redirect the message RegisterNameIdentifierResponse defined in section 9.1.2.6.2 from UCD Client to Master UCD Server.
· Master UCD Server SHALL send IdentityFederationResponse.defined in section 9.1.2.6.1 to UCD Client. This message includes ssoToken for SSO service later.
If end user has logged in Slave UCD Server, identity federation request is initialled at Slave UCD Server:

· Slave UCD Server SHALL receive the message IdentityFederationRequest defined in section 9.1.2.6.1 includes user identifier from Slave UCD Client.
· Slave UCD Server SHALL redirect the message RegisterNameIdentifierRequest defined in section 9.1.2.6.2 from UCD Client to Master UCD Server.
· Master UCD Server SHALL redirect the message RegisterNameIdentifierResponse defined in section 9.1.2.6.2 from UCD Client to Slave UCD Server.
· Slave UCD Server SHALL send IdentityFederationResponse.defined in section 9.1.2.6.1 to UCD Client. This message includes ssoToken for SSO service later.
7.3.1.4 UCD Identity Defederation
End user wants to defederate his/her account in Slave UCD Server from his/her account in Master UCD Server.

If end user has logged in Master UCD Server, identity defederation request is initialled at Master UCD Server:

· Master UCD Server SHALL receive the message IdentityDefederationRequest defined in section 9.1.2.7.1 includes user identifier from UCD Client.
· Master UCD Server SHALL redirect the message FederationTerminationNotification defined in section 9.1.2.7.2 from UCD Client to Slave UCD Server. Slave UCD Server SHALL remove the binding relationship with the account in Master UCD Server.
· Slave UCD Server SHALL redirect “200 OK” from UCD Client to Master UCD Server. Master UCD Server SHALL remove the binding relationship with the account in Slave UCD Server.
· Master UCD Server SHALL send the message IdentityDefederationResponse.defined in section 9.1.2.7.1 to UCD Client.
If end user has logged in Slave UCD Server, identity federation request is initialled at Slave UCD Server:

· Slave UCD Server SHALL receive the message IdentityDefederationRequest defined in section 9.1.2.7.1 includes user identifier from UCD Client.
· Slave UCD Server SHALL redirect the message FederationTerminationNotification defined in section 9.1.2.7.2 from UCD Client to Master UCD Server. Master UCD Server SHALL remove the binding relationship with the account in Slave UCD Server.
· Master UCD Server SHALL redirect “200 OK” from UCD Client to Slave UCD Server. Slave UCD Server SHALL remove the binding relationship with the account in Master UCD Server.
· Slave UCD Server SHALL send the message IdentityDefederationResponse.defined in section 9.1.2.7.1 to UCD Client.
7.3.1.5 UCD SSO Login
End user wants to access Slave UCD Servers with a valid ssoToken.

If the message SSOLoginRequest defined in section 9.1.2.4.1has no valid ssoToken when UCD Client sends this message to Slave UCD Server:

· Slave UCD Server redirects UCD Client to Master UCD Server with the message AuthnRequest defined in section 9.1.2.4.2.

· Master UCD Server generates authentication assertion (including ssoToken).
· Master UCD Server redirects UCD Client to Slave UCD Server with the message AuthnReponse (including authentication assertion) defined in section 9.1.2.4.2.

Slave UCD Server SHALL validate authentication assertion. If successful, Slave UCD Server responds UCD Client with the message SSOLoginResponse defined section 9.1.2.4.1 and allows UCD Client to access.
7.3.1.6 UCD Single Logout
End user has logged in UCD Servers with SSO service.

End user wants to single log out from all UCD Servers.

If single log out request is initialled at Master UCD Server:

· Master UCD Server SHALL receive the message SingleLogoutRequest defined in section 9.1.2.5.1 includes user identifier from UCD Client.
· Master UCD Server SHALL discover all Slave UCD Servers which the end user has logged in with ssoToken issued by this Master UCD Server. Then, Master UCD Server SHALL separately redirect the message LogoutRequest defined in section 9.1.2.5.2 from UCD Client to those Slave UCD Servers.
· Each Slave UCD Server SHALL make the end user log out and SHALL redirect the message LogoutResponse defined in section 9.1.2.5.2 from UCD Client to Master UCD Server.
· After receiving the messages LogoutResponse defined in section 9.1.2.5.2 from all those Slave UCD Servers, Master SHALL send SingleLogoutResponse defined in section 9.1.2.5.1 to UCD Client and confirm that UCD Client logs out from those Slave UCD Servers.
If single log out request is initialled at Slave UCD Server:

· Slave UCD Server SHALL receive the message SingleLogoutRequest defined in section 9.1.2.5.1 includes user identifier from UCD Client.
· Slave UCD Server SHALL redirect the message LogoutRequest defined in section 9.1.2.5.2 from UCD Client to Master UCD Server.
· Master UCD Server SHALL discover other Slave UCD Servers which the end user has logged in with ssoToken issued by this Master UCD Server. Then, Master UCD Server SHALL separately redirect the message LogoutRequest defined in section 9.1.2.5.2 from UCD Client to other Slave UCD Servers. Each Slave UCD Server SHALL make the end user log out and SHALL redirect the message LogoutResponse defined in section 9.1.2.5.2 from UCD Client to Master UCD Server.
· Master UCD Server SHALL redirect the message LogoutResponse defined in section 9.1.2.5.2 from UCD Client to the Slave UCD Server which initialled this log out request.
· After receiving the message LogoutResponse, Slave UCD Server SHALL send SingleLogoutResponse.defined in section 9.1.2.5.1 to UCD Client and confirm that UCD Client logs out from those Slave UCD Server.
7.3.2 Folder operations
7.3.2.1 List Folder
Upon receiving the ListFolderRequest, the UCD Server checks if there is cursor element in the request message. The handling of batched retrieval refers to 7.1.1.
The UCD Server retrieves the folder information including the folder attributes, list of file names and list of sub folder names andresponds with the list of folder information and the optional cursor element.

7.3.2.2 Create a Folder
Upon receiving the CreateFolderRequest, the UCD Server creates the new folder if the folder does not exist and responses with the result of the operation and the information of the folder including the folder attributes.If the folder already exists, the UCD Server SHALL not create the folder and responses with the result of the operation indicating that the folder already exists.
7.3.2.3 Delete a Folder
Upon receiving the DeleteFolderRequest, the UCD Server checks the delete mode received.

If the delete mode indicates to remove the folder permanently or if the delete mode indicating to remove the folder into the recycle bin but the size of the folder exceeds the limitation of the recycle bin (subject to SP’s policy) , the UCD Server deletes the folder directly.

If the delete mode indicates to remove the folder into the recycle bin and the size does not exceed the limitation of the recycle bin (subject to SP’s policy) , the UCD Server deletes the folder into the recycle bin which can be revoked afterwards. The UCD Server responses the result of the operation.
7.3.2.4 Rename a Folder
Upon receiving the RenameFolderRequest, the UCD Server checks if the new folder name already exists in the same path as the source folder.

If the new folder name does not exist under the same path of the source folder, the the UCD Server modifies the name of the source folder to the new folder name, the UCD Server responses the successful result of the operation and the folder information.
If the new folder name already exists in the source folder path and the merge element is set to true, the UCD Server merges the source folder with the folder which has the same folder name as the source folder, the UCD Server responses the successful result of the operation and the folder information.
If the new folder name already exists in the source folder path and the merge element is set to false or not present, the UCD Server does not change the folder name,the UCD Server responses the result of the operation indicating that the new folder name already exists.
7.3.2.5 Copy a Folder
Upon receiving the CopyFolderRequest, the UCD Server checks if the source folder name already exists in the target folder path.

If the source folder name does not exist in the target folder path, the UCD Server copies the source folder to the target folder path and responses with the result of operation.

If the source folder name already exists in the target folder path, the UCD Server checks if the source folder path is the same as the target folder path. If the target folder path is the same as the source folder path, the UCD Server generates a duplication of the source folder subject to the duplication policy setting in the target folder path and responses with the result of the operation and the information of the duplicated folder. If the target folder path is not the same as the source folder path and the merge element is set to true, the UCD Server merges the source folder with the folder which has the same name as the source folder in the target folder path and responses with the result of the operation and the information of the merged folder. If the target folder path is not the same as the source folder path and the merge element is set to false or not present, the UCD Server does not copy the source folder to the target folder path and responses the UCD Client with the result of the operation indicating that the source folder already exists in the target folder path.
7.3.2.6 Move a Folder
Upon receiving the MoveFolderRequest, the UCD Server checks if the source folder name already exists in the target folder path.

If the source folder name does not exist in the target folder path, the UCD Server copies the source folder to the target folder path, deletes the source folder in the original path and responses with the result of operation.

If the source folder name already exists in the target folder path, the UCD Server checks if the source folder path is the same as the target folder path, If the target folder path is the same as the source folder path, the UCD Server does not take any action and responses with the result of operation. If the target folder path is not the same as the source folder path and the merge element is set to true, the UCD Server merges the source folder with the folder which has the same name of the source folder in the target folder path, deletes the source folder in the original path and responses with the result of the operation and the information of the merged folder. If the target folder path is not the same as the source folder path and the merge element is set to false or not present, the UCD Server does not move thesource folder and responses the UCD Client with the result of the operation indicating that the source folder already exists in the target folder path.
7.3.2.7 Set Folder Attributes
Upon receiving the SetFolderAttributeRequest, the UCD Server checks if the user has access right to set the folder attributes, If the user is authorized and the folder access control list is received, the UCD Server modifies the folder access control list and responds with successful result to the UCD Client. The UCD Server responds with unsuccessful result to the UCD Client if the user is not authorized or the UCD Client requests to set the folder attributes other than access control list.

7.3.2.8 Get Folder Attributes
Upon receiving the GetFolderAttributeRequest, the UCD Server checks if the user has access right to get the folder attributes, If the user is authorized and the folder reference is received, the UCD Server retrieves the folder attributes and responds with the successful result to the UCD Client. The UCD Server responds with unsuccessful result to the UCD Client if the user is not authorized.
7.3.3 File operations
7.3.3.1 Initiate Segment Upload
Upon receiving the InitiateSegmentUpload request, the UCD Server assigns an upload ID to initiate the segment uploading process.
7.3.3.2 Upload File

Upon receiving the UploadFile request, the UCD Server ensures the size of the file not exceed the maximum size of the file which is configurable by the SP and generates a link to share the file and returns a result to the UCD Client.
The UCD Server MAY distribute and store the uploaded file content equally to other storage entities, e.g. Storage Resource, External Storage Server or other UCD Servers.
7.3.3.3 Segment Upload
Upon receiving the UploadSegment request, the UCD Server confirms this upload request and returns a result to the UCD Client to inform the UCD Client that the segments upload can be started.
7.3.3.4 Finish Segment Upload
Upon receiving the FinishSegmentUpload request, the UCD Server ensures the size of the file not exceed the maximum size of the file which is configurable by the SP and finishes the file segment upload, and then, the UCD Server responds the result of the operation and the file information.
7.3.3.5 Get Segment List
Upon receiving the GetSegmentList request, the UCD Server confirms this request and returns a result to the UCD Client.

7.3.3.6 Cancel Segment Upload
Upon receiving the FinishSegmentUpload request, the UCD Server cancels the file segment upload, and then, the UCD Server responds the result of the operation.
7.3.3.7 Update a file in range
Upon receiving the FileUpdateInRangeRequest, the UCD Server updates the file in range from the startByte to the endByte, and then, the UCD Server responds the result of the operation.
7.3.3.8 Download File

Upon receiving the DownloadFile request, the UCD Server confirms this download request and returns a result to the UCD Client.

Editor note: Add file content in the respond method.
7.3.3.9 Delete a file
Upon receiving the DeleteFileRequest, the UCD Server checks the delete mode received.

If the delete mode indicates to remove the file permanently or if the delete mode indicates to remove the file into the recycle bin but the size of the file exceeds the limitation of the recycle bin (subject to SP’s policy or storage server’s mechanism), the UCD Server deletes the file directly.

If the delete mode indicates to remove the file into the recycle bin and the size does not exceed the limitation of the recycle bin (subject to SP’s policy or storage server’s mechanism), the UCD Server deletes the file into the recycle bin which can be revoked afterwards.
The UCD Server responds the result of the operation.
7.3.3.10 Move a file
Upon receiving the MoveFileRequest, the UCD Server ensures the size of the file not exceed the maximum size of the file which is configurable by the SP.

The UCD Server checks if the source file name already exists in the target file path.

If the source file name does not exist in the target file path, the UCD Server copies the source file to the target file path, deletes the source file permanently in the original path and responses with the result of operation.

If the source file name already exists in the target file path, the UCD Server has three choices as below：

1. move the source file to overwrite the file with the same name in the target file path.

2. move the source file to the target file path and generate a new revision of the file.
3. reject to move the source file.
The UCD Server makes a choice subject to the user’s policy and responds the UCD Client with the result of the operation.
7.3.3.11 Copy a File
Upon receiving the CopyFileRequest, the UCD Server ensures the size of the file not exceed the maximum size of the file which is configurable by the SP.

The UCD Server checks if the source file name already exists in the target file path.

If the source file name already exists in the target file path, the UCD Server has three choices as below：

1. copy the source file to overwrite the file with the same name in the target file path.

2. copy the source file to the target file path and generate a new revision of the file.
3. reject to copy the source file.
The UCD Server makes a choice subject to the user’s policy and responds the UCD Client with the result of the operation.
7.3.3.12 Rename a File
Upon receiving the RenameFileRequest, the UCD Server checks if the new file name already exists in the same path as the source file.
If the new file name already exists in the target file path, the UCD Server has two choices as below：

1. rename the targer file with new file name and generate a new revision of the file.
2. reject to rename the file.
The UCD Server makes a choice subject to the user’s policy and responds the UCD Client with the result of the operation.

7.3.3.13 Share a File
Upon receiving the SharingFileRequest, the UCD Server checks if the source file name already exists and the accessCode is correct.

If the source file name does not exist or the accessCode is incorrect, the UCD Server responds with the fail result.

If the expire time is not specified in the SharingFileRequest, the UCD Server sets the correct time for ending sharing according to system implementation.
7.3.3.14 List FileSharing
Upon receiving the ListFileSharing request, the UCD Server checks if there is cursor element in the request message. The handling of batched retrieval refers to 7.1.1.
The UCD Server retrieves the files according to the information included in the ListFileSharing request element and responds with the list of file sharing information and the optional cursor element.

7.3.3.15 DeleteFileSharing
Upon receiving the DeleteFileSharingRequest, the UCD Server responds with the DeleteFileSharingResponse including the result of the operation.
7.3.3.16 Set File Attribute
Upon receiving the SetFileAttributeRequest, the UCD Server set the file attributes of target file to the request values, and responds the result of the operation.
7.3.3.17 Get File Attribute
Upon receiving the GetFileAttributeRequest, the UCD Server responds the result of the operation, the file reference and the corresponding file attributes.
7.3.4 Folder/File common operation
7.3.4.1 Search folder/file
Upon receiving the SearchRequest, the UCD Server checks if there is cursor element in the request message. The handling of batched retrieval refers to 7.1.1.
The UCD Server retrieves the folders/files according to the information included in the SearchRequest element andresponds with the folders/files information and the optional cursor element.

If necessary, the UCD Server sends search request to Storage Resource, External Storage Server or other UCD Servers, and aggregates the search results from other entities, and returns back the aggregated results to the UCD Client. The aggregated results can be arranged in a certain order according to keyword, user defined policy or storage entities.
7.3.4.2 List recycle bin
Upon receiving the ListRecycleBinRequest, the UCD Server responses with the ListRecycleBinResponse including the result of the operation and the recycle bin items. The handling of batched retrieval refers to 7.1.1.
7.3.4.3 Delete recycle bin
Upon receiving the CleanRecycleBinRequest, the UCD Server responses with the CleanRecycleBinResponse including the result of the operation.
7.3.4.4 Revoke recycle bin
Upon receiving the RevokeRecycleBinRequest, the UCD Server responses with the RevokeRecycleBinResponse including the result of the operation.
7.3.4.5 Log management
Upon receiving the LogInfoRequest, the UCD Server checks if there is fromCursor element in the request message. The handling of the batched retrieval refers to 7.1.1.

The UCD Server retrieves the list of log file URIs according to the information included in the LogInfoRequest message and returns the logURIList and optional cursor element.
8. Protocol Binding
8.1 HTTP Binding
8.1.1 General
The UCD Client and the UCD Server SHALL support Hypertext Transfer Protocol version 1.1 (HTTP1.1 [RFC2616]) for UCD-1 interface.
The UCD Server SHALL support XML and JSON content types. The UCD Client SHALL support at least one of XML and JSON content types.
8.1.1.1 Media Type
The UCD Client and UCD Server SHALL support HTTP requests and responses formatted as entity-bodies with the following media types:

· application/json
· application/xml
· multipart/form-data

The “Application/ multipart/form-data” MIME type is used when the HTTP message body includes several parts of the data, typically the multipart data are message structure defined for UCD-1 interafce and miultimedia content of the file.
To represent the differente categories of message parts in a multipart/form-data message, the following is defined:

1. Root fields as described above SHALL be included as a single form field with a MIME body with:

Content-Disposition: form-data; name=”root-fields”

Content-Type: <Corresponding Content type>

Allowed content types for the root fields are:
· application/xml
· application/json
2. Multimedia contents (file, file thumbnail, etc.) SHALL be included using one of the following options:
a. When the message contains only one file content item: By including a MIME body with:
Content-Disposition: form-data; name=“attachments”, filename=“<Name of the file>”
Content-Type: <Corresponding Content-Type>
b. When the message contains only one filesegment content item: By including a MIME body with:
Content-Disposition: form-data; name=“attachments”, filename=“<Name of the file_segmentID>”
Content-Type: <Corresponding Content-Type>
c. When the message contains only file thumbnail item: By including a MIME body with:
Content-Disposition: form-data; name=“attachments”, filename=“thumbnail”
d. Content-Type: <Corresponding Content-Type>When the message contains more than one content item: By including a form-field with a MIME body with:

Content-Disposition: form-data; name=“attachments”

Content-Type: multipart/mixed

Then, the possible file content SHALL be included as subparts, with:

Content-Disposition: attachment; filename=“<Name of the file>”
Content-Type: <Corresponding Content-Type>
Then, the possible file segment content SHALL be included as subparts, with:

Content-Disposition: attachment; filename=“<Name of the file_ segmentID >”
Content-Type: <Corresponding Content-Type>Then the possible file thumbnail SHALL be included as subparts, with:

Content-Disposition: attachment; filename=“thumbnail”
Content-Type: <Corresponding Content-Type>
3. For every MIME body part and subparts, it is possible to include other parameters (Content-Description, Content-Transfer-Encoding, Content-ID), etc.
8.1.1.2 HTTP Method
All the request messages SHALL be send as HTTP POST method requests.
The following optional Headers may be included in the request messages.

· the UCD Server address in the request line

· the Host request-header set to the hostname or IP address of the UCD Server
· the User-Agent request-header set to identify the host device (e.g. “vendor-model/version”), and the name and version of the sender as user agent initiating the request.

· the Accept request-header with value “application/xml” or “application/json” as applicable

· the Accept-Encoding request-header with value per the supported HTTP compression encodings, i.e. deflate and / or gzip

· the Accept-Language request-header with value per the supported HTTP supported languages (e.g. en, *)
· the Accept-MsgSize is the maximum message size that terminal can handle.
· the Content-Length entity-header set to the length of the entity-body

· the Content-Type entity-header with value “application/xml”, or “application/json”

· the UCD-1 message(s) as message-body
If any of these headers are not present in the response to the request, the receiver SHALL assume their default values.

All the response messages SHALL be sending as response to the corresponding request as specified by the HTTP 1.1 including:

· Status-Line header reflects the outcome of the HTTP POST request

· the ETag entity-header set to a unique value within the scope of the UCD Server.

· the Content-Encoding entity-header set to the type of HTTP compression applied, if any

· the Content-Length entity-header set to the length of the entity-body

· the Content-Type entity-header with value “application/xml or “application/json”, as applicable
· the UCD-1 message(s) as message-body, if the transaction is successful
8.1.2 Security

This section describes security aspects of HTTP binding, including HTTP headers, authentication, message integrity and confidentiality.
8.1.2.1 HTTP Headers

When messages include sensitive information (e.g., password, ssoToken), both of the following conditions apply:

· If the value of the Cache-Control header field is not set to no-store, the Cache-Control header field MUST NOT be included in the message.

· If the Expires response header field is not disabled by a Cache-Control header field with a value of no-store, then the Expires field SHOULD NOT be included in the response message.

8.1.2.2 Authentication
UCD Client Authentication MUST be implemented in one of the following methods:

· HTTP basic client authentication [RFC2617] with TLS 1.1 or TLS 1.2.

· HTTP over TLS 1.1 or TLS 1.2 client authentication with a client-side certificate.

The username used for user authentication in HTTP Header must be consistent with the user identifier presented in the message body.

UCD Server Authentication MUST be implemented in the following method:

· HTTP over TLS 1.1 or TLS 1.2 server authentication with a server-side certificate.
8.1.2.3 Message Integrity

Messages MUST be sent with HTTP over TLS 1.1 or TLS 1.2 to provide message integrity. The use of message integrity is subject to user’s requirement and Service Provider’s policy. The message is signed and the signature is put in HTTP Header.
8.1.2.4 Message Confidentiality

Messages MUST be sent with HTTP over TLS 1.1 or TLS 1.2 to provide message confidentiality. The use of message confidentiality is subject to user’s requirement and Service Provider’s policy.

9. Interface Definitions
9.1 UCD-1

9.1.1 Common Structures
9.1.1.1 Type: Result
The following table describes the elements of a Result structure.
	Element
	Type
	Cardinality
	Description

	msgId
	String
	1
	Message identifier.

	text
	String
	1
	Description of the result , with replacement variables marked with %n, where n is an index in the list of <variables> elements, starting at 1.

	variables
	String
	0…N
	Variables to substitute for text string.

Table 1: Result structure
9.1.1.2 Type: Metadata
The following table describes the elements of a Metadata structure.
	Element
	Type
	Cardinality
	Description

	name
	String
	1
	Metadata name.

	value
	String
	0…1
	Metadata value.

Table 2: Metadata structure
9.1.1.3 Type: MetadataList
The following table describes the elements of a MetadataList structure.
	Element
	Type
	Cardinality
	Description

	metadata
	Metadata
	0…N
	A list of metadata.

Table 3: MetadataList structure
9.1.1.4 Type: File
The following table describes the elements of a File structure.
	Element
	Type
	Cardinality
	Description

	fileReference
	Reference
	1
	The file reference.

	fileAttributes
	FileAttributes
	0…1
	Attributes associated with the file.

	revisionId
	String
	0…1
	The file revision identification.

Table 4: File structure
9.1.1.5 Type: FileAttributes
The following table describes the elements of a FileAttributes structure.

	Element
	Type
	Cardinality
	Description

	fileType
	String
	0…1
	The file type, (i.e., jpg, doc, xls, zip).
Which can be updated by SetFileAttribute or set by UploadFile operation.

	size
	String
	0…1
	The file size.

	createTime
	DateTimeStamp
	0…1
	Date and Time at which the file was created.

	modifyTime
	DateTimeStamp
	0…1
	Date and Time at which the file was modified.

	accessTime
	DateTimeStamp
	0…1
	Date and Time at which the file was accessed.

	owner
	String
	0…1
	The owner of the file.

	metadataList
	MetadataList
	0…1
	The user defined metadata, e.g. department, project, group, publisher, editor.
Which can be updated by SetFileAttribute.

	accessControlList
	AccessControlList
	0…1
	The access control list information.
Which can be updated by SetFileAttribute.

	hash
	HashInformation
	0…1
	The hash information of the file.

	revisionList
	RevisionList
	0…1
	The file revisions.

Table 5: FileAttributes structure
9.1.1.6 Type: AccessControlList

Access control comprises the mechanisms by which various types of access to objects are authorized and permitted or denied. UCD uses the well-known mechanism of an Access Control List (ACL) as defined in the NFSv4 standard [RFC 3530]. ACLs are lists of permissions-granting or permissions-denying entries called access control entries (ACEs).

The following table describes the elements of an AccessControlList structure.

	Element
	Type
	Cardinality
	Description

	accessControlEntry
	AccessControlEntry
	0…N
	A list of accessControlEntry.

Table 6: AccessControlList structure
9.1.1.7 Type: AccessControlEntry
The following table describes the elements of an AccessControlEntry structure.
	Element
	Type
	Cardinality
	Description

	acetype
	String
	0…1
	The access control entry types.
See [RFC3530]

	identifier
	String
	0…1
	The user identifier, special "who"see [RFC3530]

	aceflags
	String
	0…1
	The semantics of the ACE.
See [RFC3530]

	acemask
	String
	0…1
	The operations on a file or folder(directory in NFSv4).
See [RFC3530]

Table 7: AccessControlEntry structure
9.1.1.8 Type: HashInformation
The following table describes the elements of a HashInformation structure.
	Element
	Type
	Cardinality
	Description

	algorithm
	String
	1
	The hash algorithm used (only "sha-1" [RFC3174] currently supported).

	value
	hexBinary
	1
	The hash value of the file.

Table 8: HashInformation structure
9.1.1.9 Type:RevisionList
The following table describes the elements of a RevisionList structure.
	Element
	Type
	Cardinality
	Description

	revisionId
	String
	0…N
	The file revision identification.

Table 9: RevisionList structure
9.1.1.10 Type: FileList
The following table describes the elements of a FileList structure.
	Element
	Type
	Cardinality
	Description

	file
	File
	0…N
	List of files. Number of files MAY be limited by the server.

Table 10: FileList structure
9.1.1.11 Type: Reference
The following table describes the elements of a Reference structure.
	Element
	Type
	Cardinality
	Description

	parentPath
	String
	1
	The path of the parent folder where the file or subfolder is located.
The path of a folder is made up of a sequence of folder names starting from the root folder where the folder names are separated by “/”(U+002F) character.
Example : /root/myfolder.

	name
	String
	1
	The file name or sub-folder name under the parent folder.

Table 11: Reference structure
9.1.1.12 Type: Folder
The following table describes the elements of a Folder structure.

	Element
	Type
	Cardinality
	Description

	folderReference
	Reference
	1
	The reference of the folder which includes the parent folder path and folder name.

	folderAttributes
	FolderAttributes
	0…1
	Attributes associated with the folder.

	subFolders
	String
	0…N
	List of sub-folder names.

	files
	String
	0…N
	List of file names.

Table 12: Folder structure
9.1.1.13 Type: FolderAttributes
The following table describes the elements of a FolderAttributes structure.

	Element
	Type
	Cardinality
	Description

	root
	Boolean
	0…1
	The value “true” denotes the folder is designated as a root folder.
Which can be set by CreateFolder operation.

	size
	String
	0…1
	The folder size.

	createTime
	DateTimeStamp
	0…1
	Date and Time at which the folder was created.

	filesNumber
	Integer
	0…1
	The number of files in this folder.

	subFoldersNumber
	Integer
	0…1
	The number of subfolders in this folder.

	owner
	String
	0…1
	The owner of the folder.
Which can be set by CreateFolder operation.

	accessControlList
	AccessControlList
	0…1
	The access control list information.
Which can be updated by SetFolderAttribute or set by CreateFolder operation.

Table 13: FolderAttributes structure
9.1.1.14 Type: FolderList
The following table describes the elements of a FolderList structure.
	Element
	Type
	Cardinality
	Description

	folder
	Folder
	0…N
	List of folders. Number of folders MAY be limited by the server.

Table 14: FolderList structure
9.1.1.15 Type: RecycleBinItem
The following table describes the elements of a RecycleBinItem structure.
	Element
	Type
	Cardinality
	Description

	type
	String
	1
	The Recycle Bin item type, value=0 meanings folder, value=1 meanings file.

	name
	String
	1
	The folder or file name in Recycle Bin.

	originalPath
	String
	0…1
	The original path of folder or file before in Recycle Bin.

	recycleBinItemAttributes
	RecycleBinItemAttributes
	0…1
	Attributes associated with the folder or file in Recycle Bin.

Table 15: RecycleBinItem structure
9.1.1.16 Type: RecycleBinItemAttributes

The following table describes the elements of a RecycleBinItemAttributes structure.
	Element
	Type
	Cardinality
	Description

	fileType
	String
	0…1
	The file type, (i.e., jpg, doc, xls, zip). It is only used for RecycleBinitem type value=1 meanings file.

	size
	Integer
	0…1
	The item size.

	deleteTime
	DateTimeStamp
	0…1
	Date and Time at which the item was deleted.

	createTime
	DateTimeStamp
	0…1
	Date and Time at which the item was created.

Table 16: RecycleBinItemAttributes structure
9.1.1.17 Type: FileShare
The following table describes the elements of a FileShare structure.
	Element
	Type
	Cardinality
	Description

	fileReference
	Reference
	1
	The reference of the file to be shared.

	link
	String
	1
	The link to the shared file.

	accessCode
	String
	0…1
	The code to access the file via the link.

Table 17: FileShare structure
9.1.2 User Account Information
9.1.2.1 Mapping relationships between parameters defined by Liberty Alliance and parameters defined by OMA UCD
Some messages and parameters defined by Liberty Alliance are reused in clauses 9.1.2.4, 9.1.2.5, 9.1.2.6, and 9.1.2.7. So it is better to map the relationships of parameters between Liberty Alliance and OMA UCD for better readability.

The following table describes the mapping relationships between parameters defined by Liberty Alliance (refer to [LibertyBindProf] and [LibertyProtSchema]) and parameters defined by OMA UCD.

	Parameters defined by Liberty Alliance
	Parameters defined by OMA UCD

	Parameters
	Description
	Parameters
	Description

	NameIdentifier
	The name identifier of the Principal.
	userIdM or userIdS
	The user identifier in Master UCD Server or Slave UCD Server. It depends on the specified messages which use it.

	ProviderID
	The provider identifier.
	serverIdM or serverIdS
	The address of Master UCD Server or Slave UCD Server. It depends on the specified messages which use it.

	Assertion
	The result of the request processing, authentication assertions including ssoToken will be generated after successful authentication.
	result
	The result of the request processing. A ssoToken will be returned after successful authentication.

	Status
	The status of the request processing.
	result
	The result of the request processing.

	IDPProvidedNameIdentifier
	The current name identifier established by the IdP for the SP to use when communicating with it.
	userIdM
	The user identifier userIdM in the Master UCD Server

	SPProvidedNameIdentifier
	The current name identifier established by the SP for the IdP to use when communicating with it.
	userIdS
	The user identifier userIdS in the Slave UCD Server

Table 18: Mapping relationships between parameters in Liberty Alliance and parameters in OMA UCD
9.1.2.2 Registration Request and Response

The UCD Client sends UserRegistrationRequest to the UCD Server to create a user account.

A root element named userRegistrationRequest of type UserRegistrationRequest is allowed in the request body.

A root element named userRegistrationResponse of type UserRegistrationResponse is allowed in the response body.

[image: image4]
The following table describes the elements of the UserRegistrationRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	passwd
	String
	1
	The password of the user.

	status
	String
	1
	The status of the user,e.g. “normal”,”suspended”.

	quota
	Integer
	1
	The capacity of the user, in MByte.

	contactInfo
	String
	0…1
	The contact info of the user, for example, the mobile phone number and the email address of the user.

	messageSignature
	String
	1
	This field is mandatory to provide message integrity and to prevent user information (e.g., userId, Password) from being tampered with.

Table 19: UserRegistrationRequest structure
The following table describes the elements of the UserRegistrationResponse structure

	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	messageSignature
	String
	0…1
	This field is optional to provide message integrity.

Table 20: UserRegistrationResponse structure
9.1.2.3 User Login Request and Response
The UCD Client sends userLoginRequest to UCD Server before using UCD services.

A root element named userLoginRequest of type UserLoginRequest is allowed in the request body.

A root element named userLoginResponse of type UserLoginResponse is allowed in the response body.

[image: image5]
The following table describes the elements of a UserLoginRequest structure.
	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

Editor’s Note: To check whether messageSignature is needed.
Table 21: UserLoginRequest structure
The following table describes the elements of a UserLoginResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	serverId
	anyURI
	0…N
	The list of UCD Server address.
If the user logs in his/her Master UCD Server, the list of servers will be the list of candidates for Slave UCD Servers. If the user logs in his/her Slave UCD Server, the list of servers will be the list of candidates for Master UCD Servers which support an IdP function.

	messageSignature
	String
	0…1
	This field is optional to provide message integrity and to prevent UCD Server address from being tampered with.

Table 22: UserLoginResponse structure
9.1.2.4 SSO Login
9.1.2.4.1 SSO Login Request and Response

The UCD Client sends SSOLoginRequest to UCD Server to log in the Slave UCD Server by using the SSO mechanism.

A root element named SSOLoginRequest of type SSOLoginRequest is allowed in the request body.

A root element named SSOLoginResponse of type SSOLoginResponse is allowed in the response body.

[image: image6]
The following table describes the elements of a SSOLoginRequest structure.

	Element
	Type
	Cardinality
	Description

	userIdS
	String
	1
	The user identifier in the Slave UCD Server.

	ssoToken
	String
	0…1
	If ssoToken is empty or invalid, the UCD Sever MUST redirect UCD Client to get a valid ssoToken before allowing to access services.

Table 23: SSOLoginRequest structure
The following table describes the elements of a SSOLoginResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 24: SSOLoginResponse structure
9.1.2.4.2 Authn Request and Response
Subsequent to SSOLoginRequest to Slave UCD Server without a valid ssoToken, the Slave UCD Server redirects AuthnRequest through UCD Client to Master UCD Server to get ssoToken. After successful operation, Master UCD Server redirects AuthnResponse through UCD Client to Slave UCD Server.

A root element named AuthnRequest of type AuthnRequest is allowed in the request body.

A root element named AuthnResponse of type AuthnResponse is allowed in the response body.
 SHAPE * MERGEFORMAT

The following table describes the elements of an AuthnRequest structure.

	Element
	Type
	Cardinality
	Description

	nameIdentifier
	String
	1
	NameIdentifier will be the user identifier in the Slave UCD Server (i.e., userIdS).

	providerID
	anyURI
	1
	ProviderID will be the address of the Master UCD Server (i.e., serverIdM).

Table 25: AuthnRequest structure
The following table describes the elements of an AuthnResponse structure.

	Element
	Type
	Cardinality
	Description

	providerID
	anyURI
	1
	ProviderID will be the address of the Master UCD Server(i.e., serverIdM).

	assertion
	AssertionType [SAML: Assertions and Protocol]
	1
	The result of the request processing, authentication assertions including ssoToken will be generated after successful authentication.

Table 26: AuthnResponse structure

9.1.2.5 Logout

9.1.2.5.1 Single Logout Request and Response

The UCD Client sends SingleLogoutRequest to UCD Server to logout from all the UCD Servers.

A root element named SingleLogoutRequest of type SingleLogoutRequest is allowed in the request body.

A root element named SingleLogoutResponse of type SingleLogoutResponse is allowed in the response body.

[image: image8]
The following table describes the elements of a SingleLogoutRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	userId will be one of followings:

1) userIdM: the user identifier in the Master UCD Server when requesting log out from Maser UCD Server to Slave UCD Server.
2) userIdS: the user identifier in the Slave UCD Server when requesting logout from Slave UCD Server to Master UCD Server.
Editor’s Note: to check whether to have multiple userIdS when logout from UCD Master Server

	serverId
	anyURI
	1
	The address of the Master UCD Server (when SingleLogoutRequest initiated at the Slave UCD Server) or the address of the Slave UCD Server (when SingleLogoutRequest initiated at the Master UCD Server) associated with userIdM or userIdS.
Editor’s Note: to check whether to have multiple serverId when logout from UCD Master Server.

Table 27: SingleLogoutRequest structure

The following table describes the elements of a SingleLogoutResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 28: SingleLogoutResponse structureIdentity
9.1.2.5.2 LogoutRequest and Response
Subsequent to SingleLogoutRequest, the UCD Server-1 redirects LogoutRequest through UCD Client to UCD Server-2 to log out. After successful operation, UCD Server-2 redirects LogoutResponse through UCD Client to UCD Server-1.

If UCD Server-1 is a Master UCD Server, UCD Server-2 will be a Slave UCD Server, vice versa.
A root element named LogoutRequest of type LogoutRequest is allowed in the request body.

A root element named LogoutResponse of type LogoutResponse is allowed in the response body.

 SHAPE * MERGEFORMAT

The following table describes the elements of a LogoutRequest structure.

	Element
	Type
	Cardinality
	Description

	nameIdentifier
	String
	1
	NameIdentifier will be one of followings:

1) userIdM: the user identifier in the Master UCD Server when requesting log out from Maser UCD Server to Slave UCD Server.
2) userIdS: the user identifier in the Slave UCD Server when requesting logout from Slave UCD Server to Master UCD Server.

	providerID
	anyURI
	1
	ProviderID will be one of followings:

1) serverIdM: the address of the Master UCD Server when requesting log out from Maser UCD Server to Slave UCD Server.
2) serverIdS: the address of the Slave UCD Server when requesting log out from Slave UCD Server to Master UCD Server.

Table 29: LogoutRequest structure
The following table describes the elements of a LogoutResponse structure.

	Element
	Type
	Cardinality
	Description

	providerID
	anyURI
	1
	ProviderID will be one of followings:

1) serverIdM: the address of the Master UCD Server when responding Logout from Maser UCD Server to Slave UCD Server.
2) serverIdS: the address of the Slave UCD Server when responding logout from Slave UCD Server to Master UCD Server.

	status
	String
	1
	The status/result of the request processing.

Table 30: LogoutResponse structure
9.1.2.6 Identity Federation

9.1.2.6.1 Federation Request and Response

The UCD Client sends IdentityFederationRequest to UCD Server to federate the slave user account with master user account.

A root element named IdentityFederationRequest of type IdentityFederationRequest is allowed in the request body.

A root element named IdentityFederationResponse of typeIdentityFederationResponse is allowed in the response body.

[image: image10]
The following table describes the elements of an IdentityFederationRequest structure.

	Element
	Type
	Cardinality
	Description

	userIdM
	String
	1
	The user identifier in the Master UCD Server.

	userIdS
	String
	1
	The user identifier in the Slave UCD Server.

	serverIdM
	anyURI
	Choice
	The address of the Master UCD Server hwhen requesting federation to Slave UCD Server.

	serverIdS
	anyURI
	Choice
	The address of the Slave UCD Server when requesting federation to Master UCD Server.

Table 31: IdentityFederationRequest structure
The following table describes the elements of an IdentityFederationResponse structure.
	Element
	Type
	Cardinality
	Description

	serverId
	anyURI
	1
	serverId will be one of followings:

1) serverIdM: the address of the Master UCD Server when responding identity federation from Maser UCD Server to Slave UCD Server.
2) serverIdS: the address of the Slave UCD Server when responding identity federation from Slave UCD Server to Master UCD Server.

	result
	Result
	1
	The result of the request processing.

	ssoToken
	String
	0…1
	If identity federation is successfully done, ssoToken will be generated and responded to UCD Client.

Table 32: IdentityFederationResponse structure
9.1.2.6.2 RegisterNameIdentifier Request and Response

Subsequent to IdentityFederationRequest, the UCD Server-1 redirects RegisterNameIdentifierRequest through UCD Client to UCD Server-2 to federate the slave user account with master user account. After successful operation, UCD Server-2 redirects RegisterNameIdentifierResponse through UCD Client to UCD Server-1.

If UCD Server-1 is a Master UCD Server, UCD Server-2 will be a Slave UCD Server, vice versa.
A root element named RegisterNameIdentifierRequest of type RegisterNameIdentifierRequest is allowed in the request body.

A root element named RegisterNameIdentifierResponse of type RegisterNameIdentifierResponse is allowed in the response body.
 SHAPE * MERGEFORMAT

The following table describes the elements of a RegisterNameIdentifierRequest structure.

	Element
	Type
	Cardinality
	Description

	iDPProvidedNameIdentifier
	String
	1
	The user identifier userIdM in the Master UCD Server.

	sPProvidedNameIdentifier
	String
	1
	The user identifier userIdS in the Slave UCD Server.

	providerID
	anyURI
	1
	ProviderID will be one of the followings:

1) serverIdM: the address of the Master UCD Server when requesting federation to Slave UCD Server.
2) serverIdS: the address of the Slave UCD Server when requesting federation to Master UCD Server.

Table 33: RegisterNameIdentifierRequest structure
The following table describes the elements of a RegisterNameIdentifierResponse structure.

	Element
	Type
	Cardinality
	Description

	providerID
	anyURI
	1
	ProviderID will be one of followings:

1) serverIdM: the address of the Master UCD Server when responding identity federation from Maser UCD Server to Slave UCD Server.
2) serverIdS: the address of the Slave UCD Server when respondingidentity federation from Slave UCD Server to Master UCD Server.

	status
	String
	1
	The status/result of the request processing.
If identity federation is successfully done, ssoToken will be generated and responded to UCD Client included in Status.

Table 34: RegisterNameIdentifierResponse structure
9.1.2.7 Identity Defederation

9.1.2.7.1 Identity Defederation Request and Response
The UCD Client sends IdentityDefederationRequest to UCD Server (Master UCD Server or Slave UCD Server) to defederate the slave user account with master user account.

A root element named IdentityDefederationRequest of type IdentityDefederationRequest is allowed in the request body.

A root element named IdentityDefederationResponse of typeIdentityDefederationResponse is allowed in the response body.

[image: image12]
The following table describes the elements of an IdentityDefederationRequest structure.

	Element
	Type
	Cardinality
	Description

	userIdM
	String
	1
	The user identifier in the Master UCD Server.

	userIdS
	String
	1
	The user identifier in the Slave UCD Server.

	serverIdM
	anyURI
	Choice
	The address of the Master UCD Server when requesting defederation to the Slave UCD Server userIdS.

	serverIdS
	anyURI
	Choice
	The address of the Slave UCD Server when requesting federation to Master UCD Server.

Table 35: IdentityDefederationRequest structure
The following table describes the elements of an IdentityDefederationResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 36: IdentityDefederationResponse structure
9.1.2.7.2 FederationTerminationNotification
Subsequent to IdentityDefederationRequest, the UCD Server-1 redirects FederationTerminationNotification through UCD Client to UCD Server-2 to terminate the federation of the slave user account with master user account.

If UCD Server-1 is a Master UCD Server, UCD Server-2 will be a Slave UCD Server, vice versa.
A root element named FederationTerminationNotification of type FederationTerminationNotification is allowed in the request body.
 SHAPE * MERGEFORMAT

The following table describes the elements of a FederationTerminationNotification structure.

	Element
	Type
	Cardinality
	Description

	nameIdentifier
	String
	1
	NameIdentifier will be one of the followings:

1) userIdM: The user identifier in the Master UCD Server when requesting defederation from Master UCD Server to Slave UCD Server.
2) userIdS: The user identifier in the Slave UCD Server when requesting defederation from Slave UCD Server to Master UCD Server.

	providerID
	anyURI
	1
	ProviderID will be one of the followings:

1) serverIdM: the address of the Master UCD Server when requesting defederation from Master UCD Server to Slave UCD Server.
2) serverIdS: the address of the Slave UCD Server when requesting defederation from Slave UCD Server to Master UCD Server.

Table 37: FederationTerminationNotification structure
Editor’s Note: the specify the relationship with LA specificcation
9.1.3 Folder Operation
9.1.3.1 List Folder Request and Response

The UCD Client sends ListFolderRequest to UCD Server to to list the file folder.

A root element named ListFolderRequest of type ListFolderRequest is allowed in the request body.

A root element named ListFolderResponse of type ListFolderResponse is allowed in the response body.

[image: image14]
The following table describes the elements of a ListFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	folderReference
	Reference
	1
	The folder reference.

	fromCursor
	String
	0…1
	 The beginning position of the retrieve response. Omitting this value denotes the first position.

The cursor value is provided by the server in a previous response to the request.

Table 38: ListFolderRequest structure
The following table describes the elements of a ListFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folder
	Folder
	1
	The folder information.

	cursor
	Sring
	0…1
	If the list is complete, this element is not omitted.

If the list is not completed, this element is present and to be used in the subsequent request to indicate the start point of the remaining entries.

Table 39: ListFolderResponse structure
9.1.3.2 Create Folder Request and Response
The UCD Client sends CreateFolderRequest to UCD Server to create the file folder.

A root element named CreateFolderRequest of type CreateFolderRequest is allowed in the request body.

A root element named CreateFolderResponse of type CreateFolderResponse is allowed in the response body.

[image: image15]
The following table describes the elements of a CreateFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	folderReference
	Reference
	1
	The folder reference.

Table 40: CreateFolderRequest structure
The following table describes the elements of a CreateFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folderReference
	Reference
	0..1
	The folder reference.

	folderAttributes
	FolderAttributes
	0…1
	The attributes of the folder.

Table 41: CreateFolderResponse structure
9.1.3.3 Delete Folder Request and Response
The UCD Client sends DeleteFolderRequest to UCD Server to delete the file folder.

A root element named DeleteFolderRequest of type DeleteFolderRequest is allowed in the request body.

A root element named DeleteFolderResponse of type DeleteFolderResponse is allowed in the response body.

[image: image16]
The following table describes the elements of a DeleteFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	folderReference
	Reference
	1
	The folder reference.

	deleteMode
	String
	1
	The delete mode, value=0 meanings remove from server storage and no revoke, value=1 meanings temporarily move to Recycle Bin and can revoke. When the size of deleted folder is over the limitation of Recycle Bin (which is according to storage provider’s policy or storage server’s mechanism), it will be removed directly.

Table 42: DeleteFolderRequest structure
The following table describes the elements of a DeleteFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 43: DeleteFolderResponse structure
9.1.3.4 Rename Folder Request and Response
The UCD Client sends RenameFolderRequest to UCD Server to to rename the file folder.

A root element named RenameFolderRequest of type RenameFolderRequest is allowed in the request body.

A root element named RenameFolderResponse of type RenameFolderResponse is allowed in the response body.

[image: image17]
The following table describes the elements of a RenameFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	folderReference
	Reference
	1
	The source folder reference.

	newFolderName
	String
	1
	The new folder name.

	merge
	Boolean
	0…1
	The indicate whether to merge the source folder with the new folder if the new folder exists.

Default is False.

Table 44: RenameFolderRequest structure
The following table describes the elements of a RenameFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folder
	Folder
	0..1
	The folder information.

Table 45: RenameFolderResponse structure
9.1.3.5 Copy Folder Request and Response
The UCD Client sends CopyFolderRequest to UCD Server to copy the file folder.

A root element named CopyFolderRequest of type CopyFolderRequest is allowed in the request body.

A root element named CopyFolderResponse of type CopyFolderResponse is allowed in the response body.

[image: image18]
The following table describes the elements of a CopyFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	folderReference
	Reference
	1
	The source folder reference.

	targetFolderPath
	String
	1
	The target folder path.

	merge
	Boolean
	0…1
	The indicate whether to merge the source folder with the new folder if the new folder exists.

Default is False.

Table 46: CopyFolderRequest structure
The following table describes the elements of a CopyFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folder
	Folder
	0..1
	The folder information.

Table 47: CopyFolderResponse structure
9.1.3.6 Move Folder Request and Response
The UCD Client sends MoveFolderRequest to UCD Server to move the file folder.

A root element named MoveFolderRequest of type MoveFolderRequest is allowed in the request body.

A root element named MoveFolderResponse of type MoveFolderResponse is allowed in the response body.

[image: image19]
The following table describes the elements of a MoveFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	folderReference
	Reference
	1
	The source folder reference.

	targetFolderPath
	String
	1
	The target folder path.

	merge
	Boolean
	0…1
	The indicate whether to merge the source folder with the target folder if the target folder exists.

Default is False.

Table 48: MoveFolderRequest structure
The following table describes the elements of a MoveFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folder
	Folder
	0..1
	The folder information.

Table 49: MoveFolderResponse structure
9.1.3.7 SetFolderAttribute Request and Response

The UCD Client sends SetFolderAttributeRequest to UCD Server to set folder’s attributes.

A root element named SetFolderAttributeRequest of type SetFolderAttributeRequest is allowed in the request body.

A root element named SetFolderAttributeResponse of type SetFolderAttributeResponse is allowed in the response body.

[image: image20]
The following table describes the elements of a SetFolderAttributeRequest structure.
	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	folderReference
	FolderReference
	0…1
	The folder reference.

	folderAttributes
	FolderAttributes
	0…1
	Attributes associated with the folder.

Table 50: SetFolderAttributeRequest structure
The following table describes the elements of a SetFolderAttributeResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 51: SetFolderAttributeResponse structure
9.1.3.8 GetFolderAttribute Request and Response

The UCD Client sends GetFolderAttributeRequest to UCD Server to get folder attributes.

A root element named GetFolderAttributeRequest of type GetFolderAttributeRequest is allowed in the request body.

A root element named GetFolderAttributeResponse of type GetFolderAttributeResponse is allowed in the response body.

[image: image21]
The following table describes the elements of a GetFolderAttributeRequest structure.
	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	folderReference
	FolderReference
	0…1
	The folder reference.

Table 52: GetFolderAttributeRequest structure
The following table describes the elements of a GetFolderAttributeResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folderReference
	FolderReference
	0…1
	The folder reference.

	folderAttributes
	FolderAttributes
	0…1
	Attributes associated with the folder.

Table 53: GetAttributeFolderResponse structure
9.1.4 File Operation
9.1.4.1 InitiateSegmentUpload Request and Response
The UCD Client sends InitiateSegmentUploadRequest to UCD Server to initiate file segment upload.

A root element named InitiateSegmentUploadRequest of type InitiateSegmentUploadRequest is allowed in the request body.

A root element named InitiateSegmentUploadResponse of type InitiateSegmentUploadResponse is allowed in the response body.

[image: image22]
The following table describes the elements of a InitiateSegmentUploadRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	file
	File
	1
	The file information.

Table 54: InitiateSegmentUploadRequest structure
The following table describes the elements of a InitiateSegmentUploadResponse structure.
	Element
	Type
	Cardinality
	Description

	uploadID
	String
	1
	The file segments upload identification.

Table 55: InitiateSegmentUploadResponse structure
9.1.4.2 UploadFile Request and Response
The UCD Client sends UploadFileRequest to UCD Server to upload file.

A root element named UploadFileRequest of type UploadFileRequest is allowed in the request body.

A root element named UploadFileResponse of type UploadFileResponse is allowed in the response body.

[image: image23]
The following table describes the elements of a UploadFileRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	file
	File
	1
	The file information.

	share
	Boolean
	0…1
	Default is not to share the file.

Table 56: UploadFileRequest structure
The following table describes the elements of a UploadFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	file
	File
	0…1
	The file information.

	link
	String
	0...1
	The link to the shared file.

Table 57: UploadFileResponse structure
9.1.4.3 UploadSegment Request and Response
The UCD Client sends UploadSegmentRequest to UCD Server to upload segment.

A root element named UploadSegmentRequest of type UploadSegmentRequest is allowed in the request body.

A root element named UploadSegmentResponse of type I UploadSegmentResponse is allowed in the response body.

[image: image24]
The following table describes the elements of a UploadSegmentRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The file reference.

	uploadID
	String
	1
	The file segments upload identification.

	segmentID
	String
	1
	The file segments identification.

Table 58: UploadSegmentRequest structure
The following table describes the elements of a UploadSegmentResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 59: UploadSegmentResponse structure
9.1.4.4 FinishSegmentUpload Request and Response
The UCD Client sends FinishSegmentUploadRequest to UCD Server to finish file segment upload.

A root element named FinishSegmentUploadRequest of type FinishSegmentUploadRequest is allowed in the request body.

A root element named FinishSegmentUploadResponse of type FinishSegmentUploadResponse is allowed in the response body.

[image: image25]
The following table describes the elements of a FinishSegmentUploadRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The file reference.

	uploadID
	String
	1
	The file segments upload identification.

	segmentID
	String
	1…N
	The list of complete file segments identification.

Table 60: FinishSegmentUploadRequest structure
The following table describes the elements of a FinishSegmentUploadResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of processing the request.

	file
	File
	0..1
	The file information.

Table 61: FinishSegmentUploadResponse structure
9.1.4.5 GetSegmentList Request and Response
The UCD Client sends GetSegmentListRequest to UCD Server to get segment list.

A root element named GetSegmentListRequest of type GetSegmentListRequest is allowed in the request body.

A root element named GetSegmentListResponse of type GetSegmentListResponse is allowed in the response body.

[image: image26]
The following table describes the elements of a GetSegmentListRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The file reference.

	uploadID
	String
	1
	The file segments upload identification.

Table 62: GetSegmentListRequest structure
The following table describes the elements of a GetSegmentListResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	fileReference
	Reference
	0..1
	The file reference.

	segmentID
	String
	0…N
	The file segments identification.

Table 63: GetSegmentListResponse structure
9.1.4.6 CancelSegmentUpload Request and Response
The UCD Client sends CancelSegmentUploadRequest to UCD Server to cancel segment upload.

A root element named CancelSegmentUploadRequest of type CancelSegmentUploadRequest is allowed in the request body.

A root element named CancelSegmentUploadResponse of type CancelSegmentUploadResponse is allowed in the response body.

[image: image27]
The following table describes the elements of a CancelSegmentUploadRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The file reference.

	uploadID
	String
	1
	The file segments upload identification.

Table 64: CancelSegmentUploadRequest structure
The following table describes the elements of a CancelSegmentUploadResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 65: CancelSegmentUploadResponse structure
9.1.4.7 FileUpdateInRange Request and Response
The UCD Client sends FileUpdateInRangeRequest to UCD Server to update file in range.

A root element named FileUpdateInRangeRequest of type FileUpdateInRangeRequest is allowed in the request body.

A root element named FileUpdateInRangeResponse of type FileUpdateInRangeResponse is allowed in the response body.

[image: image28]
The following table describes the elements of a FileUpdateInRangeRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The file reference.

	startByte
	Int
	1
	The start of file range to be updated.

	endByte
	Int
	1
	The end of file range to be updated.

Table 66: FileUpdateInRangeRequest structure
The following table describes the elements of a FileUpdateInRangeResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 67: FileUpdateInRangeResponse structure
9.1.4.8 DownloadFile Request and Response
The UCD Client sends DownloadFileRequest to UCD Server to download file, file revision, file segment or file range.

A root element named DownloadFileRequest of type DownloadFileRequest is allowed in the request body.

A root element named DownloadFileResponse of type DownloadFileResponse is allowed in the response body.

[image: image29]
The following table describes the elements of a DownloadFileRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The file reference.

Table 68: DownloadFileRequest structure
The following table describes the elements of a DownloadFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 69: DownloadFileResponse structure
9.1.4.9 DeleteFile Request and Response
The UCD Client sends DeleteFileRequest to UCD Server to delete file, file revision.

A root element named DeleteFileRequest of type DeleteFileRequest is allowed in the request body.

A root element named DeleteFileResponse of type DeleteFileResponse is allowed in the response body.

[image: image30]
The following table describes the elements of a DeleteFileRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The file reference.

	deleteMode
	String
	1
	The delete mode, value=0 meanings remove from server storage and no revoke, value=1 meanings temporarily move to Recycle Bin and can revoke. When the size of deleted file is over the limitation of Recycle Bin (which is according to storage provider’s policy or storage server’s mechanism), it will be removed directly.

Table 70: DeleteFileRequest structure
The following table describes the elements of a DeleteFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 71: DeleteFileResponse structure
9.1.4.10 MoveFile Request and Response
The UCD Client sends MoveFileRequest to UCD Server to move file.

A root element named MoveFileRequest of type MoveFileRequest is allowed in the request body.

A root element named MoveFileResponse of type MoveFileResponse is allowed in the response body.

[image: image31]
The following table describes the elements of a MoveFileRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The source file reference.

	targetFilePath
	String
	1
	The target file path.

Table 72: MoveFileRequest structure
The following table describes the elements of a MoveFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	file
	File
	0..1
	The file information.

Table 73: MoveFileResponse structure
9.1.4.11 CopyFile Request and Response
The UCD Client sends CopyFileRequest to UCD Server to copy file.

A root element named CopyFileRequest of type CopyFileRequest is allowed in the request body.

A root element named CopyFileResponse of type CopyFileResponse is allowed in the response body.

[image: image32]
The following table describes the elements of a CopyFileRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The source file reference.

	targetFilePath
	String
	1
	The target file path.

Table 74: CopyFileRequest structure
The following table describes the elements of a CopyFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	file
	File
	0..1
	The file information.

Table 75: CopyFileResponse structure
9.1.4.12 RenameFile Request and Response

The UCD Client sends RenameFileRequest to UCD Server to rename file.

A root element named RenameFileRequest of type RenameFileRequest is allowed in the request body.

A root element named RenameFileResponse of type RenameFileResponse is allowed in the response body.

[image: image33]
The following table describes the elements of a RenameFileRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The source file reference.

	newFileName
	String
	1
	The new file name.

Table 76T: RenameFileRequest structure
The following table describes the elements of a RenameFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 77: RenameFileResponse structure
9.1.4.13 SharingFile Request and Response
The UCD Client sends SharingFileRequest to UCD Server to sharing file.

A root element named SharingFileRequest of type ShargingFileRequest is allowed in the request body.

A root element named SharingFileResponse of type SharingFileResponse is allowed in the response body.

 SHAPE * MERGEFORMAT

The following table describes the elements of a SharingFileRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	Reference
	1
	The reference of the file to be shared.

	accessCode
	String
	0…1
	The code to access the file via the link.

	expires
	dateTime
	0…1
	The file sharing expire time.

If this field is not specified, the expiration time depends on system implementation.

Table 78: SharingFileRequest structure
The following table describes the elements of a SharingFileResponse structure.

	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	fileShare
	FileShare
	0…1
	The file share information.

Table 79: SharingFileResponse structure
9.1.4.14 ListFileSharing Request and Response
The UCD Client sends ListFileSharingRequest request to UCD Server to list file sharing.

A root element named ListFileSharingRequest of type ListFileSharingRequest is allowed in the request body.

A root element named ListFileSharingResponse of type ListFileSharingResponse is allowed in the response body.
 SHAPE * MERGEFORMAT

The following table describes the elements of a ListFileSharingRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	sortCriterion
	String
	0…1
	The sort criterion for the retrieval of elements.

Default is random or server preferred sort.

	maxEntries
	xsd:int
	0…1
	Specifies maximum number of entries to be returned in the response.

Note: A server pre-defined (i.e., implementation specific) maximum number of entries MAY be returned in case the requested maximum exceeds server’s pre-defined maximum entries.

	fromCursor
	String
	0…1
	If this element is present, it indicates the start point of the retrieval entries. The cursor is returned in the previous response.

Table 80: ListFileSharingRequest structure
The following table describes the elements of a ListFileSharingResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	fileShare
	FileShare
	0…N
	The file share information.

	cursor
	String
	0…1
	If the list of files is complete, this element is omitted.

If there are more available files not included in the list, then a cursor value is returned, which encapsulates information on these files. The client can use the cursor in a subsequent request, to hint to the server that it is asking for the rest of files which had not been returned in a previous request.

 The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.

Table 81: ListFileSharingResponse structure
9.1.4.15 DeleteFileSharing Request and Response
The UCD Client sends DeleteFileSharingRequest to UCD Server to delete file sharing.

A root element named DeleteFileSharingRequest of type DeleteFileSharingRequest is allowed in the request body.

A root element named DeleteFileSharingResponse of type DeleteFileSharingResponse is allowed in the response body.

 SHAPE * MERGEFORMAT

The following table describes the elements of a DeleteFileSharingRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileShare
	FileShare
	1
	The file share information.

Table 82: DeleteFileSharingRequest structure
The following table describes the elements of a DeleteFileSharingResponse structure.

	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 83: DeleteFileSharingResponse structure
9.1.4.16 SetFileAttribute Request and Response

The UCD Client sends SetFileAttributeRequest to UCD Server to set file attributes.

A root element named Set File AttributeRequest of type SetFileAttributeRequest is allowed in the request body.

 A root element named Set File AttributeResponse of type SetFileAttributeResponse is allowed in the response body.

[image: image37]
The following table describes the elements of a SetFileAttributeRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	FileReference
	0…1
	The file reference.

	fileAttributes
	FileAttributes
	0…1
	Attributes associated with the file.

Table 84: SetFileAttributeRequest structure
The following table describes the elements of a SetFileAttributeResponse structure.

	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 85: SetFileAttributeResponse structure
9.1.4.17 GetFileAttribute Request and Response

The UCD Client sends GetFileAttributeRequest to UCD Server to get folder attributes.

A root element named GetFileAttributeRequest of type GetFileAttributeRequest is allowed in the request body.

A root element named GetFileAttributeResponse of type GetFileAttributeResponse is allowed in the response body.

[image: image38]
The following table describes the elements of a GetFileAttributeRequest structure.
	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fileReference
	FileReference
	0…1
	The file reference.

Table 86: GetFileAttributeRequest structure
The following table describes the elements of a GetFileAttributeResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	fileReference
	FileReference
	0…1
	The file reference.

	fileAttributes
	FileAttributes
	0…1
	Attributes associated with the file.

Table 87: GetFileAttributeResponse structure
9.1.5 Folder/File Common Operation
9.1.5.1 Search Request and Response
The UCD Client sends SearchRequest to UCD Server to search folder or file.

A root element named SearchRequest of type SearchRequest is allowed in the request body.

 A root element named SearchResponse of type SearchResponse is allowed in the response body.

[image: image39]
The following table describes the elements of a SearchRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	fromCursor
	xsd:string
	0…1
	 The beginning position of the retrieve response. Omitting this value denotes the first position.

The fromCursor is a cursor value provided by the server in a previous response to a request with the same search selection criteria.

	maxEntries
	xsd:int
	0…1
	Specifies maximum number of entries to be returned in the response.

Note: A server pre-defined (i.e., implementation specific) maximum number of entries MAY be returned in case the requested maximum exceeds server’s pre-defined maximum entries.

	searchKey
	String
	0…1
	Search key.
If there is no search key, the server will retrieve all available elements.
Editor notes: need future study

	searchScope
	Reference
	0…1
	Reference to folder at which point the search would start.

If searchScope is provided, the scope of the search is limited to the subtree starting at this folder.

If searchScope is not provided, the search is applied to the root folder.

	sortCriterion
	String
	0…1
	The sort criterion for the retrieval of elements.

Default is random or server preferred sort.

Table 88: SearchRequest structure
The following table describes the elements of a SearchResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	fileSearchResult
	FileList
	0…1
	The retrieval of file elements.

	folderSearchResult
	FolderList
	0…1
	The retrieval of folder elements.

	cursor
	String
	0…1
	If the list of Search Result is complete, this element is omitted.

If there are more available files not included in the list, then a cursor value is returned, which encapsulates information on these files. The client can use the cursor in a subsequent request, to hint to the server that it is asking for the rest of files which had not been returned in a previous request.

 The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.

Table 89: SearchResponse structure
9.1.5.2 List RecycleBin Request and Response
The UCD Client sends ListRecycleBinRequest to UCD Server to list RecycleBin.

A root element named ListRecycleBinRequest of type ListRecycleBinRequest is allowed in the request body.A root element named ListRecycleBinResponse of type ListRecycleBinResponse is allowed in the response body.

[image: image40]
The following table describes the elements of a ListRecycleBinRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	maxEntries
	xsd:int
	0…1
	Specifies maximum number of entries to be returned in the response.

Note: A server pre-defined (i.e., implementation specific) maximum number of entries MAY be returned in case the requested maximum exceeds server’s pre-defined maximum entries.

	fromCursor
	String
	0…1
	If this element is present, it indicates the start point of the retrieval entries. The cursor is returned in the previous response.

Table 90: ListRecycleBinRequest structure
The following table describes the elements of a ListRecycleBinResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	recycleBinItem
	RecycleBinItem
	0…N
	The Recycle Bin items.

	cursor
	String
	0…1
	If the list of files is complete, this element is omitted.

If there are more available files not included in the list, then a cursor value is returned, which encapsulates information on these files. The client can use the cursor in a subsequent request, to hint to the server that it is asking for the rest of files which had not been returned in a previous request.

 The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.

Table 91: ListRecycleBinResponse structure
9.1.5.3 Delete RecycleBin Request and Response
The UCD Client sends DeleteRecycleBinRequest to UCD Server to delete the RecycleBin.
A root element named DeleteRecycleBinRequest of type DeleteRecycleBinRequest is allowed in the request body.

 A root element named DeleteRecycleBinResponse of type DeleteRecycleBinResponse is allowed in the response body.

[image: image41]
The following table describes the elements of a CleanRecycleBinRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	recycleBinItem
	RecycleBinItem
	0…N
	The Recycle Bin items. If no value, meanings clean Recycle Bin.

Table 92: CleanRecycleBinRequest structure
The following table describes the elements of a CleanRecycleBinResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 93: CleanRecycleBinResponse structure
9.1.5.4 Revoke RecycleBin Request and Response
The UCD Client sends RevokeRecycleBinRequest to UCD Server to revoke the RecycleBin.
A root element named RevokeRecycleBinRequest of type RevokeRecycleBinRequest is allowed in the request body.

 A root element named RevokeRecycleBinResponse of type RevokeRecycleBinResponse is allowed in the response body.

[image: image42]
The following table describes the elements of a RevokeRecycleBinRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user.

	recycleBinItem
	RecycleBinItem
	1…N
	The Recycle Bin items. If no value, meanings revoke all items in Recycle Bin.

Table 94: RevokeRecycleBinRequest structure
The following table describes the elements of a RevokeRecycleBinResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 95: RevokeRecycleBinResponse structure
9.1.5.5 LogInfo Request and Response
The UCD Client sends LogInfoRequest to UCD Server to request for the log file information.
A root element named LogInfoRequest of type LogInfoRequest is allowed in the request body.

 A root element named LogInfoResponse of type LogInfoResponse is allowed in the response body.

[image: image43]
The following table describes the elements of a LogInfoRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	Xsd:String
	1
	The identity of the user

	fromCursor
	xsd:string
	0…1
	 The beginning position of the retrieve response. Omitting this value denotes the first position.

The fromCursor is a cursor value provided by the server in a previous response to a request.

	maxEntries
	xsd:int
	0…1
	Specifies maximum number of entries to be returned in the response.

Note: A server pre-defined (i.e., implementation specific) maximum number of entries MAY be returned in case the requested maximum exceeds server’s pre-defined maximum entries.

	startTime
	DateTimeStamp
	0…1
	Log start time.

If not present, the start time is chosen by the system.

	endTime
	DateTimeStamp
	0…1
	Log end time.

If not present, the end time is chosen by the system.

Table 96: LogInfoRequest structure
The following table describes the elements of a LogInfoResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	cursor
	String
	0…1
	If the list of result is complete, this element is omitted.

If there are more available logURIs not included in the list with the same startTime and endTime,then a cursor value is returned, which encapsulates information on these files. The client can use the cursor in a subsequent request, to hint to the server that it is asking for the rest of logURI which had not been returned in a previous request.

 The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.

	logURIList
	anyURI
	0…N
	The URI to access the log files

Table 97: LogInfoResponse structure
9.2 UCD-2
For UCD-2 interface, please refer to [REST_NetAPI_UCD].

10. Release Information

10.1 Supporting File Document Listing

	Doc Ref
	Permanent Document Reference
	Description

	Supporting Files

	[SUP-XSD_rest_ucd]
	OMA-SUP-XSD_UCD-V1_0-20140604-D
	XML schema for the RESTful Network API for Unified Cloud Disk

Working file in Schema directory:

 file: rest_netapi_ucd-v1_0.xsd

 path: http://www.openmobilealliance.org/tech/profiles/

Table 98: Listing of Supporting Documents in UCD V1.0 Release

10.2 OMNA Considerations

There is no required OMNA registration for UCD 1.0.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-ER-UCD-V1_0

	10 Sep 2012
	all
	First draft baseline as agreed in “OMA-REQ-UCD-2012-0002R01-INP_UCD_1.0_baseline”

	
	11 Sep 2012
	all
	Incorporates inputs to committee:
OMA-REQ-UCD-2012-0003R01-CR_scope
OMA-REQ-UCD-2012-0004R01-CR_introduction

OMA-REQ-UCD-2012-0005R01-CR_HLF_MultiDevice_MultiAccess

OMA-REQ-UCD-2012-0006R01-CR_API_requirements

	
	12 Oct 2012
	all
	OMA-REQ-UCD-2012-0007R01-CR_HLF_3rdSP_3rdEnabler

OMA-REQ-UCD-2012-0008R01-CR_account

OMA-REQ-UCD-2012-0009R01-CR_sso_dynamic_integrating

OMA-REQ-UCD-2012-0010R01-CR_network_api_

	
	15 Oct 2012
	all
	General editorial clean-up by Document Support Officer:

Sorting of references and abbreviations in alphabetical order

Update of history box

Language set to English UK

Renumbering of figures

	
	12 Dec 2012
	all
	OMA-REQ-UCD-2012-0011R01-CR_File_Management_Requirements

OMA-REQ-UCD-2012-0012-CR_File_Folder_Management_Requirements

OMA-REQ-UCD-2012-0013-CR_Recycle_Bin_Management

OMA-REQ-UCD-2012-0015-CR_Enterprise_management

	
	14 Jan 2013
	all
	OMA-REQ-UCD-2012-0016R02-CR_policy_management
OMA-REQ-UCD-2012-0017R01-CR_sharing
OMA-REQ-UCD-2012-0018-CR_Application_management

	
	12 Mar 2013
	all
	OMA-REQ-UCD-2013-0001-CR_File_Update_Requirement
OMA-REQ-UCD-2013-0002R01-CR_Metadata_Management_Requirement
OMA-REQ-UCD-2013-0003R01-CR_File_Segment_Requirement
OMA-REQ-UCD-2013-0004R01-CR_Application_Profile_Management
OMA-REQ-UCD-2013-0005-CR_Application_Log_Management
OMA-REQ-UCD-2013-0006R01-CR_User_Profile_Management
OMA-REQ-UCD-2013-0007R01-CR_policy_management
OMA-REQ-UCD-2013-0008R01-CR_oauth
OMA-REQ-UCD-2013-0009-CR_thumbnails
OMA-REQ-UCD-2013-0010R01-CR_user_management
OMA-REQ-UCD-2013-0022R01-CR_High_Level_Functional_Requirements
OMA-REQ-UCD-2013-0025R01-CR_file_management
OMA-REQ-UCD-2013-0026R01-CR_File_Retention
OMA-REQ-UCD-2013-0027R01-CR_Auto_deletion
OMA-REQ-UCD-2013-0028R02-CR_Any_format_of_files
OMA-REQ-UCD-2013-0029R02-CR_Security_requirements
OMA-REQ-UCD-2013-0030R03-CR_File_log_management
OMA-REQ-UCD-2013-0031-CR_log_management

	
	20 Mar 2013
	5
	OMA-REQ-UCD-2013-0032R02-ER_Requirements_Section_Informal_Review_comments_from_ZTE
OMA-REQ-UCD-2013-0033R01-CR_file_management_resolution
OMA-REQ-UCD-2013-0035R01-INP_UCD_RD_Informal_Review_SEC

	
	03 Apr 2013
	all
	OMA-REQ-UCD-2013-0034R02-INP_ER_Requirements_Section_Informal_Review_comments_from_ChinaTelecom
OMA-REQ-UCD-2013-0036-CR_editorial_comment_resolution
OMA-REQ-UCD-2013-0037R01-CR_User_Policy_Requirement
OMA-REQ-UCD-2013-0038R01-CR_Duplicate_File_Deletion
OMA-REQ-UCD-2013-0039R02-CR_File_Replicaiton_Requirement
OMA-REQ-UCD-2013-0040R01-CR_File_Compress_Requirement
OMA-REQ-UCD-2013-0041R01-CR_Data_Isolation
OMA-REQ-UCD-2013-0042-CR_Application_Policy
OMA-REQ-UCD-2013-0043R01-CR_Automatic_Versioning

	
	08 Apr 2013
	all
	Final check of the informal Review for editorial quality-control of the Requirements Section as a whole.

OMA-REQ-UCD-2013-0044-CR_ER_result_of_the_REQ_Informal_Review

	
	16 May 2013
	6
	OMA-CD-UCD-2013-0001R01-CR_Architecture_Baseline

	
	14 Jun 2013
	all
	OMA-CD-UCD-2013-0006R01-CR_UCD_Architecture_deployments
OMA-CD-UCD-2013-0007R01-CR_Upload_Flow
OMA-CD-UCD-2013-0008R01-CR_UCD_storage_resource
OMA-CD-UCD-2013-0009R01-CR_UCD_client
OMA-CD-UCD-2013-0010R01-CR_UCD_application
OMA-CD-UCD-2013-0012R01-CR_UCD_server
OMA-CD-UCD-2013-0014R01-CR_UCD_interfaces
OMA-CD-UCD-2013-0015-CR_Architecture_modification
OMA-CD-UCD-2013-0021R01-CR_File_Upload

	
	17 Jul 2013
	all
	OMA-CD-UCD-2013-0003R04-CR_Identity_Federation
OMA-CD-UCD-2013-0022R02-CR_UCD_Client_Functions
OMA-CD-UCD-2013-0023-CR_UCD_Architecture_update

	
	13 Aug 2013
	all
	OMA-CD-UCD-2013-0024-CR_Architecture_Improvement

OMA-CD-UCD-2013-0025R01-CR_Autho4API_Functions

	
	08 Oct 2013
	all
	OMA-CD-UCD-2013-0027R01-CR_UCD_2_definition
OMA-CD-UCD-2013-0030R03-CR_UCDv1.0_TS_Identity_Federation_Flow_from_Master
OMA-CD-UCD-2013-0031R03-CR_UCDv1.0_TS_Identity_Federation_Flow_from_Slave
OMA-CD-UCD-2013-0032R04-CR_UCDv1.0_TS_Identity_Defederation_Flow_from_Master
OMA-CD-UCD-2013-0033R04-CR_UCDv1.0_TS_Identity_Defederation_Flow_from_Slave
OMA-CD-UCD-2013-0034R01-CR_UCDv1.0_TS_Single_Sign_On
OMA-CD-UCD-2013-0035R03-CR_UCDv1.0_TS_Single_Logout_Initiated_at_Master
OMA-CD-UCD-2013-0036R03-CR_UCDv1.0_TS_Single_Logout_Initiated_at_Slave
OMA-CD-UCD-2013-0038R02-CR_Registration_Message_Definition
OMA-CD-UCD-2013-0039R01-CR_Login_message_Definition
OMA-CD-UCD-2013-0040R01-CR_Protocol_Binding
OMA-CD-UCD-2013-0043R01-CR_UCD_Server_Function

	
	02 Dec 2013
	all
	OMA-CD-UCD-2013-0046-CR_SSOLogin_message_Definition
OMA-CD-UCD-2013-0047R01-CR_SingleLogout_message_definition
OMA-CD-UCD-2013-0048R02-CR_ListFolder_message_Definition
OMA-CD-UCD-2013-0049R02-CR_CreateFolder_message_Definition
OMA-CD-UCD-2013-0050R02-CR_DeleteFolder_message_Definition
OMA-CD-UCD-2013-0051R01-CR_RenameFolder_message_Definition
OMA-CD-UCD-2013-0052R01-CR_CopyFolder_message_Definition
OMA-CD-UCD-2013-0053R01-CR_MoveFolder_message_Definition
OMA-CD-UCD-2013-0054R01-CR_InitiateSegmentUpload_message_Definition
OMA-CD-UCD-2013-0055R01-CR_UploadFile_message_Definition
OMA-CD-UCD-2013-0056R01-CR_IdentityFederation_message_definition
OMA-CD-UCD-2013-0057R01-CR_IdentityDefederation_message_definition
OMA-CD-UCD-2013-0058R03-CR_Identity_Federation_Flow_from_Master
OMA-CD-UCD-2013-0059R01-CR_Single_Sign_On_flow_update
OMA-CD-UCD-2013-0060R02-CR_Identity_Federation_Flow_from_Slave
OMA-CD-UCD-2013-0061R01-CR_Identity_Defederation_Flow_update
OMA-CD-UCD-2013-0062-CR_Single_Logout_flow_update
OMA-CD-UCD-2013-0063-CR_UploadSegment_message_Definition
OMA-CD-UCD-2013-0064R01-CR_FinishSegmentUpload
OMA-CD-UCD-2013-0065R02-CR_GetSegmentList_message_Definition
OMA-CD-UCD-2013-0066-CR_CancelSegmentUpload_message_Definition
OMA-CD-UCD-2013-0067R01-CR_FileUpdateInRange_message_Definition
OMA-CD-UCD-2013-0068R01-CR_DownloadFile_message_Definition
OMA-CD-UCD-2013-0069-CR_DeleteFile_message_Definition
OMA-CD-UCD-2013-0070R02-CR_MoveFile_message_Definition
OMA-CD-UCD-2013-0071R01-CR_CreateFileRevision_message_Definition
OMA-CD-UCD-2013-0072R01-CR_ListFileRevision_message_Definition
OMA-CD-UCD-2013-0073R01-CR_CopyFile_message_Definition
OMA-CD-UCD-2013-0074-CR_RenameFile_message_Definition
OMA-CD-UCD-2013-0078R01-CR_Login_message_Definition_update
OMA-CD-UCD-2013-0080R01-CR_Sharing_File_message_definition

	
	26 Dec 2013
	Section 9
	OMA-CD-UCD-2013-0083R02-CR_SetAttribute_message_Definition
OMA-CD-UCD-2013-0084R02-CR_GetAttribute_message_Definition
OMA-CD-UCD-2013-0085R01-CR_Common_file_floder_structure

	
	08 Feb 2014
	all
	OMA-CD-UCD-2013-0086-CR_Definition_Master_UCD_Server
OMA-CD-UCD-2013-0087-CR_Identity_Federation_Flows_Correction
OMA-CD-UCD-2013-0088R01-CR_file_folder_operation_update_with_CR0085
OMA-CD-UCD-2014-0001R01-CR_Search_message_Definition
OMA-CD-UCD-2014-0002R01-CR_RecycleBin_message_Definition

	
	04 Mar 2014
	all
	OMA-CD-UCD-2014-0004R02-CR_Attribute

OMA-CD-UCD-2014-0006R01-CR_Sharing_File_message_definition

OMA-CD-UCD-2014-0007R01-CR_List_File_Sharing_message_definition

OMA-CD-UCD-2014-0008-CR_Delete_File_Sharing_message_definition

OMA-CD-UCD-2014-0009-CR_UserID_for_UCD_1

OMA-CD-UCD-2014-0011R01-CR_media_type_description

OMA-CD-UCD-2014-0013R01-CR_common_structure_modification

OMA-CD-UCD-2014-0014-CR_Security_Requirements_Correction

OMA-CD-UCD-2014-0015-CR_Bug_Fix_for_Identity_Federation
OMA-CD-UCD-2014-0016-CR_Protocol_Binding_Security
OMA-CD-UCD-2014-0017R02-CR_Message_Signature
OMA-CD-UCD-2014-0018R02-CR_User_Login_Message_Explanation
OMA-CD-UCD-2014-0019-CR_SSOToken_Definition
OMA-CD-UCD-2014-0020-CR_Message_RegisterNameIdentifierRequest_Response
OMA-CD-UCD-2014-0021R01-CR_Message_FederationTerminationNotification
OMA-CD-UCD-2014-0022-CR_Message_AuthnRequest_Response
OMA-CD-UCD-2014-0023-CR_Message_LogoutRequest_Response

	
	12 Jun2014
	all
	OMA-CD-UCD-2014-0030R02-CR_Attributes_for_UCD_1

OMA-CD-UCD-2014-0038-CR_Remove_UCD_3_interafce

OMA-CD-UCD-2014-0040R01-CR_Use_case

OMA-CD-UCD-2014-0043R01-CR_Improve_Security_Considerations

OMA-CD-UCD-2014-0045R01-CR_Modify_the_flow_of_SSO_login

OMA-CD-UCD-2014-0050R01-CR_User_Information_Handling_Procedure

OMA-CD-UCD-2014-0051R01-CR_user_registration_procedure

OMA-CD-UCD-2014-0052R01-CR_user_login_procedure

OMA-CD-UCD-2014-0053R01-CR_folder_operations_procedures

OMA-CD-UCD-2014-0054R01-CR_UCD_1_folder_operation_modification

	
	02 Jul 2014
	all
	OMA-CD-UCD-2014-0055-CR_Client_Procedures

OMA-CD-UCD-2014-0056-CR_Server_Procedures

OMA-CD-UCD-2014-0057R01-CR_Messages_Correction_for_UCD_1

OMA-CD-UCD-2014-0059-CR_List,_delete_and_revoke_the_recycle_bin

OMA-CD-UCD-2014-0060R02-CR_search_folders_or_files

OMA-CD-UCD-2014-0061R01-CR_File_update_in_range_Procedures

OMA-CD-UCD-2014-0063R03-CR_File_operation_procedure

OMA-CD-UCD-2014-0064R01-CR_File_segment_upload_operation_procedure

OMA-CD-UCD-2014-0065R01-CR_File_upload_and_download_operation_procedure

OMA-CD-UCD-2014-0067R01-CR_File_attribute_operations_procedures

OMA-CD-UCD-2014-0068R01-CR_copyfile_and_renamefile_operations_procedures

OMA-CD-UCD-2014-0069R03-CR_sharingfile_listfilesharing_and_deletefilesharing_operations_procedures

OMA-CD-UCD-2014-0071R01-CR_UCD_ER_SCR_Table

OMA-CD-UCD-2014-0072R01-CR_folder_attribute_procedures

	
	08 Jul 2014
	10.1
	Update the document list prior to Consistency Review

	
	09 Sep 2014
	all
	OMA-CD-UCD-2014-0076-CR_Move_Informative_Flows_to_Appendix
OMA-CD-UCD-2014-0077-CR_OMNA_Considerations
OMA-CD-UCD-2014-0078-CR_UCD_2_Interface
OMA-CD-UCD-2014-0079R01-CR_Search_Clarification
OMA-CD-UCD-2014-0083R01-CR_ER_ZTE
OMA-CD-UCD-2014-0084R01-CR_ER_CHINA_UNICOM
OMA-CD-UCD-2014-0085R01-CR_CONRR_ER_A042_to_A060_and_A063
OMA-CD-UCD-2014-0087R01-CR_CONRR_ER__A089_to_A092_A108_to_A112_A114_A116_A118
OMA-CD-UCD-2014-0088R02-CR_CONRR_ER__A094
OMA-CD-UCD-2014-0089-CR_CONRR_ER__A096_and_A098
OMA-CD-UCD-2014-0090R01-CR_CONRR_ER__A099
OMA-CD-UCD-2014-0091-CR_CONRR_ER__A113
OMA-CD-UCD-2014-0092-CR_CONRR_ER__A117

	
	23 Sep 2014
	Section 9.1
	OMA-CD-UCD-2014-0093-CR_To_Improve_Message_Description_Section9.1

Appendix B. Use Cases
(Informative)

This Appendix provides high-level use cases focused on the users and deployment scenarios point of view, targeting release’s requirements.
B.1 Federated cloud storage service
B.1.1 ASK * MERGEFORMAT Short Description

This scenario aims at enabling users to interconnect with several Cloud storage services by unified account.
In the past, Alice uses several Cloud storage services, including A, B, and C, to store files in different Service Providers. Alice uses web browsers or private clients to access different providers.
Now with the UCD support
· Alice registers account in Master UCD Server of mobile operators or other Slave UCD Server.
· Alice requests identity federation to the Master UCD Server or the Slave UCD Server to federate the Slave user account with Master user account
· Alice requests single sign on (SSO) to the the Master UCD Server or the Slave UCD Server.
· Alice uses web browser (support UCD API) or UCD Client to access folders or files on different UCD Servers by different providers.
B.1.2 Market benefits

Cloud Storage Federation enables users to single sign on Service Provider, giving them the ability to manage folder/files on different Federated storage. The mobile operator can thus operate its own cloud storage service thus attracting its own subscribers to an interoperable cloud storage service that allow them to interact with other mobile operators.
B.2 File backup/recovery using cloud storage of different providers
B.2.1 ASK * MERGEFORMAT Short Description

This scenario aims at enabling users to improve storage reliability.

In the past, Alice would manually upload/download files on different Cloud storage services including A, B, and C for backup/recovery.
Now with the UCD support
· Alice can easily realize her files recovery by UCD Client or UCD API to backup files on cloud storage of different providers.
· Or UCD Server automatically realize files recovery according to service policy or Alice’s preference
B.2.2 Market benefits

The mobile operator can provide high reliability cloud storage service to keep and attract own subscribers.
B.3 open APIs to applications
B.3.1 ASK * MERGEFORMAT Short Description

This scenario aims at enabling multiple applications to benefit from the interworking with Cloud Storages in an optimized fashion.
The application such as web mailbox application, music download application, enterprise business data application can use open networking API to access folder/files on Cloud Storages.
B.3.2 Market benefits

Application developers will be able to develop applications that require interaction with cloud storage services more easily, lowering the development cost, shortening the time to market and thus increasing the application portfolio.

The end users will have a wider offer of applications to access the cloud storage services.

Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

C.1 ERDEF for UCD - Client Requirements

This section is normative.
	Item
	Feature / Application
	Requirement

	OMA-ERDEF- UCD -C-001-M<<M/O>>
	UCD Client
	

Table 99: ERDEF for UCD Client-side Requirements

C.2 ERDEF for UCD - Server Requirements

This section is normative.

	Item
	Feature / Application
	Requirement

	OMA-ERDEF- UCD -S-001-M
	UCD Server
	

Table 100: ERDEF for UCD Server-side Requirements

C.3 SCR for UCD Client
C.3.1 SCR for User Account Information
	Item
	Function
	Reference
	Requirement

	UCD-ACC-C-001-O
	User registration
	7.1.1.1, 9.1.2.2
	

	UCD-ACC-C-002-M
	User login
	7.1.1.2, 9.1.2.3
	

	UCD-ACC-C-003-M
	User logout
	7.1.1.6, 9.1.2.5.2
	

	UCD-ACC-C-004-M
	SSO login
	7.1.1.5, 9.1.2.4
	

	UCD-ACC-C-005-M
	Single logout
	7.1.1.6, 9.1.2.5.1
	

	UCD-ACC-C-006-M
	Identity federation
	7.1.1.3, 9.1.2.6
	

	UCD-ACC-C-007-M
	Identity defederation
	7.1.1.4, 9.1.2.7
	

C.3.2 SCR for Folder Operation
	Item
	Function
	Reference
	Requirement

	UCD-DIR-C-001-M
	List folder
	7.1.2.1, 9.1.3.1
	

	UCD-DIR-C-002-M
	Create folder
	7.1.2.2, 9.1.3.2
	

	UCD-DIR-C-003-M
	Delete folder
	7.1.2.3, 9.1.3.3
	

	UCD-DIR-C-004-M
	Rename folder
	7.1.2.4, 9.1.3.4
	

	UCD-DIR-C-005-M
	Copy folder
	7.1.2.5, 9.1.3.5
	

	UCD-DIR-C-006-M
	Move folder
	7.1.2.6, 9.1.3.6
	

	UCD-DIR-C-007-M
	Get folder attribute
	7.1.2.8, 9.1.3.8
	

	UCD-DIR-C-008-M
	Set folder attribute
	7.1.2.7, 9.1.3.7
	

C.3.3 SCR for File Operation
	Item
	Function
	Reference
	Requirement

	UCD-FILE-C-001-M
	Upload file in segments
	7.1.3.1, 9.1.4.1
	

	UCD-FILE-C-002-M
	Upload total file
	7.1.3.2, 9.1.4.2
	

	UCD-FILE-C-003-M
	Upload File Segment
	7.1.3.3, 9.1.4.3
	

	UCD-FILE-C-004-M
	Finish file segment upload
	7.1.3.4, 9.1.4.4
	

	UCD-FILE-C-005-M
	Get segment list
	7.1.3.5, 9.1.4.5
	

	UCD-FILE-C-006-M
	Cancel file upload in segment
	7.1.3.6, 9.1.4.6
	

	UCD-FILE-C-007-M
	Update file in ramge
	7.1.3.7, 9.1.4.7
	

	UCD-FILE-C-008-M
	Down load file
	7.1.3.8, 9.1.4.8
	

	UCD-FILE-C-009-M
	Delete file
	7.1.3.9, 9.1.4.9
	

	UCD-FILE-C-010-M
	Move file
	7.1.3.10, 9.1.4.10
	

	UCD-FILE-C-011-M
	Copy file
	7.1.3.11, 9.1.4.11
	

	UCD-FILE-C-012-M
	Rename file
	7.1.3.12, 9.1.4.12
	

	UCD-FILE-C-013-M
	File Shrng
	7.1.3.13, 9.1.4.13
	

	UCD-FILE-C-014-M
	List file shrng
	7.1.3.14, 9.1.4.14
	

	UCD-FILE-C-015-M
	Delete file shrng
	7.1.3.15, 9.1.4.15
	

	UCD-FILE-C-016-M
	Get file Attribute
	7.1.3.17, 9.1.4.17
	

	UCD-FILE-C-017-M
	Set file Attribute
	7.1.3.16, 9.1.4.16
	

C.3.4 SCR for Folder/File Common Operation
	Item
	Function
	Reference
	Requirement

	UCD-COMM-C-001-M
	Search file and folders
	7.1.4.1, 9.1.5.1
	

	UCD-COMM-C-002-M
	List Recycle bin
	7.1.4.2, 9.1.5.2
	

	UCD-COMM-C-003-M
	Delete Recycle bin
	7.1.4.3, 9.1.5.3
	

	UCD-COMM-C-004-M
	Revoke Recycle bin
	7.1.4.4, 9.1.5.4
	

C.4 SCR for UCD Server
C.4.1 SCR for User Account Information
	Item
	Function
	Reference
	Requirement

	UCD-ACC-S-001-O
	User registration
	7.2.1.1, 9.1.2.2
	

	UCD-ACC-S-002-M
	User login
	7.2.1.2, 9.1.2.3
	

	UCD-ACC-S-003-M
	SSO login
	7.2.1.5, 9.1.2.4
	

	UCD-ACC-S-004-M
	Single logout
	7.2.1.6, 9.1.2.5
	

	UCD-ACC-S-005-M
	Identity federation
	7.2.1.3, 9.1.2.6
	

	UCD-ACC-S-006-M
	Identity defederation
	7.2.1.4, 9.1.2.7
	

C.4.2 SCR for Folder Operation
	Item
	Function
	Reference
	Requirement

	UCD-DIR-S-001-M
	List folder
	7.2.2.1, 9.1.3.1
	

	UCD-DIR-S-002-M
	Create folder
	7.2.2.2, 9.1.3.2
	

	UCD-DIR-S-003-M
	Delete folder
	7.2.2.3, 9.1.3.3
	

	UCD-DIR-S-004-M
	Rename folder
	7.2.2.4, 9.1.3.4
	

	UCD-DIR-S-005-M
	Copy folder
	7.2.2.5, 9.1.3.5
	

	UCD-DIR-S-006-M
	Move folder
	7.2.2.6, 9.1.3.6
	

	UCD-DIR-S-007-M
	Get folder attribute
	7.2.2.8, 9.1.3.8
	

	UCD-DIR-S-008-M
	Set folder attribute
	7.2.2.7, 9.1.3.7
	

C.4.3 SCR for File Operation
	Item
	Function
	Reference
	Requirement

	UCD-FILE-S-001-M
	Upload file in segments
	7.2.3.1, 9.1.4.1
	

	UCD-FILE-S-002-M
	Upload total file
	7.2.3.2, 9.1.4.2
	

	UCD-FILE-S-003-M
	Upload File Segment
	7.2.3.3, 9.1.4.3
	

	UCD-FILE-S-004-M
	Finish file segment upload
	7.2.3.4, 9.1.4.4
	

	UCD-FILE-S-005-M
	Get segment list
	7.2.3.5, 9.1.4.5
	

	UCD-FILE-S-006-M
	Cancel file upload in segment
	7.2.3.6, 9.1.4.6
	

	UCD-FILE-S-007-M
	Update file in ramge
	7.2.3.7, 9.1.4.7
	

	UCD-FILE-S-008-M
	Down load file
	7.2.3.8, 9.1.4.8
	

	UCD-FILE-S-009-M
	Delete file
	7.2.3.9, 9.1.4.9
	

	UCD-FILE-S-010-M
	Move file
	7.2.3.10, 9.1.4.10
	

	UCD-FILE-S-011-M
	Copy file
	7.2.3.11, 9.1.4.11
	

	UCD-FILE-S-012-M
	Rename file
	7.2.3.12, 9.1.4.12
	

	UCD-FILE-S-013-M
	File Shrng
	7.2.3.13, 9.1.4.13
	

	UCD-FILE-S-014-M
	List file shrng
	7.2.3.14, 9.1.4.14
	

	UCD-FILE-S-015-M
	Delete file shrng
	7.2.3.15, 9.1.4.15
	

	UCD-FILE-S-016-M
	Get file Attribute
	7.2.3.17, 9.1.4.17
	

	UCD-FILE-S-017-M
	Set file Attribute
	7.2.3.16, 9.1.4.16
	

C.4.4 SCR for Folder/File Common Operation
	Item
	Function
	Reference
	Requirement

	UCD-COMM-S-001-M
	Search file and folders
	7.2.4.1, 9.1.5.1
	

	UCD-COMM-S-002-M
	List Recycle bin
	7.2.4.2, 9.1.5.2
	

	UCD-COMM-S-003-M
	Delete Recycle bin
	7.2.4.3, 9.1.5.3
	

	UCD-COMM-S-004-M
	Revoke Recycle bin
	7.2.4.4, 9.1.5.4
	

Appendix D. Flows (Informative)
D.1 Identity federation request initiated from Master UCD Server

End user wants to do identity federation with one Slave UCD Server. Procedures of such identity federation are described as in figure 3.

[image: image44.emf]UCD ClientMaster UCD ServerSlave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

3: IdentityFederationRequest

4: 302; RegisterNameIdentifierRequest

4.1: 401; Unauthorized

4.2: HTTP Request ()

6: 302; RegisterNameIdentifierResponse

8: IdentityFederationResponse (Successfull)

7: Record mapping of user accounts between

Master UCD Server and Slave UCD Server

5 Record Federation info

1.1: 401; Unauthorized

1.2: HTTP Request ()

4.3: 200 OK

Figure 3: Flow of identity federation initiated from Master UCD Server
Some prerequisites for making identity federation are:

· SPs of UCD Servers including IdP functions should make service agreement with other SPs providing UCD service.
· User has registered and decided which UCD Server with IdP functions to be his/her Master UCD Server.

Procedures of identity federation initiated from Master UCD Server are described as below:
1. User requests to log in Master UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in the Master UCD Server). If user is already authenticated by Master UCD Server and keeping login status, then go to step 3.

1.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client sends request to Master UCD Server. The message includes user authentication information e.g., Digest of user credentials.

2. Master UCD Server authenticates the user according to authentication information (e.g., user account in the Master UCD Server, user credentials).

Master UCD Server replies to UCD Client with the message UserLoginResponse, containing a list of UCD Server (at least including one UCD Server) which may or may not have IdP function.
3. User chooses one of the UCD Servers as his/her Slave UCD Server to be federated. UCD Client sends the message IdentityFederationRequest to Master UCD Server. This request message includes user account in the Master UCD Server, user account in Slave UCD Server, and information about Slave UCD Server (e.g. Slave UCD Server address).

4. Master UCD Server redirects UCD Client to Slave UCD Server. The message RegisterNameIdentifierRequest in [LibertyBindProf] [LibertyProtSchema] includes address of Slave UCD Server, address of Master UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Master UCD Server Certificate. This message is signed by Master UCD Server.

Slave UCD Server validates the signature of Master UCD Server.

Before recording federation information (e.g., the mapping of user accounts between Master UCD Server and Slave UCD Server), Slave UCD Server MUST authenticate the user to guarantee that this user has the right to federate user account in Master UCD Server with user account in Slave UCD Server. There are several authentication mechanisms. One possible mechanism is available as below:

4.1 Slave UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

4.2 UCD Client replies to Slave UCD Server. The message includes user authentication information e.g., digest of user credentials.

4.3 Slave UCD Server authenticates the user. Slave UCD Server replies to UCD Client with the message 200 OK.

5. Slave UCD Server records federation information (i.e., mapping of user accounts between Master UCD Server and Slave UCD Server).

6. Slave UCD Server redirects UCD Client to Master UCD Server. The message RegisterNameIdentifierResponse in [LibertyBindProf] [LibertyProtSchema] includes ssoToken, Slave UCD Server identity, user account in Slave UCD Server, user account in Master UCD Server, Slave UCD Server Certificate. This message is signed by Slave UCD Server.

7. Master UCD Server validates the signature of Slave UCD Server.

Maser UCD Server records mapping of user accounts between Master UCD Server and Slave UCD Server.

8. Master UCD Server responds UCD Client with the message IdentityFederationResponse including ssoToken.

It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
If necessary, users can request Master UCD Server to do identity federation with multiple Slave UCD Server at the same time.

D.2 Identity federation request initiated from Slave UCD Server

End user wants to do identity federation with Master UCD Server. Procedures of such identity federation are described as in figure 4.

[image: image45.emf]UCD ClientMaster UCD ServerSlave UCD Server

3: IdentityFederationRequest

4:302; RegisterNameIdentifierRequest

6: 302; RegisterNameIdentifierResponse

8: IdentityFederationResponse (Successfull)

5: Record mapping of user accounts between

Master UCD Server and Slave UCD Server

7: Record Federation info

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

Figure 4: Flow of identity federation initiated from Slave UCD Server
Some prerequisites for making identity federation are:

· SPs of UCD Servers including IdP functions should make service agreement with other SPs providing UCD service.
· User has registered and decided which UCD Server that may or may not have IdP functions to be his/her Slave UCD Server.

Procedures of identity federation initiated from Slave UCD Server are described as below:
1. User requests to log in Slave UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in Slave UCD Server). If user is already authenticated by Slave UCD Server and keeping login status, then go to step 3.

1.1 Slave UCD Server requests to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client replies to Slave UCD Server. The message includes user authentication information e.g., digest of credentials.

2. Slave UCD Server authenticates the user according to authentication information (e.g., user account in Slave UCD Server, user credentials).

Slave UCD Server replies to UCD Client with the message UserLoginResponse including successful response and a list of UCD Server (at least including one UCD Server) which have IdP functions.

3. User chooses one of UCD Servers as her/his Master UCD Server (which she/he already registered a Master UCD account) to federate with. UCD Client sends message IdentityFederationRequest to Slave UCD Server. This request message includes user account in Slave UCD Server, user account in Master UCD Server, and information about Master UCD Server (e.g. Master UCD Server address).

4. Slave UCD Server redirects UCD Client to Master UCD Server. The message RegisterNameIdentifierRequest in [LibertyBindProf] [LibertyProtSchema] includes address of Master UCD Server, address of Slave UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Slave UCD Server Certificate. This message is signed by Slave UCD Server.

Slave UCD Server validates the signature of Master UCD Server.

Before recording federation information (e.g., the mapping of user accounts between Master UCD Server and Slave UCD Server), Master UCD Server MUST authenticate the user to guarantee that this user has the right to federate user account in Master UCD Server with user account in Slave UCD Server. There are several authentication mechanisms. One possible mechanism is available as below:

4.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

4.2 UCD Client replies to Master UCD Server. The message includes user authentication information e.g., digest of user credentials.

4.3 Master UCD Server authenticates the user. Master UCD Server replies to UCD Client with the message 200 OK.

5. Master UCD Server records federation information (i.e., mapping of user accounts between Master UCD Server and Slave UCD Server).

6. Master UCD Server redirects UCD Client to Slave UCD Server. The message RegisterNameIdentifierResponse in [LibertyBindProf] [LibertyProtSchema] includes ssoToken, Master UCD Server identity, user account in Slave UCD Server, user account in Master UCD Server, Master UCD Server Certificate. This message is signed by Master UCD Server.

7. Slave UCD Server validates the signature of Master UCD Server.

Slave UCD Server records mapping of user accounts between Master UCD Server and Slave UCD Server.

8. Slave UCD Server responds UCD Client with the message IdentityFederationResponse including ssoToken.

It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
D.3 Identity defederation request initiated from Master UCD Server

User wants to do identity defederation with one Slave UCD Server. Procedures of such identity defederation are described as in figure 5.

[image: image46.emf]UCD ClientMaster UCD ServerSlave UCD Server

3: IdentityDefederationRequest

4: 302; FederationTerminationNotification

6: 302; Return URL at Master UCD Server

8: IdentityDefederationResponse (Successfull)

7: invalidate mapping of user accounts between

Master UCD Server and Slave UCD Server

5: invalidate mapping of user accounts between

Master UCD Server and Slave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

Figure 5 : Flow of identity defederation initiated from Master UCD Server
Procedures of identity defederation initiated from Master UCD Server are described as below:
1. User requests to log in Master UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in Master UCD Server). If user is already authenticated by Master UCD Server and keeping login status, then go to step 3.

1.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client sends request to Master UCD Server. The message includes user authentication information e.g., Digest of user credentials.

2. Master UCD Server authenticates the user according to authentication information (e.g., user account in Master UCD Server, user credentials).

Master UCD Server replies to UCD Client with the message UserLoginResponse, containing a list of Slave UCD Server addresses.

3. User chooses a Slave UCD Server to be defederated. UCD Client sends message IdentityDefederationRequest to Master UCD Server. This request message includes user account in Master UCD Server, user account in Slave UCD Server, and information about Slave UCD Server (e.g. Slave UCD Server address).

4. Master UCD Server redirects UCD Client to Slave UCD Server. The message FederationTerminationNotification in [LibertyBindProf] [LibertyProtSchema] includes address of Slave UCD Server, address of Master UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Master UCD Server Certificate. The message is signed by Master UCD Server.

Slave UCD Server validates the signature of Master UCD Server.

Before invalidating the federated information (e.g., the mapping of user accounts between Master UCD Server and Slave UCD Server), Slave UCD Server MUST authenticate the user to guarantee that this user has the right to do such defederation. There are several authentication mechanisms. One possible mechanism is available as below:

4.1 Slave UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

4.2 UCD Client replies to Slave UCD Server. The message includes user authentication information e.g., digest of user credentials.

4.3 Slave UCD Server authenticates the user. Slave UCD Server replies to UCD Client with the message 200 OK.

5. Slave UCD Server invalidates the mapping of user accounts between Master UCD Server and Slave UCD Server. Slave UCD Server may remove the mapping of user accounts between Master UCD Server and Slave UCD Server.

6. Slave UCD Server redirects UCD Client to Master UCD Server. The respond message includes URL at Master UCD Server.

7. Master UCD Server invalidates the mapping of user accounts between Master UCD Server and Slave UCD Server. Master UCD Server may remove the mapping of user accounts between Master UCD Server and Slave UCD Server.

8. Master UCD Server responds UCD Client with the message IdentityDefederationResponse.

It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
D.4 Identity defederation request initiated from Slave UCD Server

User wants to do identity defederation with Master UCD Server. Procedures of such identity defederation are described as in figure 6.

[image: image47.emf]UCD ClientMaster UCD ServerSlave UCD Server

3: IdentityDefederationRequest

4: 302; FederationTerminationNotification

6: 302; Return URL at Slave UCD Server

8: IdentityDefederationResponse (Successfull)

5: Invalidate mapping of user accounts between

Master UCD Server and Slave UCD Server

7: Invalidate mapping of user accounts between

Master UCD Server and Slave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

Figure 6: Flow of identity defederation initiated from Slave UCD Server
Procedures of identity defederation initiated from Slave UCD Server are described as below:

1. User requests to log in Slave UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in Slave UCD Server). If user is already authenticated by Slave UCD Server and keeping login status, then go to step 3.

1.1 Slave UCD Server requests to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client replies to Slave UCD Server. The message includes user authentication information e.g., digest of credentials.

2. Slave UCD Server authenticates the user according to authentication information (e.g., user account in Slave UCD Server, user credentials).

Slave UCD Server replies to UCD Client with the message UserLoginResponse including successful response and a list of Master UCD Server addresses.

3. User chooses a Master UCD Server to be defederated. UCD Client send message IdentityDefederationRequest to Slave UCD Server. This request message includes user account in Slave UCD Server, user account in Master UCD Server, and information about Master UCD Server (e.g. Master UCD Server address).

4. Slave UCD Server redirects UCD Client to Master UCD Server. The message FederationTerminationNotification in [LibertyBindProf] [LibertyProtSchema] includes address of Master UCD Server, address of Slave UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Slave UCD Server Certificate. This message is signed by Slave UCD Server.

Master UCD Server validates the signature of Slave UCD Server.

Before invalidating the federated information (e.g., the mapping of user accounts between Master UCD Server and Slave UCD Server), Master UCD Server MUST authenticate the user to guarantee that this user has the right to do such defederation. There are several authentication mechanisms. One possible mechanism is available as below:

4.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

4.2 UCD Client replies to Master UCD Server. The message includes user authentication information e.g., digest of user credentials.

4.3 Master UCD Server authenticates the user. Master UCD Server replies to UCD Client with the message 200 OK.

5. Master UCD Server invalidates the mapping of user accounts between Master UCD Server and Slave UCD Server. Master UCD Server may remove the mapping of user accounts between Master UCD Server and Slave UCD Server.

6. Master UCD Server redirects UCD Client to Slave UCD Server. The respond message includes URL at Slave UCD Server.

7. Slave UCD Server validates the signature of Master UCD Server.

Slave UCD Server invalidates the mapping of user accounts between Master UCD Server and Slave UCD Server. Slave UCD Server may remove the mapping of user accounts between Master UCD Server and Slave UCD Server.
8. Slave UCD Server responds UCD Client with the message IdentityDefederationResponse.
It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.

D.5 Single Sign-On (SSO)

[image: image48.emf]UCD ClientSlave UCD ServerMaster UCD Server

1: SSOLoginRequest

2: 302; HTTP Response with AuthnRequest()

3: 302; HTTP Response with AuthnResponse()

5: SSOLoginResponse

4: Process Assertion

2.1: 401; Unauthorized

2.2: HTTP Request ()

2.3: 200 OK

Figure 7: Flow of Single Sign-On

Flow of Single Sign-On(SSO) in Figure 7 is described as below:

1. UCD Client sends SSOLogin Request to Slave UCD Server to access services. This message includes user identifier in Slave UCD Server. This message may also include a valid ssoToken.
2. Slave UCD Server checks if this request includes a valid authentication assertion (i.e., ssoToken) generated by Master UCD Server. If yes, then go to step 6 directly. If no, Slave UCD Server redirects UCD Client to Master UCD Server with the message HTTP Response with AuthnRequest defined in [LibertyBindProf] [LibertyProtSchema].

Before issuing authentication assertion, Master UCD Server MUST authenticate the user as below:

2.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

2.2 UCD Client replies to Master UCD Server. The message includes user authentication information e.g., digest of user credentials.

2.3 Master UCD Server authenticates the user. Master UCD Server replies to UCD Client with the message 200 OK.

3. Master UCD Server generates authentication assertion (i.e., ssoToken) for the user.

Master UCD Server redirects UCD Client to Slave UCD Server with the message HTTP Response with AuthnReponse (including authentication assertion) defined in [LibertyBindProf] [LibertyProtSchema].
UCD Client SHALL keep authentication assertion and use it before it expires.
4. Slave UCD Server validates authentication assertion as in [LibertyBindProf] [LibertyProtSchema].

5. Slave UCD Server responds UCD Client with the message SSOLogin Response that either allows or denies access to the originally requested resource.
It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
D.6 Single Logout Initiated at Master UCD Server

[image: image49.emf]UCD ClientMaster UCD ServerSlave UCD Server

3: SingleLogoutRequest

4: 302; LogoutRequest

5: Process Logout

Request

6: 302; LogoutResponse

7: SingleLogoutResponse (confirmation)

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

1: HTTP Request () <UserLoginRequest>

Figure 8: Flow of Single Logout Initiated at Master UCD Server

Procedures of Single Logout Initiated at Master UCD Server in Figure 8 are described as below:

1. User requests to log in Master UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in Master UCD Server). If user is already authenticated by Master UCD Server and keeping login status, then go to step 3.

1.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client sends request to Master UCD Server. The message includes user authentication information e.g., Digest of user credentials.

2. Master UCD Server authenticates the user according to authentication information (e.g., user account in Master UCD Server, user credentials).

Master UCD Server replies to UCD Client with the message UserLoginResponse.

3. UCD Client sends message SingleLogoutRequest to Master UCD Server. This request message includes user account in Master UCD Server, user account in Slave UCD Server, and information about Slave UCD Server (e.g. Slave UCD Server address).

4. Master UCD Server SHALL discover all Slave UCD Servers which the end user has logged in with ssoToken issued by this Master UCD Server.Master UCD Server redirects UCD Client to one of those Slave UCD Servers. The message LogoutRequest in [LibertyBindProf] [LibertyProtSchema] should be signed by Master UCD Server. The message includes address of Slave UCD Server, address of Master UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Master UCD Server Certificate.

5. Slave UCD Server validates Master UCD Server’s signature. If the signature is that of the Master UCD Server that provided the authentication for the Principal’s current session, the Slave UCD Server MUST invalidate the user’s session(s) referred to by the < NameIdentifier> element, and any SessionIndex elements supplied in the message. The Slave UCD Server MUST apply the log out request message to any assertion that meets the requirements (e.g., a) The SessionIndex of the assertion matches one specified in the logout request. b) The assertion would otherwise be valid) even if the assertion arrives after the log out request.

6. Slave UCD Server redirects UCD Client to Master UCD Server with the message LogoutResponse in [LibertyBindProf] [LibertyProtSchema]. This message is signed by Slave UCD Server.
Master UCD Server validates Slave UCD Server’s signature and confirms that the end user logs out the Slave UCD Server.

With repeating steps 4, 5 and 6, Master UCD Server makes the end users log out the rest of those Slave UCD Servers separately.
7. Master UCD Server replies to UCD Client with the message SingleLogoutResponse.
It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
D.7 Single Logout Initiated at Slave UCD Server

[image: image50.emf]UCD ClientMaster UCD ServerSlave UCD Server

1: SingleLogoutRequest

2: LogoutRequest

4: LogoutResponse

5:SingleLogoutResponse (Confirmation)

3: Process Logout Request

Figure 9: Flow of Single Logout Initiated at Slave UCD Server

Procedures of Single Logout Initiated at Slave UCD Server in Figure 9 are described as below:

1. UCD Client sends message SingleLogoutRequest to Slave UCD Server. This request message includes user account in Master UCD Server, user account in Slave UCD Server, and information about Master UCD Server (e.g. Master UCD Server address).

2. Slave UCD Server redirects UCD Client to Master UCD Server. The message LogoutRequest in [LibertyBindProf] [LibertyProtSchema] should be signed by Slave UCD Server. The message includes address of Slave UCD Server, address of Master UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Slave UCD Server Certificate.

3. Master UCD Server validates Slave UCD Server’s signature. If the signature is that of the Slave UCD Server that provided the authentication for the Principal’s current session, Master UCD Server’s current session with the user MUST be terminated, and no more authentication assertions for the user are to be given to Slave UCD Servers.
Master UCD Server SHALL discover other Slave UCD Servers which the end user has logged in with ssoToken issued by this Master UCD Server. Then, Master UCD Server SHALL separately redirect the message LogoutRequest from UCD Client to other Slave UCD Servers. Each Slave UCD Server SHALL make the end user log out and SHALL redirect the message LogoutResponse from UCD Client to Master UCD Server
4. Master UCD Server redirects UCD Client to Slave UCD Server with the message LogoutResponse in [LibertyBindProf] [LibertyProtSchema]. This message is signed by Master UCD Server.

5. Slave UCD Server validates Master UCD Server’s signature.

The Slave UCD Server MUST invalidate the user’s session(s) referred to by the < NameIdentifier> element, and any SessionIndex elements supplied in the message. The Slave UCD Server MUST apply the log out request message to any assertion that meets the requirements (e.g., a) The SessionIndex of the assertion matches one specified in the log out request. b) The assertion would otherwise be valid) even if the assertion arrives after the log out request.

Slave UCD Server replies to UCD Client with the message SingleLogoutResponse.

It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
Appendix E. Architectural deployments (Informative)

In this section are described possible architectural realizations of the UCD Enabler according to the architecture defined in section 6.

This section is informative and illustrates interactions and flows between instances of UCD functional components as well as with external entities, using both UCD interfaces and external interfaces.

[image: image51.emf]S1

(UCDServer)

C1

(UCDClient)

UCDEnabled

Applications

Instance of a component defined byUCD

Instance(s) of a component external toUCD

Interaction using interfacesdefined byUCD

Interaction(s) using interfacesexternal toUCD

UCD-2

UCD-2UCD-1

S3 (External

Storage

Server)

Storage Resource

UCD-2

Device

S2(other UCD

Server)

UCD-2

Figure 10: architecture deployment of UCD Enabler
The UCD-2 interface is used to handle requests from other peer UCD Servers which can be in remote site of same Service Provideror other different Service Provider. The UCD Server also uses UCD-2 interface exposed by other peer UCD Servers to access data/files of users. It enables the exchange of data or files between different UCD Servers.
Depending on the nature of External Storage Servers, they may rely on UCD-2 interface(s) to interact with UCD Enabler. It is up to Service Providers to define policies to control access to such interfaces from External storage servers. The UCD Server interacts with External Storage Server to access the data/files of users on it.
The UCD-2 interface is also used to handle requests from 3rd party applications enabling them to access storage services provided. Examples of UCD enabled applications are consumer applications, enterprise applications (such as OA (Office Automation), CRM (Customer Relationship Management)), OMA Enables (such as SNew, MobAR) etc. Those applications can run within user agent or server.
userRegistrationRequest uesuestAppInfoNotify

userRegistrationResponse

UCD Client

UCD

Server

userLoginRequest

userLoginResponse

UCD Client

UCD

Server

SSOLoginRequest

SSOLoginResponse

UCD Client

UCD

Server

SingleLogoutRequest

SingleLogoutResponse

UCD Client

UCD

Server

IdentityFederationRequest

IdentityFederationResponse

UCD Client

UCD

Server

IdentityDefederationRequest

IdentityDefederationResponse

UCD Client

UCD

Server

ListFolderRequest

ListFolderResponse

UCD Client

UCD

Server

CreateFolderRequest

CreateFolderResponse

UCD Client

UCD

Server

DeleteFolderRequest

DeleteFolderResponse

UCD Client

UCD

Server

RenameFolderRequest

RenameFolderResponse

UCD Client

UCD

Server

CopyFolderRequest

CopyFolderResponse

UCD Client

UCD

Server

MoveFolderRequest

MoveFolderResponse

UCD Client

UCD

Server

SetFolderAttributeRequest

SetFolderAttributeResponse

UCD Client

UCD

Server

GetFolderAttributeRequest

GetFolderAttributeResponse

UCD Client

UCD

Server

InitiateSegmentUploadRequest

InitiateSegmentUploadResponse

UCD Client

UCD

Server

UploadFileRequest

UploadFileResponse

UCD Client

UCD

Server

UploadSegmentRequest

UploadSegmentResponse

UCD Client

UCD

Server

FinishSegmentUploadRequest

FinishSegmentUploadResponse

UCD Client

UCD

Server

GetSegmentListRequest

GetSegmentListResponse

UCD Client

UCD

Server

CancelSegmentUploadRequest

CancelSegmentUploadResponse

UCD Client

UCD

Server

FileUpdateInRangeRequest

FileUpdateInRangeResponse

UCD Client

UCD

Server

DownloadFileRequest

DownloadFileResponse

UCD Client

UCD

Server

DeleteFileRequest

DeleteFileResponse

UCD Client

UCD

Server

MoveFileRequest

MoveFileResponse

UCD Client

UCD

Server

CopyFileRequest

CopyFileResponse

UCD Client

UCD

Server

RenameFileRequest

RenameFileResponse

UCD Client

UCD

Server

SharingFileRequest

SharingFileResponse

UCD Client

UCD

Server

ListFileSharingRequest

ListFileSharingResponse

UCD Client

UCD

Server

DeleteFileSharingRequest

DeleteFileSharingResponse

UCD Client

UCD

Server

SetFileAttributeRequest

SetFileAttributeResponse

UCD Client

UCD

Server

GetFileAttributeRequest

GetFileAttributeResponse

UCD Client

UCD

Server

SearchRequest

SearchResponse

UCD Client

UCD

Server

ListRecycleBinRequest

ListRecycleBinResponse

UCD Client

UCD

Server

DeleteRecycleBinRequest

DeleteRecycleBinResponse

UCD Client

UCD

Server

RevokeRecycleBinRequest

RevokeRecycleBinResponse

UCD Client

UCD

Server

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

UCD Client

UCD

Server-2

UCD Server-1

HTTP 302 with LogoutResponse

HTTP 302 with LogoutRequest

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

UCD Client

Master UCD

Server

Slave UCD Server

HTTP 302 with AuthnResponse

HTTP 302 with AuthnRequest

LogInfoRequest

LogInfoResponse

UCD Client

UCD

Server

HTTP 302 with RegisterNameIdentifierRequest

HTTP 302 with RegisterNameIdentifierResponse

UCD Server-1

UCD

Server-2

UCD Client

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

HTTP 302 with FederationTerminationNotification

UCD Server-1

UCD

Server-2

UCD Client

� EMBED Visio.Drawing.11 ���

(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20120101-I]
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20120101-I]

[image: image1.jpg][image: image52.emf][image: image53.emf][image: image54.emf][image: image55.emf][image: image56.emf][image: image57.emf][image: image58.emf]_1445927224.vsd
UCD Client

Master UCD Server

Slave UCD Server

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

3: SingleLogoutRequest

4: 302; LogoutRequest

1.2: HTTP Request ()

1: HTTP Request () <UserLoginRequest>

5: Process Logout Request

_1445970862.vsd
UCD Client

Master UCD Server

Slave UCD Server

3: IdentityDefederationRequest

4: 302; FederationTerminationNotification

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

_1462707293.vsd
External Storage Server

UCD Server

UCD Client

Component in scope of UCD

Component out of scope of UCD

Interface in scope of UCD

Interface out of scope of UCD

UCD-2

UCD-1

Storage Resource

_1471085167.vsd

_1471085230.vsd

_1462705440.vsd
Storage Resource

S2(other UCD Server)

S1
(UCD Server)

C1
(UCD Client)

UCD Enabled Applications

S3 (External Storage Server)

Instance of a component defined by UCD

Instance(s) of a component external to UCD

Interaction using interfaces defined by UCD

Interaction(s) using interfaces external to UCD

UCD-2

UCD-2

UCD-1

UCD-2

UCD-2

Device

_1445970498.vsd
UCD Client

Slave UCD Server

Master UCD Server

1: SSOLoginRequest

2: 302; HTTP Response with AuthnRequest()

2.1: 401; Unauthorized

2.2: HTTP Request ()

_1445927334.vsd
UCD Client

Master UCD Server

Slave UCD Server

1: SingleLogoutRequest

2: LogoutRequest

_1445926869.vsd
UCD Client

Master UCD Server

Slave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

3: IdentityFederationRequest

4:302; RegisterNameIdentifierRequest

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

_1445927061.vsd
UCD Client

Master UCD Server

Slave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

3: IdentityDefederationRequest

4.1: 401; Unauthorized

4: 302; FederationTerminationNotification

4.2: HTTP Request ()

4.3: 200 OK

_1445926653.vsd
UCD Client

Master UCD Server

Slave UCD Server

1: HTTP Request () <UserLoginRequest>

4.3: 200 OK

2: 200 OK <UserLoginResponse>

3: IdentityFederationRequest

4: 302; RegisterNameIdentifierRequest

4.1: 401; Unauthorized

4.2: HTTP Request ()

